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Microcompression is a technique that was developed as a means to probe the properties of
micrometer-sized specimens using a modification of a conventional nanoindentation system. We use
this technique to present the first uniaxial compressive data on electrodeposited nanocrystalline
nickel �a material system where the grain size is much smaller than the specimen size�. The
compression-tension asymmetry of this nanocrystalline material is also discussed. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2183814�
The mechanical properties and deformation behavior of
face-centered-cubic nanocrystalline nickel �nano-Ni� have
been closely examined in recent years. The deformation be-
havior has been examined in molecular dynamics
simulations,1 in tension,2–4 and in conventional
nanoindentation.4,5 Often, the experimental studies focus on
commercially available electrodeposited nano-Ni in thin film
or foil geometries where the sample thickness is typically on
the order of hundreds of microns. This arrangement lends
itself well to tension and to nanoindentation, but not to con-
ventional compression experiments. Advances in microma-
chining techniques �e.g., focused ion beam �FIB�� allow for
the fabrication of micrometer sized compression specimens
�microposts�. Recent innovations by Uchic et al.6–9 provide a
means to probe the compressive behavior of these micro-
posts. In this letter, we bring together these advances to
present, for the first time, the compressive properties of elec-
trodeposited nanocrystalline nickel.

Microcompression was first introduced by Uchic et
al.6,7,9 as a means to examine size effects in micrometer-
sized single crystal compression specimens using a truncated
Berkovich tip in a conventional nanoindenter. In past efforts,
FIB micromachining has been the primary method of pro-
ducing compression specimens using currents of Ga ions as
high as several thousand pA.6–9 These previous studies have
examined size scale effects on single crystal plasticity. Our
work, in contrast, focuses on the compressive properties of a
material system in which the grain size is three orders of
magnitude smaller than the specimen size.

We use a new two-step fabrication process to produce
the micrometer-sized compression specimens with minimal
�or no� use of expensive FIB micromachining. The process
involves use of microelectrodischarge machining ��EDM�
combined with polycrystalline diamond grinding �PCD� and
allows for the production of multiple compression specimens
that are well aligned, have relatively uniform dimensions
�little taper� and a small postfillet radius. These are important

a�Present address: Department of Mechanical Engineering and Engineering
Science, University of North Carolina at Charlotte, 9201 University City
Boulevard, Charlotte, NC 28223.

b�Author to whom correspondence should be addressed; electronic mail:

ramesh@jhu.edu

0003-6951/2006/88�10�/103112/3/$23.00 88, 10311
Downloaded 13 Mar 2006 to 128.63.26.125. Redistribution subject to 
characteristics for such microcompression experiments as
demonstrated in the recent analysis by Zhang et al.10

�EDM was originally developed to drill micrometer
sized holes in inkjet nozzles. This noncontact form of ma-
chining relies on pulsating electrical discharge between the
work piece and an electrode for material removal. Further
improvements have included the adaptation of a three-axis
stage to allow for three-dimensional milling. In this study, a
100 �m diameter electrode was used in a Panasonic Micro-
EDM �MG-ED72W� with a three-axis stage to create arrays
of 20 nanocrystalline nickel pillars. A damage zone �1 �m
thick is left on the surface of the nanocrystalline microposts
after the �EDM process.9 To remove the �EDM damage
layer and to improve the geometry to the guidelines set by
Zhang,10 PCD grinding is employed. A �EDM is first used to
machine a PCD right-cylindrical tool. The PCD tool is then
placed in a V-bearing arrangement where it is rotated at
3000 rpm by a dc motor and scanned across the array of
nano-Ni pillars which, again, are set on a three-axis machin-
ing platform. The nominal dimensions of the finished posts
are 20 �m on a side with a square cross section and 2:1
aspect ratio. The resulting 4�5 array of posts is shown in
Fig. 1�a� with an expanded view of a typical pillar shown in
Fig. 1�b�. The pillar dimensions are individually examined in
a JEOL 6460 scanning electron microscope.

Commercially available nanocrystalline nickel was the
focus of this study. Electrodeposited foils that are 150 �m in
thickness were provided by Integran Technologies Inc. The
nano-Ni in this study comes from the as received state from
the same batch examined by Wang.2,3 The actual mean grain
size was found to be 29 nm. More details on this batch of
material including x-ray diffraction data, transmission elec-
tron microscopy micrographs, and impurity contents are pro-
vided by Wang.2,3

The nanocrystalline Ni pillars were studied in micro-
compression using the process described in detail by Uchic.9

Since there are about a million grains across the cross section
and about a billion grains in each post, we are able to obtain
the effective response of the bulk material with this tech-
nique. An MTS Nanoindenter XP with the continuous stiff-
ness measurement �CSM� extension was used with a trun-
cated Berkovich indenter to apply the compressive load. The

load and displacement along with corresponding stiffness
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were recorded for these specimens deformed at a strain rate
of 10−3 s−1. Following the method proposed by Zhang et
al.,10 the pillar compliance was corrected for the effect of the
elastic base. The base contact area, including fillet radius,
was related to a cylindrical area with an equivalent contact
radius re. The base compliance Cb of the microposts was
found from10

Cb =
1 − �2

2E�re
,

where E is the elastic modulus for Ni, � is Poisson’s ratio,
and �=1.42. This base compliance was subtracted from the
measured compliance and the corresponding stress and strain
measures were corrected accordingly.

The resulting stress-strain curves are plotted in Fig. 2.
The nano-Ni specimens showed very consistent compressive
behavior. The compressive yield strength at 2% offset was an
average of 1210±20 MPa. The maximum strength was re-
peatable for each case and was 1498±10 MPa as seen in Fig.
2. The measured elastic modulus for unloading is 95 GPa;
small in comparison to theoretical predictions. Zhang et al.10

showed that alignment has a profound effect on the measured
elastic modulus, yet this effect on the apparent elastic modu-
lus comes without detriment to strength measurement. In
other experiments not presented here, we do not observe ma-
terial failure in deformations up to 25% �an example of such
a typical deformed micropost is shown in Fig. 3�. However,

FIG. 1. �a� Array of nanocrystalline Ni posts from �EDM followed by PCD
grinding. �b� Enlarged view of �a� with a typical post nominally 20 �m on a
side with a 2:1 aspect ratio.
we sometimes see evidence of structural �as opposed to ma-
Downloaded 13 Mar 2006 to 128.63.26.125. Redistribution subject to 
terial� failure or buckling that may occur at strains less than
10%. Local material variations in each post might trigger
such failures. Materials with low strain hardening, such as
nano-Ni, are also prone to plastic buckling in microcompres-
sion �although the contact friction between the indenter tip
and compression post has been shown to suppress plastic
buckling�.10 The effects of imperfect contact and minute mis-
alignment on the measured elastic modulus and critical strain
for plastic buckling have not been investigated experimen-
tally using microcompression.

This batch of material was also examined by Wang.2,3

They report a flow strength �at 3.5% strain� of 1260 MPa in
tension ��T� and a microhardness �H� of over 5.5 GPa.2,3

Our microcompression results show a compressive flow
strength ��C� at 3.5% strain of 1460 MPa, 16% higher than
Wang’s tensile values, i.e., the compression-tension asymme-
try is �C /�T=1.16 �note that we compare the flow strengths
at a given strain rather than yield due to general uncertainties
in measuring initial yield�. In contrast, one obtains �C /�T
=1.5 if the compressive strength ��C� is estimated using the
approximation that H�3�C and using Wang’s measured
microhardness.

Lund and Schuh1 addressed compression-tension asym-
metry across a broad range of grain �ultra fine grained,
nano-2, and nano-1� sizes using molecular dynamics �MD�

FIG. 2. Repeatable compressive response of nanocrystalline nickel posts
with consistent yield strengths and peak strengths.

FIG. 3. Typical deformed nanocrystalline Ni micropost. Permanent plastic

deformation is observed without structural failure.
AIP license or copyright, see http://apl.aip.org/apl/copyright.jsp
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simulations and analysis, comparing with Cheng et al.11 who
addressed compression-tension asymmetry using a strength
model based on dislocation emission from grain boundary
sources for the nano-2 and UFG regimes. The latter model
relates the uniaxial strength of materials to the self-energy of
a dislocation under pressure following the formulation of
Jung et al.12 Lund and Schuh1 applied the elastic constants of
Ni to the Cheng et al. model, and demonstrated a gradual
increase in compression-tension asymmetry with decreasing
grain size in the nano-2 and UFG regimes. Jiang and Weng13

present analytical solutions for Cu using a weighted average
of a crystalline phase �with grain size dependent mechanical
properties� and an amorphous grain boundary �with size in-
dependent properties�. In these analyses, the volume fraction
of the grain boundaries increases with decreasing grain size
and thereby affects the overall response. For example, the
analysis applied to Cu shows increasing compression-tension
asymmetry with decreasing grain size with a peak in or near
to the nano-1 to nano-2 transition.

Our study closely matches the predictions by Jiang et
al.13 of the compression-tension asymmetry ��1.2� for Cu at
a similar grain size. At a similar grain size, the CSM model11

applied to Ni underestimates the measured asymmetry.1 This
suggests that, at this grain size, there are other contributing
deformation mechanisms besides the emission of grain
boundary dislocations, perhaps including normal stress or
pressure dependent mechanisms. Can it be shown experi-
mentally that there is a peak in the asymmetry as suggested
by Jiang et al.?13 Using microcompression, we have estab-
lished a means to directly examine the asymmetry for this
electrodeposited nanocrystalline nickel system without esti-
mates of compressive strength based on hardness. This ap-
proach could be used to address the latter question, among

several others of interest to the materials science community

Downloaded 13 Mar 2006 to 128.63.26.125. Redistribution subject to 
relating to the relative stability of nanocrystalline materials
under various stress states.

Microcompression experiments offer a means to not only
examine the response of single crystal microposts, but also to
experimentally examine the compressive response of a wide
range of nanocrystalline metals. The ability to fabricate and
test pillars as small as several hundred nanometers may also
offer future opportunities for direct comparisons of experi-
mental and MD results.
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search Laboratory through Grant No. DAAL01-96-2-0047
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�CAMCS� at the Johns Hopkins University.
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