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1. Introduction 

1.1 Background 
In the context of machine vision, it would be desired to have a relatively simple 
automatic approach capable of focusing its attention in the same way a human analyst 
would observing the same set of images. For reasons well known and highlighted in 
standard computer-vision books (see, for instance, [1]), that expectation, however, is 
rarely met with experimental results, despite of the fact that sometimes the scenes in 
reference are characterized by image analysts as easy to focus their attentions to 
certain types of objects.  

Humans, of course, use a combination of knowledge-based, local and global 
information to aid in the analysis of a scene, a capability maybe reproduced by 
applying, for instance, layers of unsupervised learning methods complementing each 
other to perform this single task. For example, a suite of algorithms that includes an 
edge detector, an edge elongation, a clustering method, and a morphological size test 
might reproduce the humans’ performance in certain conditions, albeit with a huge 
cost: computational time. Needless to say, the topic of achieving meaningful 
automatic focus of attention (FOA) is an open and quite active area of research [1]. 

I seek to achieve humans’ performance using a single unsupervised learning 
algorithm. Unsupervised learning algorithms, contrary to supervised learning 
methods, do not require a priori information of targets (objects of interest) and of 
non-targets for training purposes. Examples of unsupervised learning methods are 
anomaly detection algorithms, and examples of supervised learning methods are 
artificial neural networks. 

To accomplish our goal, I opted to use hyperspectral (HS) rather than broadband 
imagery, and to focus our algorithmic development on adaptive anomaly detection 
rather than on a particular type of material detection, also known as target detection.  

Hyperspectral sensors are passive sensors that simultaneously record images for many 
contiguous and narrowly spaced regions of the electromagnetic spectrum. In the 
context of FOA, especially at the ground-level view, this property would eliminate 
uncertainties of objects’ sizes and shapes—a tremendous advantage over broadband 
sensors operating in the same region of the electromagnetic spectrum [2]–[4].  

Our reason for choosing anomaly detection over target detection is that often the 
exact material of interest is not known a priori, or the number of spectra in a material 
of interest library is simply too exhaustive to search for all possible materials. The 
goal of an anomaly detector is to identify outliers, i.e., data points that are atypical 
compared to the rest of the data. An anomaly detector that properly detects all, or a 
significant portion, of the pixels representing meaningful objects (targets) while at the 
same time having hundreds of meaningless detections (false alarms) has little 
practical value.  
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1.2 Prior Art 
I present in this section the more important results from our literature research on the 
topic of anomaly or target detection using hyperspectral imagery. 

It is quite evident from the literature that due to the large amounts of data that are 
collected with hyperspectral sensors, much of the prior work has focused strictly on 
compression of the data sets for storage and transmission. More recently, work has 
been published about reducing the number of spectral bands used for processing 
detection and classification data. These algorithms fall into two basic categories: 
spectral-only and spatial-spectral algorithms. The spectral-only algorithms almost all 
rely on a known spectral signature for the target or targets of interest; they are 
generally geared to perform classification rather than detection tasks. Algorithms that 
fall into this category are the spectral matched filter by Crist, et al., [5], the spectral 
angle mapper by Haskett and Sood [6], and linear mixture models by Grossmann, et 
al., [7], Chang, et al., [8], and Slater, et al., [9]. The main limitation of these spectral-
only algorithms is that they require a known target signature. Reliable target 
signatures are difficult to ascertain due to variations in the target signature that result 
from atmospheric and illumination effects. 

Spatial-spectral algorithms can be further divided into local anomaly and global 
anomaly detectors. Local anomaly detectors, as mentioned earlier, process small 
windows of the HS data in order to compare the spatial and spectral properties of the 
centrally located pixels in the window with the properties of the surrounding pixels. 
Those pixels that are spatially-spectrally different from their surrounding 
backgrounds are considered detections. Yu, et al., [10] proposed an algorithm 
commonly referred to as RX algorithm, which has become a benchmark for 
multispectral data, based on this principle. The RX algorithm is a maximum 
likelihood (ML) anomaly detection procedure that simplifies the clutter to being 
spatially white. Researchers have also used classical approaches, such as, Fisher’s 
Linear Discriminant, Principal Component Analysis (PCA), in the same spirit of the 
RX algorithm. PCA has been mostly used prior to another detection or classification 
algorithm for purposes of reducing the dimensionality of the hyperspectral data sets, 
thus making the applied detection and classification algorithms computationally 
efficient. The reduction of redundant information with PCA is based on 
reconstructing the data using a subset of the principal components. Often, the 
components used for reconstruction are those associated with largest eigenvalues. 
Crist, et al., [5] have shown, however, that components associated with lower order 
eigenvalues often contain important features for target discrimination. Thus, there is 
ambiguity as to what are the most appropriate principal components to use for data 
reduction.  

I will present later a brief insightful discussion on some of the more prominent local 
anomaly detectors and their performances; this discussion will also include a recently 
published detector, the kernel RX [11].  

In global anomaly detectors, the image scene is first segmented into its constituent 
classes. Detection then is achieved by determining the outliers of these classes. In 
general, the algorithms vary in the method of segmentation, but tend to use maximum 
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likelihood (ML) detection once the classes are determined. The number of classes is 
assumed to be known a priori for these algorithms, which is also a weakness. Stocker 
[12] discusses one of these hybrid algorithms—the stochastic expectation 
maximization clustering algorithm (see also Masson and Pieczynski [13]) coupled 
with ML-detection. 

From the discussion above, it is evident that most conventional anomaly or target 
detectors use multivariate models to define the spectral variability of the data, and the 
majority of the data pixels are assumed to be spectrally homogeneous and are 
modeled using a multivariate probability density function with a single set of 
parameters. Until now, no significant work had been done to find non-normal 
statistical models, or unconventional alternatives for the development of anomaly 
detection techniques geared toward hyperspectral data. As I will show in this work, 
conventional anomaly detectors may detect the presence of targets in hyperspectral 
data, but in the process they yield a large number of false alarms. This sort of 
performance has little practical value. 

1.3 A Notional Breakthrough 
I present in this section a breakthrough in this research that led to the developments 
shown in this report.  

1.3.1 Most Probable Study Cases in Anomaly Detection 
To gain a better insight into the general behavior of local anomaly detectors, I 
decomposed their expected performances into what I considered to be the three most 
probable study cases (to be discussed shortly), and applied a few conventional 
anomaly detectors to actual HS imagery in order to compare their local responses 
with this decomposition model. From this comparison I made a simple but important 
discovery and a key recognition.  

Discovery: The reason conventional techniques produce high numbers of meaningless 
detections in digitized scenes is not only because the assumed data models are 
unrealistic, but also because these techniques are not developed to address—
explicitly—all three of the most probable spatial/spectral variability occurrences 
observed locally in the imagery. What this claim really means is that improving data 
models for various object classes will not necessarily improve performances of 
anomaly detectors based on those improved models.  

To appreciate this claim, consider the decomposition of anomaly detection problems 
into three most probable study cases: Case 1, Case 2, and Case 3, where Case 1 
represents a comparison between two sample sets from different distributions (e.g., 
land vehicle and grass); Case 2 represents a comparison between a two-material 
sample set and a sample set representing one of the two materials (e.g., a spatial 
transition between tree shadows and surrounding grass), and Case 3 represents a 
comparison between two sample sets from the same distribution (e.g., grass and 
grass). Using this simple decomposition model to judge the quality of the detectors’ 
results revealed to us that the application of conventional techniques to local anomaly 
detection problems using digitized scenes is essentially flawed. Conventional 
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detectors are developed to account explicitly for Case 1 and Case 3, but not for one of 
the more abundant cases—Case 2. Case 2 occurs often on digitized scenes, 
representing major transitions of regions, or strong edges. With anomaly detection, 
the consequence of not accounting for Case 2 arguably leads to a significant increase 
of meaningless detections (e.g., edges between tree shadows and surrounding grass), 
often obscuring the locations of meaningful detections (e.g., a land vehicle parked in 
a road). This observation applies to conventional techniques based on parametric or 
nonparametric approaches, as it will be shown shortly. In summary, I claim that a 
significant performance improvement of anomaly detectors will not be achieved by 
proposing more accurate HS data models, but rather by proposing methods that can 
account, in some form, for at least all three most probable study cases discussed in 
this section. Accounting in this context means being able to accentuate a response 
categorized as Case 1 and suppress responses categorized as Cases 2 and 3.    

Key recognition: Our discovery led to a key recognition after taking a closer look at 
Case 2. Case 2 (the case study that yields anomalous responses along with Case 1) is 
equivalent to comparing the union of two distinct sample sets with one of these sets. 
This recognition infers that two sample sets may be indirectly and effectively 
compared in the context of anomaly detection by comparing instead the union of both 
sets with one of the two sets. Our discovery and key recognition led us to a principle, 
to be discussed shortly, and served as a breakthrough in the developments presented 
in this report.   

1.3.2 Principle of Indirect Comparison 
I propose a plausible idea for the development of anomaly detection algorithms that 
accounts for all three study cases: Compare samples indirectly by combining them, 
i.e., compare samples not as individual entities, but as individual entities and the 
union among these entities. Let X and Y denote two random samples. Let X be 
reference sample and let Z = X U Y, where U denotes the union. Features of the 
distribution of X can be indirectly compared to features of the distribution of Y by 
comparing instead features of the distributions of Z and X. I will show that anomaly 
detection algorithms, based on this principle, enjoy the desirable outcome of 
preserving what is often characterized by image analysts as meaningful detections 
(e.g., a manmade object in an open terrain), while significantly reducing the number 
of meaningless detections (e.g., transition of different regions).  

1.3.3 Proof of Principle Simulation 
This subsection explains the advantage of applying the principle of indirect 
comparison to anomaly detection problems.  

Figure 1 shows simulated realizations of random samples and their corresponding 
empirical distributions. A random sample, by definition [14], is a sequence of random 
variables, e.g., X = (X1, X2, … , Xn), where Xi is independent of Xj ( )ji ≠ . Our focus 
is on two study cases, labeled Case 1 and Case 2 in figure 1, where Case 1 depicts the 
realization of two random samples from different distributions, and Case 2 depicts the 
realization of a composite sample and a pure one.  
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The plot for Case 1 under SIMULATION shows the simulated realizations of two 
random samples, X and Y; their random variables are Normally distributed having the 
same variance (σ 2), but significantly different means, 100 and 20, or Xi ~N(100, σ 2) 
and Yi ~N(20, σ 2), where Xi and Yi are random variables of X and Y, respectively, and 
i = 1, … ,100. The vertical axis represents realized values and the horizontal axis 
represents index i. The plot for Case 2 under SIMULATION shows the simulated 
realizations of an additional random sample, S, which is composed of a sequence 
from two Normal distributions, S ~ [N(100, σ 2) or N(20, σ 2)], and the same 
realization of Y. Let X and S be reference samples and Y be a test sample. Then, 
compare X to Y using the conventional way (i.e., comparing samples as individual 

 

Figure 1. A principle of indirect comparison: the number of meaningless detections (Case 2) 
may be significantly reduced by comparing, instead, the union of candidate samples against 
a reference candidate sample. Another desirable outcome using this principle is that the 
number of meaningful detections (Case 1) is preserved. 
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entities) and using our proposed form (i.e., comparing individual entities to the union 
of entities), and repeat that comparison between S and Y. Comparison between  

random samples often implies a comparison among the moments and/or central 
moments of their distributions. Thus, I computed the empirical distributions 
(normalized histograms) of these random samples and invite the reader to perform 
those comparisons by visual inspection. 

In figure 1, under CONVENTIONAL, Case 1, the empirical distributions of the test 
sample Y and the reference sample X are shown. Both empirical distributions 
resemble a relatively tight Gaussian distribution, having the same variance but 
centered at different means, as expected. By visual inspection, one would expect that 
statistical methods using the conventional way would be able to distinguish the 
distribution of Y from the distribution of X in the basis of their mean difference, 
where Y would likely be declared as an anomaly with respect to X. In Case 2, under 
CONVENTIONAL, by visual inspection alone, one would also expect Y to be 
declared as an anomaly in respect to S for the obvious fact that the bimodal 
distribution of S is quite different from the unimodal distribution of Y. Correct as this 
declaration may be, it is also unfortunate, because these two study cases are often 
found together in real image processing problems. For instance, in a real scenario, 
Case 1 could represent a comparison between a random sample X from a motor 
vehicle and a sample Y from the surrounding natural terrain. Similarly, Case 2 could 
represent a comparison between a composite sample (S) from a transition of regions 
(terrain and tree shadow) and the pure sample (Y) from terrain. Based on this 
rationale, a conventional anomaly detector may not be able to distinguish between 
Case 1 and Case 2. Furthermore, in many circumstances, it may even declare Case 2 
a stronger anomaly than Case 1, yielding instead results that are more comparable to 
those of edge detectors.  

Under UNION in figure 1, visual inspection should convince the reader that the 
empirical distribution of the sample union ,Ẑ  which is bimodal in Case 1, is quite 
different from the corresponding unimodal distribution of X. This fact shall preserve 
the desirable declaration that X and Y are samples from different distributions. What 
shall not be preserved under UNION, however, is the unfortunate outcome under 
CONVENTIONAL, Case 2, since the empirical distributions of the sample union Z~ , 
in Case 2, and the composite sample S have the same general characteristics: they are 
bimodal. Therefore, under UNION, one would expect the differences between X and 
Y in Case 1 to be accentuated and the differences between S and Y in Case 2 to be 
suppressed, as desired.  

Another study case, where both reference and test samples belong to the same 
distribution, was not included because the outcomes under both CONVENTIONAL 
and UNION are expected to be trivial and comparable. 

1.4 Organization of Report 
This report will focus on the development of statistical anomaly detection techniques 
aimed at accentuating the presence of meaningful objects, e.g., a land vehicle, as a 
collection of point anomalies in reference to a scene dominated by natural clutter 
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backgrounds. These techniques will exploit the principle of indirect comparison 
discussed in Section 1. 

Section 2 discusses well known conventional techniques and their applications to an 
anomaly detection problem using actual HS data. 

In Section 3, I formulate two types of remote sensing, anomaly detection problems 
and propose four unconventional anomaly detection techniques to address these 
problems. They will be referred in this report as: Semiparametric (SemiP), 
Approximation to SemiP (AsemiP), Asymptotic F-distribution Test (AFT), and 
Asymmetric Variance Test (AVT). The SemiP detector is based on a logistic model, 
having as inputs independent, identically distributed observations (iid), and on large 
sample theory. The utility of a logistic model indicates this approach is neither 
parametric nor nonparametric, but semiparametric. The implementation of the SemiP 
technique requires an unconstrained maximization subroutine, which depends on 
parameter initialization. I will show that to circumvent this dependence and still 
benefit from the effectiveness of the SemiP test statistic, the AsemiP technique will 
be developed. The AsemiP detector is also free from distribution assumption, 
although I will show that, under its test null hypothesis, its test statistic tends in law to 
a known distribution, as the number of samples increases. The AFT detector was 
developed as an alternative unconventional detector, tending in law to an F-
distribution, under a null hypothesis, as the number of samples increases. The classic 
one-way ANOVA (analysis of variance), which has an exact F-distribution test 
statistic, will also be implemented in the context of anomaly detection for comparison 
purposes. Finally, I will show the development of a compact form that exploits the 
principle of indirect comparison, the AVT detector. In essence, the AVT detector 
performs an asymmetric hypothesis test using only the estimates of second central 
moments. The AVT test statistic also tends to a known distribution, under a null 
hypothesis, as the number of samples increases. I will then present theoretical 
analyses of the power of the test for two distinct types of problems: (i) local anomaly 
detection through the perspective of a top view and (ii) scene anomaly detection 
through the perspective of a ground-level view. The power of the test is an important 
theoretical analysis to determine the asymptotic behavior of statistical tests [15].  
Performance comparison among conventional and unconventional anomaly detectors 
will be presented through computed receiver’s operating characteristics (ROC) curves 
and output surfaces. As a proof of principle experiment, I will end Section 3 by 
showing that an effective unconventional anomaly detector may be extended to 
function as a classifier. 

Section 4 presents a summary of the work presented in this report, with an emphasis 
on the contributions of this work to the field of hyperspectral image processing. Also 
discussed are limitations and a look towards future work. 
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2. Conventional Anomaly Detection and Some Results 

In this section, I discuss some of the most prominent anomaly detection techniques 
for hyperspectral data. As I mentioned in Section 1, object detection within 
hyperspectral data is a highly desirable goal. The data lends itself to the ability to 
search large spatial areas, ideally in an automated and timely fashion. In order for the 
detector to have value, it should have a high rate of detection and a low rate of false 
alarms. Anomaly detectors are in particular desired because they fall under the 
category of unsupervised learning methods, i.e., they do require offline training using 
samples of targets and nontargets, as artificial neural networks do. 

In the next few subsections, I discuss the following conventional unsupervised 
learning methods, which will be used for comparison in this research. They are: 
Fisher’s linear discriminant (FLD) detector [16], dominant principal component 
(DPC)/Eigen separation transform (EST) detectors [17], the industry standard Reed-
Xi (RX) detector [10], and the kernel-based RX (KRX) detector [11]. These 
techniques, or variants of them, arguably represent a list of the most distinct 
approaches for anomaly detection. But conspicuously missing from this list are 
techniques based on Markov Chain (MC) theory. Anomaly detectors based on MC 
theory were excluded from this effort because their performances have been shown to 
be comparable, not improved, to that of the industry standard technique—the RX 
detector. Some of these MC detectors, however, have been shown to be significantly 
more efficient computationally than the RX detector (see, for instance, [18]). 

As a preliminary note before the discussion of these techniques, consider two sets of 
spectral samples that will be used for comparison. This set is organized as two 
matrixes Xin (B x nin) and Xout (B x nout), test and reference, respectively; where B is 
the number of spectral bands, and nin and nout are the number of spectral samples of 
Xin and Xout, respectively. 

2.1 Fisher’s Linear Discriminant (FLD) 
Fisher’s linear discriminant analysis is a standard technique in pattern recognition. It 
projects the original high dimensional data onto a low dimensional space, where all 
the classes are well separated by maximizing the Raleigh quotient, i.e., the ratio of 
between-class scatter matrix determinant to within-class scatter matrix determinant. 
The application of the FLD detector to hyperspectral imagery has been investigated 
for anomaly detection [17] and for object classification [19], where a classification 
algorithm was derived based on FLD, having different classes forced to be along 
different directions in a low dimensional space. Multi-object classification is beyond 
the scope of this report. Hence, our focus will be limited to adapting FLD to a two 
class problem in HS imagery. 
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A version of FLD for the two-class (anomaly or not anomaly) problem is show 
below: 

 ( )outin
t

/SS xxE
w

−=
BFLDZ , (1) 

where inx  is the sample mean vector using the columns of Xin, outx  is the sample 
mean vector using the columns of Xout,   •  denotes the absolute value operator, and 
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totalx  is the total sample mean using the columns of both Xin and Xout as input, )( i
inx  

and )( i
outx  are the i-th columns of Xin and Xout, respectively, and inn  and outn  are the 

sample sizes of Xin and Xout, respectively. 

2.2 Dominant Principle Component (DPC) and Eigen Separation Transform 
(EST) 

The DPC and EST techniques are both based on the same general principle, i.e., data 
are projected from their original high dimensional space onto a significantly lower 
dimensional space (in our case, only one dimension) using a criterion that promotes 
the highest sample variability within each domain in this lower dimensional space. 
Differences between DPC and EST are better appreciated through their mathematical 
representations: 

 ( )outin
t xxE −= outDPCZ , (4) 

 ( )outin
t
ΔC xxE −=ESTZ , (5) 

where inx  is the sample mean vector using the columns of Xin, outx  is the sample 

mean vector using the columns of Xout, 
t
outE  is the transposed highest energy 

eigenvector from the principal component decomposition using as input the 
covariance matrix estimated from the rows of Xout, and t

CEΔ  is the transposed highest 
positive energy eigenvector from the principal component decomposition using as 
input the difference between the estimated covariance matrix from the rows of Xin 
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and the estimated covariance matrix from the columns of Xout, and   •  denotes the 
absolute value operator.  

2.3 Reed-Xi (RX) Algorithm 
Reed and Yu in [10] derived in a fully adaptive multiband spectral detector. This 
detector was a generalized version of the adaptive spectral matched filter; the problem 
was formulated to detect objects of a known spatial pattern but unknown spectral 
distribution against a clutter background with unknown spectral distribution against a 
clutter background with unknown spectral covariance. This detection test has a 
constant false alarm rate (CFAR) property. 

The basis of the fully adaptive spectral detector is to detect the spectral differences 
between a region to be tested and its surrounding neighboring pixels. This detector 
has been claimed to be one of the most robust detection techniques for the detection 
of a spectral anomaly in multispectral imagery [19], [20]. It was employed by the 
DARPA (then called ARPA) MUSIC program to detect military vehicles in an 
intense clutter background in [21]. This approach became known in the community as 
the RX anomaly detector, and eventually it became the industry standard for utility 
and comparison. 

A popular version of the RX anomaly detector is shown below: 

 ( ) ( )outin
1

out
t

outin xxCxx −−= −
RXZ , (6) 

where inx  is the sample mean vector using the columns of Xin, outx  is the sample 

mean vector using the columns of Xout, and 1−
outC  is the sample covariance matrix 

using as input the rows of Xout. 

2.4 Kernel RX Algorithm 
The conventional RX detector does not take into account the higher order 
relationships between the spectral bands at different wavelengths. The nonlinear 
relationships between different spectral bands within the target or clutter spectral 
signature were exploited recently by Kwon and Nasrabadi [11] using a kernel-based 
version of the RX model. The authors named this approach: the kernel RX (KRX) 
algorithm. 

An interpretation is that the KRX algorithm extends the utility of the RX algorithm 
from a lower dimensional data space to a higher dimensional nonlinear feature space 
by applying a well known kernel trick (see, for instance, [11]) in order to kernelize 
the corresponding generalized likelihood ratio test (GLRT) expression of the 
conventional RX approach. The result of kernelization significantly improved the RX 
detector’s performance. The GLRT expression of the kernel RX is similar to the 
conventional RX, but every term in the expression is in kernel form, which can be 
readily calculated in terms of the input data in its original data space. 

The notion of applying nonlinear kernels as a means to extract features from data is 
not new. The most prominent algorithm using this application is the well known 
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support vector machine, as proposed by Vapnik [22]. Many other kernel-based 
versions of well known algorithms have been proposed in the literature, including 
PCA [23] and FLD [24]. The authors of the KRX detector, however, were the first to 
present to the hyperspectral community such a technique applied to the industry 
standard RX algorithm. 

The KRX anomaly detector is compactly represented by the following test statistic: 

 )()( 1

outinoutin out
t

KRXZ xxxx KKKKK −−= −
, (7) 

where ( )outinin
XxKKx ,=  is a kernel-function based vector that uses as input inx  and 

outX  representing the dot product between these two inputs nonlinearly mapped onto 

a higher dimensional space, inx  is the sample mean vector using the columns of Xin, 

outx  is the sample mean vector using the columns of Xout, ( )outoutout
XxKKx ,=  is the 

same kernel function using instead the dot product between outx  and outX , and 1−
outK  

is the inverse of ( )outouout XXKK t ,=  using the dot product between outX  and itself. 
(Matrices Xin [B x nin] and Xout [B x nout] were defined earlier in this section as the 
test and reference samples, respectively.) The rationale for using 1−

outK  as the 
normalizing matrix is based on the properties of the so-called kernel PCA. For a 
detailed discussion see, for instance, [11]. 

Finally, the kernel function used to implement the KRX detector in this research was 
the well known Gaussian (radial basis function) RBF kernel, or  
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exp,
σ

xx
xxk , (8) 

where   •  denotes the magnitude of a vector. 

2.5 Performance with Actual Hyperspectral Data 
The data from the Hyperspectral Digital Imagery Collection Experiment (HYDICE) 
sensor were used to test the conventional local anomaly detectors described in this 
section. The HYDICE sensor records 210 spectral bands in the visible-to-near 
infrared (VNIR) and short-wave infrared (SWIR), 0.4-2.5 μm, forming a cube of 
spatially registered pixels. Each pixel then in the scene represents a sequence of 210 
components.  

To challenge the local anomaly detectors, I extracted a sub-cube sufficiently large 
from the HYDICE dataset to include various levels of local complexity. The imagery 
used is from the so-called Forest Radiance I (FR-I) dataset and the spectral average 
(from 150 bands) of the sub-cube in reference is shown in figure 2 (far left), as a two 
dimensional (2D) image. (Water absorption and low signal-to-noise ration bands were 
discarded and only the remaining 150 bands were used. The discarded bands are: 



 12 
 

23rd-101st, 109th-136th, and 152nd-194th.) From actual ground truth, it is known that the 
scene in FR-I contains 14 stationary motor vehicles on sparse grasses, near a forest in 
Aberdeen, Maryland. The vehicles in FR-I are considered in this report the objects of 
interest (targets). These targets and their shadows are quite noticeable in the scene 
shown in Fig. 2.8. Effective local anomaly detectors are expected to accentuate 
objects in the scene that are spectrally different from the local background and to 
suppress noise. Noise in this context also includes strong responses due to major 
transitions in local regions (e.g., grass and shadow).  

To implement the five conventional algorithms (FLD, DPC, EST, RX, and KRX) as 
local anomaly detectors, I employed a standard sampling mechanism, where local 
background samples from the neighboring area of the pixel being tested are compared 
to the test samples. In order to perform this operation, at each test pixel location, a 
dual concentric rectangular window is used to separate a local area into two mutually 
exclusive regions: the inside window region (WIN) and the outside window region 
(WOUT). The size of WIN is set to sample portions of potential targets and the distance 
between the WIN and WOUT is set to enclose the largest target size that is expected in 
the scene, given that the data is assumed to have been collected from a platform 
flying at a fixed altitude and that the sensor pixel resolution is known a priori. The 
size of WOUT is set to include sufficient statistics from the neighboring background.  

To implement the KRX detector, the Gaussian RBF kernel in (2.29) was used with 
the variance set to approximately 4.5. The sizes of WIN and WOUT for the local kernel 
and covariance matrix estimations were 5 x 5 and 15 x 15 pixel areas, respectively.  

The same concentric, dual-window sampling mechanism and window sizes were used 
to implement the RX, FLD, DPC, and EST detectors. The output surfaces of these 
detectors are shown in figure 2. 
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Figure 2. Decision surfaces testing the HYDICE FR-I hyperspectral data, forest radiance. The 
intensities of local peaks reflect the strength of anomaly evidences as seen by different detectors. 
Boundary issues were ignored in this test; surfaces were magnified to about the size of the 
original image for the purpose of visual comparison. The quality of performance shown in this 
capture is the state of the art using conventional approaches. 

Notice in figure 2 that all five detectors perform as expected: they accentuate local 
anomalies in the scene, including of course the 14 targets near the treeline. The 
colormap used to display the four surfaces are exactly the same, and their values are 
relative only to maximum values in the individual surfaces.  

Figure 2 suggests that the detectors based on conventional approaches are effective 
locating the presence of isolated objects in the scene (e.g., a motor vehicle parked in a 
terrain), albeit they clearly fail to suppress the responses from the scene that would 
not be regarded by an image analyst as important (e.g., a local patch consisting of a 
transition of two distinct regions—shadow and grass.) The quality of performance 
observed in figure 2 is arguably the state of the art using conventional approaches. 
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3. Asymmetric Hypothesis Tests 

In this section, I formulate two types of anomaly detection problems and propose four 
anomaly detection techniques to address these problems.  

Anomaly detection problems occurring in remote sensing applications are often 
characterized as the detection of local or global anomalies. Local anomaly detectors 
process small windows of the HS imagery in order to compare the spatial and spectral 
properties of the centrally located pixels in the window with the properties of the 
surrounding pixels. Those pixels that are spatially-spectrally different from their 
surrounding backgrounds are considered anomalies.  

In this research effort, I address what are referred to as top view and ground view 
detection problems. The top view detection problems use imagery as input from a top 
view perspective between the sensor and an imaged scene. The application discussed 
in Section 2, using conventional anomaly detectors to test actual HS data, uses 
samples from top view imagery as input to detection algorithms. The ground view 
detection problems, on the other hand, use imagery from a ground-level view 
perspective between the sensor and the imaged scene. Applying detection algorithms 
to test ground view imagery is a significantly more challenging problem than 
applying the same algorithms to test top view imagery, as the sizes and shapes of 
potential targets are completely unknown a priori. 

I also develop in this section four techniques for anomaly detection using both top 
view and ground view imagery. These techniques are all based on the indirect 
comparison approach discussed in Section 1. The names of these algorithms are: 
Semiparametric (SemiP) detector, Approximation to Semiparametric (AsemiP) 
detector, Asymptotic F-distribution Test (AFT) detector, and Asymmetric Variance 
Test (AVT) detector. (A fifth technique will be presented for comparison purposes 
only; this technique is based on the classic one-way ANOVA model.) 

3.1 Formulation of Problems 
I discuss in this section a data model that is suitable for our techniques and a detailed 
formulation of both types of problems discussed in this section, one from the 
perspective of a sensor’s top view (top-view imagery) and another from the 
perspective of a sensor’s ground-level view (ground-view imagery). 

3.1.1 Simplified Data Modeling 

This subsection describes briefly a data model for the hyperspectral reflectance 
phenomenology. For mathematical simplicity, a model, which is an idealization of a 
rather complicated optical sensor model, is used to represent object reflectance 
collected by, in this case, a visible-to-shortwave infrared (V-SWIR) hyperspectral 
sensor (the 0.4 to 2.4 μm bands) or by a visible-to-infrared (VNIR) hyperspectral 
sensor (the 0.38 to 0.97 μm bands). Although the sensor may produce many 
subspectral bands, only a portion of the bands are useful for detection since 
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atmospheric absorption causes some subbands not to provide any spectral information 
about the clutter or target. 

Hyperspectral data are produced by a sensor that either scans or uses a focal plane 
array to collect the data in a rectangular grid about the region of interest. The sensor 
filters the data to provide a large number of narrow wavelength bands. Recall that 
each pixel then represents a resolution spot size on the ground. In order to appreciate 
how the atmospheric and illumination conditions affect the reflectance of an object in 
the ground, consider a relationship derived in [25] for the spectral radiance reaching 
an airborne or satellite sensor, which can be expressed in simplified form as 

 ( ) λλ
π
λλτλθλτλ dLrFEGEBL

R
udspp ∫ ⎥⎦

⎤
⎢⎣
⎡ ++= )()()()(cos)()( 21  (9) 

where R is the spectral region of interest centered at λp (the central wavelength in the 
pth band in units of μm), Lp is the effective spectral radiance in the pth band in units of 
[Wcm-2sr-1μm-1], Es(λp) is the exoatmospheric spectral irradiance from the sun in units 
of [Wcm-2μm-1], τ1(λp) is the transmission through the atmosphere along the Sun-
object path, θ is the angle from the surface normal to the sun, F is the fraction of the 
spectral irradiance from the sky (Ed(λp)) incident on the object (i.e., not blocked by 
adjacent objects), G is the fraction of direct sunlight incident on the object, τ2(λp) is 
the transmission along the object-sensor path, r(λp) is the spectral reflectance factor 
for the object of interest (i.e., r(λp)/π is the bidirectional reflectance in units of sr-1), 
Lu(λp) is the spectral path radiance [Wcm-2sr-1μm-1], and βp is the normalized spectral 
response of the pth spectral band of the sensor under study where 
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with ρp(λp) being the peak normalized spectral response in R of the pth band. 
Atmospheric and illumination conditions will affect all the radiometric terms in (9) 
(i.e., Es(λp), τ1(λp), τ2(λp), Ed(λp), and Lu(λp)), which makes the task of predicting the 
responses of a particular object a formidable one. For a particular set of conditions 
during the data collection, the spectral radiance from a pixel-size location at the scene 
observed by a K-band sensor can be expressed as 

 ( )Kp LLLL ,,,,, 21 LL=υ , (11) 

where, an additional subscript may be introduced to differentiate the spectral radiance 
of the jth pixel, or 

 ( )jKjpjjj LLLL ,,,,, 21 LL=υ . (12) 

3.1.2 Top View Anomaly Detection 
In the top-view imagery, targets are expected to be stationary motor vehicles of 
unknown shape and material type, and the spatial size of the largest vehicle of interest 
is assumed known, using, of course, the sensor’s pixel resolution and platform’s 
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flying altitude. It is also assumed that the spectral radiance from targets are 
significantly different—hence, anomalous—with respect to a reference set of spectral 
radiance from natural clutter backgrounds. The sampling mechanism for the top-view 
problem will be discussed shortly, but first I will comment on circumventing local 
dependence of hyperspectral data, which is an assumption inherent in most statistical 
models. 

The statistic tests proposed in this section rely on central limit theorem (CLT) to show 
that they converge in law to known distributions. The proof of CLT relies on the 
statistical independence of random variables, which is an assumption potentially at 
odds with the highly correlated local radiance often found in hyperspectral imagery. 
Researchers interested in multivariate solutions have used a local high-pass filter 
(HPF) spatially at each band to approximate this independence—the RX algorithm, 
for instance, expects the data to be preprocessed as such, as discussed in [10].  

Although not emphasized in the literature, the following is the rationale for using a 
HPF to generate approximate independence in hyperspectral data: Let the random 
variables u1, u2 and u3 be statistically dependent and let h1 = u2 - u1 and h2 = u3 - u2. It 
is not difficult to show (see, for instance, [26]) the plausibility that h1 is statistically 
independent of h2. This transformation is widely used by professional statisticians so 
that dependent random variables can be addressed using techniques based on 
statistical independence. Notice that a HPF may be implemented spatially by taking 
the systematic difference between the values of a pixel and its previous neighbor. 

As our interest is to seek univariate solutions, for our sampling mechanism I aim at 
approximating independence taking in consideration both the spatial and spectral 
domains. Figure 3 illustrates the sampling mechanism and data preprocessing that I 
propose for transforming dependent random variables into approximately independent 
random variables for our statistical models. 
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Figure 3 introduces three window cells from which samples will be drawn from the 
top-view imagery. These windows are referred to as: test cell, reference cell, and 
variability cell. Information between the variability and reference cells will be used to 
form a control or reference feature values, and information between the variability 
and test cells will be used to form unknown test feature values. (Note: sequences of 
spectral radiances will be treated as vectors for the purpose of preprocessing, but their 
preprocessed versions will be treated as real-value sequences for the purposes of our 
statistical models. It should be noticeable from their notations.)  

 

 

 

Figure 3. Sampling mechanism proposed to transform local HS radiance into plausible 
independent random samples. 
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The test cell will be used to provide a spectral average sequence ( )1v  from a w x w 
window; the reference cell provides a spectral average sequence ( )0v  from M 
spectral sequences surrounding a guard region, also known as the blind area, between 
test and reference cells to account for larger than (w x w) targets; and the variability 
cell provides J individual spectral vectors ( )jv  each consisting of k = 1,…,K spectral 
responses (Ljk) at K distinct wavelengths, see figure 3. 

Radiance values in the adjacent bands in (12) are highly correlated—hence, 
dependent—so to promote statistical independence, I apply a HPF filter in the 

spectral domain, transforming jv  into jΔ  (see fig. 3), and then use jΔ  to compute 
a feature that further promotes independence. The feature is the angle difference 
between two vectors, or  
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where, ( ) t
)1(,,1,2, ,, −−−= KjKjjj LLLL LjΔ  is the high pass filtered version of 

jv ; iΔ  is the high pass filtered version of ;iv i = 0 (reference cell),1 (test cell);   
j = 1,…,J (J is the total number of pixels in the variability cell) ( ) ( )iJiiji xxxx ,,1 L==  

is a random sequence of angle differences ranging from 0 to 90 degrees  
(0 representing minimum class difference between reference and test samples and 90 
representing the maximum class difference between these samples); the operator || z || 

denotes the squared root of ztz; and 
t][⋅  denotes the vector transpose operator. Figure 

4 depicts the transformed version of a highly spatially/spectrally correlated set of 
hyperspectral samples from a terrain in California using the SOC-700 sensor 
(additional details will be discussed later). The transformed result shown in figure 4 
(right) is considered in this report a good approximation of a set of statistically 
independent feature values. Hence, they will be used as input to the detectors 
presented in this section. 
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Suppose now that x0 denotes the reference random sequence and that x1 the test 
random sequence, let both sequences be distributed (~) under unknown joint 
distributions f0 and f1, respectively, or 
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where, n0  =  n1  = J  in this particular implementation. 

The window cells are expected to draw samples and to move systematically across 
the entire imagery, and at each location a detector attempts to answer the following 
question: Do x0 and x1 belong to the same population, or class? If the answer is no, 
the test location would be labeled as an anomaly with respect to its surroundings at 
that location.  

 

 

 

 

 

Figure 4. A set of 100 spectral samples from a highly correlated natural clutter background 
(left) is transformed using a high pass filter in the spectral domain, followed by an angle 
difference mapping—as described in text, to yield a set of approximately independent 
observations (right). Band 1 represents 0.4 μm and band 120 represents 0.97μm.  
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3.1.3 Ground View Anomaly Detection 
The problem of anomaly detection using ground-view HS imagery is quite different 
from the one described for the top view anomaly detection, because the range 
between the sensor and objects in the scene are typically not known. In essence, the 
question I attempt to answer in this case is as follows:  Will a meaningful object of 
unknown size, shape, or material type, which may be found completely immersed in  

some clutter background, be detectable when compared to a small set of spectral 
signatures representing the most abundant classes of objects in the given scene? 

This problem is a significantly harder problem to address, since the distance between 
objects and the sensor are added to other unknown data collection factors. Using top-
view imagery, one can exploit information on the expected platform flight altitude 
and the sensor’s pixel resolution to fix a maximum expected size of targets. 

To answer the question above, I first assume that a small spectra set of the most 
abundant object classes in a scene is available from the scene—in this case, tree and 
terrain, or at least from the general geo-location where the data were collected. This 
assumption is not as farfetched as it may sound; such a capability is currently under 
consideration by the Army Research Laboratory for a hyperspectral sensor 
application, where a miniaturized hyperspectral sensor similar in size and appearance 
to a gun scope would be available to the user, giving that user the ability to collect 
spectral samples from a scene using a trigger. Collected hyperspectral samples would 
be stored in a library—featured in the device—and be available to an electronic chip 
housing an anomaly detection algorithm.  

Figure 5 depicts an illustrative ground level HS scene—the average of 120 bands 
between 0.40 μm and 0.97 μm (visible to near infrared, VNIR)—and a correspondent 
set of two spectral classes in that scene, i.e., sparse grass (terrain) and tree leaves. 
From actual ground truth, it is known that the center of the scene consists of three 
stationary vehicles and a standing person out in the open field. The two overlaid 
white boxes in the image show approximately the locations where those samples were 
taken from; the trees are visible in the upper part of the image. Within each box, 
approximately 1,000 spectral samples were drawn, which from each set a subset of 
100 samples were randomly chosen to represent a corresponding class. Two subsets 
of 100 spectral samples each are available to represent two different classes. More 
about the sensor and the data collection will be discussed later. 
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Figure 5. Ground level HS scene—the average of 120 bands between 0.40 μm and 0.97 μm—
and a correspondent set of two spectral classes in that scene, i.e., sparse grass (terrain) and tree 
leave. The two overlaid white boxes in the image show approximately the locations where those 
samples were drawn from. 

I propose to use the spectral transformations discussed for the top-view imagery, 
albeit each object class would be transformed and labeled as different classes. For 
instance, for the two hyperspectral sets shown in figure 5 (right), let the spectral 
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I would like to know whether )(
0

pf  and )(
1

pf  are statistically different from each other 
for the pth object class. If indeed it is the case for all object classes, then the spectral 
information at the given testing location in the image would be labeled as an anomaly 
with respect to all classes sampled from the scene. 

The random sequences x0 and x1 in (14) and 
)(

0
py  and )(

1
py  in (15) will be used as 

inputs to the model discussed next. 

3.2 Semiparametric Inference 
In this section, I describe how to apply semiparametric inference to both types of 
anomaly detection problems. I start by describing a logistic model that is suitable for 
the notion of indirect comparison discussed in Section 1, and then I describe the 
adaptation of this model to the problem of anomaly detection using top view imagery 
and its adaptation to ground view imagery. 

The logistic model in reference is based on case-control data, and its mathematical 
development depends on some of the advances made on the theory of semiparametric 
inference [27], [28], [29]. Semiparametric approaches are commonly used in 
analyzing binary data that arise in studying relationships between disease and 
environment of genetic characteristics [30], [31], [32]. The logistic model that will be 
discussed shortly has its roots in the standard logistic function having the general 
form 
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where λ is a scale parameter and β interpreted as a constant rate both defining a 
proportion P, which is dependent on a variable z. The logistic function was invented 
in the 19th century for the description of the growth of populations and the course of 
autocatalytic chemical reactions. Pierre-Francois Verhulst (1804-1849) named (16) as 
the logistic function and published his suggestions between 1838 and 1847. For a 
complete historical account, see [33]. 

3.2.1 A Logistic Model 
Suppose two random samples (real valued, not vector valued) x0 and x1 (of sizes n0 
and n1, respectively) are independent and have their components independent and 
identically distributed (iid), as shown in the following model: 
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where 
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In the context of HS imagery, the random samples x0 and x1 may represent the 
transformed versions of local HS radiances, where this transformation is geared to 
promote statistical independence both in spectral and spatial domains. 

Notice in (18) that since g1 is a density, β = 0 must imply that α = 0, since α merely 
functions as a normalizing parameter.  Notice also that if β = 0 then x0 and x1 must 
belong to the same population (i.e., g1 = g0). Using this fact, a local anomaly detector 
can be designed to test the following hypotheses: 
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Testing (19) locally and repeating this test across the image yields a binary surface 
consisting of values 1 and 0, representing H1 and H0, respectively. An isolated 
anomalous object is expected to produce a cluster of 1’s in this surface. 

The detector relies on the asymptotic behavior of the ML estimate of β, β̂ , which 
can be shown to be Normally distributed [28], as the sample size tends to infinity 

),( ∞→n  or 
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where the combined random sample, or the union of x0 and x1, is 
,),...,(),...,,,...,( 1001111 01 nnn ttxxxxt ≡=  Var(t) is the variance of t, βo is the true value of 

β, ρ = n1/n0, n = n1+n0, and → means converges to. 

Finding the ML estimate (MLE) of Var(t), )(ˆ tV , and normalizing the left side of 
(20) by this MLE, then setting βo = 0, and squaring the final result, one can test H0 in 
(19) with the following expression (see Appendix A for details): 

 ,)(ˆˆ)1( 2
1

22 χβρρ ⎯⎯ →⎯+= ∞→
−

nSemiP tVnZ  (21) 
which has the chi-square distribution asymptotic behavior with one degree of 
freedom, .2

1χ  A decision is based on the value of ZSemiP in (21), i.e., high values 
reject hypothesis Ho, declaring anomalies. 

The SemiP anomaly detector, as shown in (21), relies on profiling and on a theorem 
applicable to extremum estimators (see Appendix A), but its implementation has 
some undesirable requirements. The most prominent one is the fact that one cannot 
find an explicit solution for the ML estimators of α and β, α̂  and ,β̂ respectively. 
Therefore, the alternative is to maximize using some optimization algorithm the log 
likelihood function, 
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which is a direct result from the likelihood function 
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in order to find α̂  and .β̂  Both ML estimators are required to find )(ˆ tV  in (21), 
where 
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Incidentally, notice in (23) that only a portion of the likelihood function uses 
information from the union of x0 and x1 (represented by t), the other portion uses only 
information from x1. 

A system of score equations that maximizes (22) over (α,β) is shown below [29], 
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 (27) 

 
The system of equations shown in (27) is a key element for justifying the asymptotic 
behavior shown in (20), see Appendix A. With this behavior shown in (20), under the 
null hypothesis, one can set a level of confidence for the hypothesis test. However, 
for implementation purposes, (27) is not much of a help. Instead, one must be 
concerned about finding a way to maximize (22) by employing, for instance, an 
unconstrained maximization subroutine—an iterative algorithm—to estimate the 
likelihood values of α and β that maximizes the log function in (22). This 
requirement is potentially a serious drawback, since such an algorithm is often 
sensitive to arbitrary initial conditions. This drawback was not readily observed using 
imagery from the visible to short-wave infrared (V-SWIR) region of the spectrum, 
but later I observed the initialization problems (i.e., maximization subroutine could 
not converge given its initial condition), using imagery from the long-wave infrared 
(LWIR) region. (Results from the LWIR imagery could not be released in this report 
because of restrictions imposed by the U.S. Army, which owns the LWIR dataset.) 
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When the employed maximization subroutine can converge, given a chosen initial 
condition, the SemiP detector performs remarkably well accentuating meaningful 
detections in a scene and suppressing the meaningless ones, as it will be shown later. 
I will also show that other asymmetric hypothesis tests can enjoy the same level of 
performance, achieved by the SemiP detector, but free from such a drawback. 

I show next how to adapt the SemiP algorithm to the anomaly detection problem 
using both top view and ground view imagery.  

3.2.2 Top View Anomaly Detection 
The expression shown in (28) constitutes the SemiP detector for the top view 
imagery, 

 )(ˆˆ)1( 22 tVnZSemiP βρρ −+= , (28) 

where β̂  and )(ˆ tV  are the estimators of the parameter β  in model (18) and the 
variance of the union of samples, respectively; and ρ  is a function of n0 and n1, see 
(20). 

A decision is based on the value of ZSemiP in (28), where high values reject hypothesis 
Ho in (19), declaring then x0 and x1 as anomalies. 

I now present some helpful hints on the implementation of the SemiP algorithm. 

Sampling Mechanism: I used the mechanism described in this Subsection 3.1 to 
sample a pair of random feature sequences xij (i = 0 [reference], 1 [test]; j=1,…,J) 
from HS imagery. I used a 9-pixel (3x3) test window, a 56-pixel reference window, 
and a 60-pixel variability window, as shown in figure 3. Note that the size of the 
variability window determines the size of the feature vectors; x0 and x1 have the same 
size, J = 60. 

Statistical Independence: An attempt should be made to promote statistical 
independence in HS data. See the discussion in Subsection 3.7.1. 

Function Maximization: In order to implement (28), I perform an unconstrained 
maximization of the log maximum likelihood function in (22), or alternatively one 
could minimize the negative version of (22), to obtain the extremum estimators α̂  

and .β̂  For this research effort, I used one of the conventional, unconstrained, 
nonlinear optimization algorithms—the Simplex Method [34], which is available in 
MATLABΤΜ software (Release 13) under the function name fminsearch. The 
Simplex Method is a direct search method that does not use numerical or analytic 
gradients. If n is the length of x, a simplex in n-dimensional space is characterized by 
the n+1 distinct vectors that are its vertices. For instance, in two-space, a simplex is a 
triangle; in three-space, it is a pyramid. At each step of the search, a new point in or 
near the current simplex is generated. The function value at the new point is 
compared with the function's values at the vertices of the simplex and, usually, one of 
the vertices is replaced by the new point, giving a new simplex. This step is repeated 
until the diameter of the simplex is less than the specified tolerance. It is obvious 
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from this description that one limitation of such a method is that it only may give 
local solutions. So, the initial guess may prove to be critical in some cases.  I set the 
initial values to (α =0, β =0). 

Variance under the Null Hypothesis: ( )tV
)

 in (28) should be computed using (24), 
(25), and (26). 

Decision Threshold: Using (28), high values of SemiPZ  reject hypothesis Ho in (19), 
declaring then x0 and x1 as anomalies. One can set a decision threshold based on the 
type I error, i.e., based on the probability of rejecting Ho given that Ho is true. Using a 
standard integral table for the chi square distribution, with 1 degree of freedom, find a 
threshold that yields an acceptable probability of error (e.g., 0.001), or alternatively 
find and use a suitable threshold that yields a value at the knee of the SemiP’s 
corresponding ROC curve. Results using the latter recommendation will be shown 
later in this section.  

3.2.3 Ground View Anomaly Detection 
The discussion thus far in this section is readily applicable to the problem formulated 
for the top-view imagery. For the ground-view imagery, however, where an output is 
computed for each sampled class in the scene, it would be more appealing to fuse, in 
some form, these results into a single decision value. I propose the following fusing 
logic for the ground level problem: At a given testing location in the image, index the 

expression in (21) for each corresponding class and denote 
)( p

SemiPZ  the detector’s 
output for the pth class and have Z denote the collection of outputs for N classes; A 
single decision value at each testing location is attained by  

 ( ) .)()2()1( ,,,min~
⎭
⎬
⎫

⎩
⎨
⎧ == N

SemiPSemiPSemiP
ZZZZZSemiP L  (29) 

Notice in (29) that if the local spectral radiance is significantly anomalous to all N 
classes, then SemiPZ~  would be a relatively large value. Otherwise, it would be a 
relatively small value indicating that the local spectral radiance probably belongs to at 
least one of the N classes. The two likely hypotheses for the multiclass problem using 
(29) are 
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where )( pβ  is the unknown parameter associated with the corresponding pth object 
class. Note that the model in (18) is implicitly indexed by p. 

Testing the null hypothesis H2 in (20) with (21) indexed by p, and using the random 
sequences )(

0
py  and )(

1
py  in (15) as inputs, constitutes the adaptation of the SemiP 

anomaly detector to the ground-level view problem. In addition, it is expected that the 
recommendations discussed in Subsection 3.2.2 referring to the implementation of 
this detector will be applied.  
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Finally, the initialization drawback discussed earlier for the SemiP detector, using top 
view imagery, is also relevant to the ground view imagery.   

3.3 Approximation to the Semiparametric Detector 
In reference to the SemiP detector shown in (28), there are two major factors working 
in harmony and in complementary fashion to promote maximum separation between 
signal (anomalies) and noise (non-anomalies): (i) the squared value of β̂  and (ii) the 

estimated variance from the union of samples, ( )tV̂ , which is also quadratic.  

These factors work in the following way: If two samples from the same homogenous 
class are compared [i.e., is H0: β = 0 (g1 = g0) true?], the term 2β̂  tends to approach 

zero very fast, especially for β̂  less than unity. On the other hand, if two samples 

from distinct classes are compared, the term ( )tV̂  tends to a relatively high number 
also very fast, asserting the fact that a combined sample vector t consists of 
components belonging to distinct populations.  

Motivated by these properties, I shall state and prove an approximation algorithm 
based on large sample theory to replace complicated SemiP equations with simpler 
ones describing the same phenomenon. 

3.3.1 Derivation 

I start off by proposing the AsemiP algorithm, as follows: 

Proposition 1 (AsemiP Algorithm). Let   
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assume that x0 and x1 are independent and that, for some x0 and x1, the union of 
samples t 
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If the null hypothesis H0: ( )1 ;0~
21 === ζζβ  is true and 
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where, β̂~ is an estimate of β~, then the random variable 

 
2
1

21 )(~~̂)1(~ χβρ →−= − tVnZAsemiP  (31) 
converges in distribution to a chi-squared distribution with 1 degree of freedom. 

I first make a few comments on (31) prior to presenting its proof.  

By inspection, one should readily recognize the behavior of our chosen function β~ , 
in Proposition 1, to replace the unknown parameter β in the SemiP algorithm. If two 
samples from the same population are compared using (31), the estimate of β~ , β̂~ , 
would also tend to approach zero—as the sample size increases, and tend otherwise 
for samples belonging to distinct populations. 

The real challenge, however, is to derive a relatively simple estimator to replace 
( )tV̂ , as defined in (24). The estimator ( )tV̂  is a sum of squared errors individually 

weighted by their probability of occurrence. In Proposition 1, g(x1,x0) shall provide 
that probability feature, but as a normalizing fixed value for all the occurrences, 
instead. In this sense, comparing two samples from distinct populations would 
produce very high cumulative square errors using the union of samples t, but 
appropriately weighted by a fixed proportion. 

In principle, the overall behavior of (31) seems to track that of (21), and both random 
variables are asymptotically identically distributed as 2

1χ . Note that the AsemiP’s 
performance will not asymptotically approach that of the SemiP‘s performance, as the 
number of samples increases; the former approximates the general behavior of the 
latter, i.e., it promotes a high separation between signal (objects) from noise 
(homogeneous and non-homogenous local regions).   

Proof: If hypothesis H0: ( )1 ;0~
21 === ζζβ  is true in Proposition 1, then 

2
0

2
1

2 σσσ ==  and, using the independent assumptions of x1 and x0, and CLT, it 
follows that 
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β̂~  as defined in Proposition 1; in addition, the following estimators of 2
1σ and 2

0σ  are 
known to be consistent [see, for example, [14]]:  
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Using both samples x1 and x0, let the following be another estimator of 2
0σ (or 2

1σ ), 
given that under H0 , 2

1
2
0 σσ = , 
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The estimator S2 is unbiased under H0, as its expected value E[S2] is equal to 2
0σ  and 

2
1σ : 
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True because 2
0S  and 2

1S  are consistent estimators and, under H0 , 
2

1
2
0 σσ = . I want 

to prove now a weak law of large numbers (WLLN) [14] for S2 to verify that S2 is 
indeed a consistent estimator. Using Chebychev’s inequality [35], I have under H0: 
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and, thus, a sufficient condition that S2 converges in probability to 2
0σ , or 2

1σ , is that 
( ) ( ) 0

10 ,
2 ⎯⎯⎯ →⎯ ∞→nnSVar . 

Note that Var(S2) can be expressed as 
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and, since the sample variance is known to be consistent, 2
0S  and 2

1S  are both 
consistent estimators, which implies their variances must converge to zero,  

 
,0)(

0)(

0

1

2
0

2
1

⎯⎯ →⎯

⎯⎯ →⎯

∞→

∞→

n

n

SVar

SVar
 (38) 

also 
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2 ⎯⎯⎯ →⎯ ∞→nnSVar  and, therefore, under H0:  

 .),(  as  ,1 102

2
1

2

2
0 ∞→→= nn

SS
σσ  (40) 

 

Using the same argument to arrive at (40), one can also show that under H0: 
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where 2
tS  (the sample variance using t) is a consistent estimator of 2σ , or 
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Note that 2
tS  can be expressed as ( ) ( ){ }∑ =

−− −−−−=
n

i it ttnnnS
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22112 )1( μμ , 

where the summation term (which does not include t ) tends to 2σ  in probability by 

the WLLN, and the term that includes t  tends to zero in probability also by the 
WLLN. Consequently, from the definition of convergence in probability, the result in 
(42) follows, which in turn under H0, implies that  

 .)(   as   ,1 01
10

∞→+=→= nnn
SS tt

σσ
 (43) 

To finalize the proof, consider Theorem 3.1 below. 

Theorem 3.1 (Slutsky) [14]. Let Xn tend to X in distribution and Yn tend to c in 
probability, where c is a finite constant. Then 

(i) Xn + Yn tend to X+c in distribution; 

(ii) Xn Yn tend to cX in distribution; 

(iii) Xn/Yn tend to X/c in distribution, if c is not zero. 

See proof in [14]. 

Using (32), (40), (43) and the Slutsky Theorem, I conclude that 
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and that by squaring (44) and using results from [35], I can also conclude that 
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which can be readily reformatted into (31) using the definitions given in Proposition 1 
and in this proof. 

3.3.2 Top View Anomaly Detection 
In contrast to the SemiP algorithm, the AsemiP algorithm is significantly simpler to 
implement, as the latter does not require specialized subroutines (unconstrained 
minimization) to perform its function. Using the sampling mechanism described in 
this section, the variables in Proposition 1 are straightforward to implement. 
Alternatively, one may use the expression in (46) below as the AsemiP anomaly 
detector, 
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where 2S  and 2
tS  are defined in (34) and (42), respectively, and β̂~  is defined in 

Proposition 1. 

One is also expected to promote statistical independence and to take a sufficiently 
large number of samples (larger than 30 for our formulated problems) to justify the 
use of approximation theorems of mathematical statistics. I used the sampling 
mechanism proposed in this section to obtain a pair of random feature sequences x0 
(reference) and x1 (test). I also used a 9-pixel (3x3) test window, a 56-pixel reference 
window, and a 60-pixel variability window, as shown in figure 3, where J = 60. For a 
statistical decision, high values obtained by using (48), or equivalently (31), reject the 
hypothesis Ho in Proposition 1, thus, declaring sequences x0 and x1 as anomalies. One 
may set a decision threshold based on a choice of type I error using, as the base 
distribution, the chi-square distribution with 1 degree of freedom. Or, alternatively, 
one can find and use a suitable threshold that yields a value at the knee of the 
AsemiP’s corresponding ROC curve. Practitioners usually rely on the latter approach 
to set decision threshold. 

3.3.3 Ground View Anomaly Detection 
For anomaly detection using ground-view imagery, I can fuse the individual results 
produced by each object class in the same manner that I described for the SemiP 
detector, i.e., for a given testing location in the image, I index the expression in (46) 
for each corresponding class and denote )( p

AsemiPZ  the detector’s output for the pth class 
and collect the outputs for N classes; A single decision value at a given testing 
location is attained by  
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In (47), if the local spectral radiance happens to be significantly anomalous to all N 
classes then AsemiPZ~  would be a relatively large value. Otherwise, it would be a 
relatively small value indicating that the local spectral radiance probably belongs to at 
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least one of the N classes. The null hypothesis for this multiclass problem using (37) 
is 
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where )(~ pβ , )(
1

pζ  and )(
2

pζ  are the unknown parameters associated with the pth class. 
Note that the model defined in Proposition 1 is implicitly indexed by p. 

Testing the null hypothesis H4 in (48) using (46), and the random sequences )(
0

py  and 
)(

1
py  in (15) as inputs, constitutes the adaptation of the AsemiP anomaly detector to 

the ground-level view problem. Also, it is expected that the recommendations 
discussed in Subsection 3.3.2 referring to the implementation of this detector will be 
applied. 

Note that the multiclass version of the AsemiP detector can enjoy the same level of 
performance, achieved by the SemiP detector, but free from parameter initialization. 
Results will be shown later in this section. 

3.4 F Distribution Algorithms 
I mentioned in Section 1 that the principle of indirect comparison can be implemented 
in many forms. I have shown thus far that the solution of a logistic model (a 
semiparametric approach) and an approximation of its performance by the application 
of a few fundamental theorems of large sample theory, and exploiting the behavior of 
main components of the SemiP expression, are two different ways to implement such 
a notion. In this section, I present a third technique, a technique also based on the 
same fundamental theorems, albeit this time I aim at using a known property of the F 
distribution to design the new detector. Our interest to introduce a detector having an 
asymptotic behavior governed by the F distribution was motivated by the existence of 
a technique known as analysis of variance, which will be also discussed in this 
section. The analysis of variance (commonly referred to as the ANOVA) is one of the 
most widely used statistical techniques, and it called our attention for this paper 
because it also yields an F test statistics. In its simplest form, the ANOVA is a 
method of estimating the means of several populations often assumed to be normally 
distributed. The ANOVA, contrary to what its name infers, is not concerned with 
analyzing variances but rather with analyzing variation in means. 

I first derive this third technique, and for convenience it will be called the asymptotic 
F test (AFT) detector, followed by its adaptation to both types of imagery. Finally, I 
discuss what will be referred in this report as the ANOVA detector. 

3.4.1 The F distribution 
Sir Ronald Aylmer Fisher (1890-1962) introduced the F probability density function 
(pdf) to statisticians early in the 20th century while working on ML estimation 
problems. The “F” in the F distribution was given in his honor. 
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Let X and Y be random variables such that 

• X and Y are independent; 

• X is distributed (~) as the chi-square distribution with p degrees of freedom 
( )2~ pX χ ; and 

• 2~ qY χ , the chi-square distribution with q degrees of freedom. 

Define a new random variable Z by 

 .
/
/
qY
pXZ =  (49) 

Then the distribution of Z is called the central F distribution, or simply the F 
distribution with p and q degree of freedom, denoted by ( )qpFZ ,~ . By 
transformation of X and Y, one can show (see, for instance, [35]) that the probability 
density function (pdf) of the F distribution of Z has the form: 
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where,  
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+Γ
ΓΓ

=  and Γ  is the gamma function. 

If )(~ 2 λχ pX , the non-central chi-square distribution with p degrees of freedom and 

non-centrality parameter λ , with Y and Z defined as above, then the distribution of Z 
is called the non-central F distribution with p and q degrees of freedom and non-
centrality parameter λ . 

Useful remarks: 

• If qpFX ,~ , then  qpFX ,~/1 . 

• If ptX ~ , the t-distribution with p degrees of freedom, then pFX ,1
2 ~ . 

• If qpFX ,~ , then its expected value E(X) and its variance Var(X) are 
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3.4.2 Asymptotic F Test 

Let random variables xij be observed according to the model 
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where θ1 and θ2 are unknown parameters and 
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ii. The ijε are independent under an unknown distribution. 

Let the union of samples be represented by   

 ( ) ( ),,...,,,...,,...,
21 2211111 nnn xxxxyyy ==  (52) 

where, n = n1 + n2, and let the expected value and variance of its components be 
θ=iEy   and 02 <= σiyVar , respectively. Now define  
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and consider the hypothesis 
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Without the Normality assumption in assumption (ii), deriving a test for hypothesis H 
can be quite difficult. But as I anticipate a relatively large sample size in anomaly 
detection applications using HS data, I shall rely again on the CLT to design this new 
detector. 

The application of WLLL ensures us that the set of parameters ( )22
2

2
121 ,,,,, σσσθθθ  

can be estimated by the following consistent estimators: ( )22
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Following (55), 

 121̂ xx −=β  (56) 
and 
 22

ˆ xy −=β  (57) 
also constitute a set of consistent estimators for β1 and β2, respectively. Recall that 
statistical consistency implies that the estimator’s mean is asymptotically unbiased 
(i.e., it converges to an intended value) and that its variance converges to zero, as the 
number of samples increases. 
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Using the independence assumptions in (51) and the results in (55), the expected 
values and variances of 1β̂  and 2β̂  are readily attained as 
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Using the independence assumptions and (58), (59), if the hypothesis H in (54) is true 
(let 22

2
2

1
2 σσστ === ), a direct application of CLT ensures that the random 

variables z1 and z2, below, converges ( → ) in law to the standard Normal distribution 
N(0,1), or   

 ( ) 1,0
ˆˆ

)ˆ(

)ˆ(ˆ

2
1

2121

11
1

2
2

12
1

1

11

1

11
1 N

Var

Ez
n
n

nnnn

⎯⎯ →⎯
+

=
+

−
=

−
=

∞→
∞→τ

β

σσ

ββ

β

ββ
 (60) 

and equivalently 
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Using known properties of the family of chi square distributions, the following are 
also true: 
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where 2
1χ  is the chi-square probability density function (pdf) with 1 degree of 

freedom (dof). 

Under H, I propose two estimators of τ 2. One to be used in (62) and the other in (63), 
they are 
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respectively, where, 
2
is  (i = 1,2) and s2 are defined in (55), and n = n1+n2. Using the 

same argument presented for the proof of consistency of (34), one can readily show 
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that both estimators 2
1S  and 2

2S  are consistent, under the null hypothesis H. 
Consistency of 2

1S and 2
2S  also implies that the ratios shown below converges in 

probability to a constant, or  
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Using (62), (63), (66), (67), and the Slutsky theorem, one can show that  

 ( ) ,
ˆ

2
12

1

2

211

2
1

1
2
11

2
1

21

χτ
τ

βκ ⎯⎯ →⎯
+

==
∞→
∞→

n
n

nn S
zZ  (68) 

 ( ) ,
ˆ

2
12

2

2

211

2
2

2
2
22

22

χτ
τ

βκ ⎯⎯ →⎯
+

==
∞→

∞→
n
n

nn S
zZ  (69) 

and that under H, using a property of F distributions (49) with  p = q = 1, 
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3.4.3 Top View Anomaly Detection 
To apply (70) to anomaly detection problem, notice that (70) is readily reformatted 
into 
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where, ( )( ) 11
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2
1 Sββ  and 2

2S  are defined in 
(56), (57), (64), and (65), respectively. 

Testing hypothesis H in (3.41) for local anomalies using (71) constitutes the AFT 
detector. A decision threshold T can be determined via ∫

∞
=

T
dwwF α)(1,1 , where 

α is the type I error (i.e., the probability of rejecting H, given that H is true). The user 
chooses α, and for values of ZAFT  >  T, hypothesis H is rejected implying that 

( ) ,...,
11111 nxxx =  and ( ) ,...,

22212 nxxx =  are most likely sampled from different 
distributions; hence, they are anomalous to each other. Otherwise, they are likely 
sampled from the same distribution. Note that the comparison between x1 and x2 via 
(71), is done indirectly using Z1 in (68), which holds information of both samples 
individually, and Z2 in (69), which holds information of the union of samples y in 
(52). 

Finally, for ZAFT to converge in law to a central F distribution, Z1 and Z2 must be 
independent, which ultimately means that 1β̂ and 2β̂  must be independent. Let the 
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random variables u1, u2 and u3 be statistically dependent and let h1 = u2 - u1 and h2 = 
u3 - u2. It can be shown (see, for instance, [26]) that h1 is plausibly independent of h2. 
This transformation is widely used by practicing statisticians so that dependent 
random variables can be addressed using techniques based on statistical 
independence. So, in (56) and (57), even if , , 21 xx and y are dependent random 
variables, which most likely are the case for local samples in HS data, their 
differences 1β̂ and 2β̂ are independent random variables. Since 1κ and 2κ converge in 
probability to a constant and not to a distribution, there is no concern about the 
independence of 2

iS  from Zi, i = 1, 2. Thus, Z1 and Z2 are independent random 
variables. 

3.4.4 Ground View Anomaly Detection 

For anomaly detection using ground-view imagery, I can fuse the individual results 
produced by each object class in the same manner that I described for the SemiP 
detector, i.e., for a given testing location in the image, I index the expression in (71) 
for each corresponding class and denote )( p

AFTZ  the detector’s output for the pth class 
and collect the outputs for N classes; A single decision value at each testing location 
in the image is attained by  

 .)()2()1( ,,,min~
⎭
⎬
⎫

⎩
⎨
⎧= N

AFTAFTAFT
ZZZ Z AFT L  (72) 

In (72), if the local spectral radiance happens to be significantly anomalous to all N 
classes then AFTZ~  would be a relatively large value. Otherwise, it would be a 
relatively small value indicating that the local spectral radiance probably belongs to at 
least one of the N classes. The null hypothesis for the multiclass problem using (72) is 
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where p = 1,…,N. Note that the model defined in (51) is implicitly indexed by p. 

Testing the null hypothesis H6 in (73) using (72), and the random sequences )(
0

py  and 
)(

1
py  in (15) as inputs, constitutes the adaptation of the AFT anomaly detector to the 

ground-level view problem. Also, it is expected that the recommendations discussed 
in this Subsection 3.4.3 referring to the implementation of this detector will be 
applied. 

As it was the case for the multiclass version of the AsemiP detector, the AFT detector 
can also enjoy the same level of performance achieved by the SemiP detector, but 
free from parameter initialization. Results will be shown later in this section. 

3.4.5 ANOVA F-distribution Test 

ANOVA (analysis of variance) is one of the most widely used statistical techniques, 
and it called our attention for this report because it also yields an F test statistics. In 
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its simplest form, the ANOVA is a method of estimating the means of several 
populations often assumed to be normally distributed. The ANOVA, contrary to what 
its name infers, is not concerned with analyzing variances but rather with analyzing 
variation in population means. I will briefly describe the most common type of 
ANOVA, the oneway ANOVA. For a thorough treatment of the different facets of 
ANOVA designs, there is the classic text by [36]. 

In the oneway ANOVA, data (xij) are assumed to be independent observations, 
according to the model 

 .,...,1     ,,...,1     ),,(~ 2
iiij njkiNx ==σμ  (74) 

In other words, data are normally distribution having unknown equal or unequal 
means, μi, but having the same variance 2σ ; these parameters are unknown.  

The classical ANOVA test is a test of the null hypothesis H0: μ1 = μ2 =…= μk. I want 
to make inferences about μi‘s without the knowledge of 2σ . Therefore, I want to 
replace 2σ  with an estimate. In each population, if I denote the sample variance by 

2
is  and the sample mean by ix ,  
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then 2
is  is an estimate of 2σ , and by property of Normal family of distributions (see, 

for instance, in [35])   
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Furthermore, under the ANOVA assumptions, since each 
2
is  estimates the same 2σ , 

one can improve the estimators by combining them, or 
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where, ∑ −=− )1( inkN . Since 
2
is  are independent, using properties of chi square 

distributions,  
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It can also be shown (see, for instance, [36]) that 
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and that 
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Note in (81) that, contrary to the result shown in (70), ZANOVA is governed exactly by 
an F distribution of k-1 and N-k degrees of freedom. Thus, it does not need to rely on 
large sample theory to arrive at (81). The independent observation Normal 
assumption in (74) plays a major role for arriving at (78), (79) and for concluding that 

'1
Z  and '2

Z  are independent.  

If k = 2, which is in our case, and the null hypothesis H0: μ1 = μ2 (given that the 
variances are the same) is true, then μμμ == 21   and the μμ −i  terms drop out of 
(79); I would reject H0 if 
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where α is the chosen type I error and α,2,1 21 −+ nnF  is the threshold that yields α. 
Of course, the quality of the detector in (82) will be dependent on how close the data 
satisfy the assumptions of sample normality having equal variances. 

3.5 Asymmetric Variance-Based Hypothesis Test 
In this section, I present our fourth and last technique, a technique also based on the 
same fundamental theorems of large sample theory. This time, however, I aim at 
designing (arguably) the most compact form to implement the notion of indirect 
comparison discussed in Section 1. I will show how a simple asymmetric hypothesis 
test based only on a central moment can be designed to exploit the distinction 
between two samples. I first derive this fourth technique (for convenience referred to 
in this text as the asymmetric variance test (AVT) detector), followed by its 
adaptation to both types of imagery. 

3.5.1 Derivation 

Suppose that two random samples 0x  and 1x  are observed according to the model 
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where, 1x  (the test random sample of size n1) and 0x  (the reference random sample of 
size n0) are independent, g1 and g0 are unknown, and that 
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Consider the hypotheses 
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In (85), I would like to test the null hypothesis that the variance from a reference 
sample is equal to an arbitrary positive value. At a glance, the null hypothesis does 
not seem to be very effective, since τ  can take any positive value, and the variance 
excludes an additional discriminant feature: the mean. 

However, one can cleverly incorporate the indirect comparison approach discussed 
earlier to test (85), designing in the process a rather effective anomaly detector. A 
solution follows. 

Let t represent the union of x1 and x0, or  

 ( ) ( ),,...,,,...,,...,
10 1110011 nnn xxxxttt ==  (86) 

where, n = n0+n1, and suppose that under certain conditions the components of t have 
the same finite variance, i.e., ∞<= 2

uktVar σ . The last assumption may not be 
satisfied for all tk, but would certainly be satisfied when x1 and x0 are sampled from 
the same population, in which case one could set 2ˆ uστ =  in (85), where 2ˆuσ  estimates 

2
uσ , and test for validity of this equality.  

Denoting the symbols >>  as much greater then, ≈  as approximately equal to, ∈  as 
belonging to, and ( )⋅P  as the population of a random variable, the implications of 
setting 2ˆuστ =  in (85), using the symbols of the study cases in figure 1, are as follows:  

• Case 1: ( )XPx ∈0  and ( )YPx ∈1  would imply that 2
0

2ˆ σσ >>u , yielding a 
strong anomaly, since the difference between ( )ZP ˆ  and ( )XP  is so 
significant—especially for tight distributions with their first moments 
significantly different from each other. 

• Case 2: ( )SPx ∈0  and ( )YPx ∈1  would imply that 2
0

2ˆ σσ <u  or 2
0

2ˆ σσ ≈u , 
yielding a softer anomaly, since ( )ZP ~  and ( )SP  have the same overall 
characteristics: they are bimodal. 

• Case 3: ( )YPx ∈0  and ( )YPx ∈1  would imply that 2
0

2ˆ σσ ≈u , yielding a non-
anomaly—a trivial case not included in figure 1. 
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Without the Normality assumption in (83), deriving a statistic of known 
distribution to test the null hypothesis in (85) can be quite difficult. Hence, I 
shall rely again on the CLT to design the new detector. (Our past experience 
using HS data has ensured us that a sample size greater than 30 satisfies the 
large sample requirement in methods based on large sample theory.) 

Applying WLLN the set of parameters ( )2
00  , σμ  can be estimated by the set of 

consistent estimators ( )2
00  , sx , respectively, where 
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Following (87), a direct application of CLT, using the denotations in (84), ensures us 
that the random variable z1, below, converges in law to the standard normal 
distribution N(0,1), as the sample size 0n  increases (see, for instance, [37]), 
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To estimate 2
0ζ  using a consistent estimator ( )2

0
ˆζ , consider this rationale: Let 

( )2
00 μϑ −= jj x  and note that, based on (84), ( ) 2

0σϑ =jE  and ( ) .2
0ζϑ =jVar  A 

consistent estimator of ( )jVar ϑ  then would qualify for application in (88). An 
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normalized summation term (which does not includeϑ ) tends to 
2
0ζ  in probability 

by the WLLN, and the term that includes ϑ  tends to zero in probability also by the 

WLLN. Therefore, ϑV̂  is a consistent estimator of 
2
0ζ . In addition, using results from 

(87), notice that 2
0s  is also a consistent estimator of ( )jE ϑ . I then propose the 
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Consistency of (89) implies that the ratio κ , below, converges in probability to a 
constant, as the sample size increases, or 
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which also implies that 1⎯⎯ →⎯ ∞→onκ . Setting 2ˆ uστ =  in (85), where 
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if the null hypothesis in (85) is true with 2ˆ uστ = , using (88), (90) and the application 
of the Slutsky theorem, the following must also be true: 
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The next two subsections show how to adapt (92) to the two problem types discussed 
in this section, top view and ground level view 

3.5.2 Top View Anomaly Detection 
Squaring the standard-normal, random variable z2 in (92), yields under the null 
hypothesis with 2ˆ uστ =  the chi square distribution shown below, 
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where 2
1χ  is the chi-square pdf with 1 degree of freedom (dof). 

Testing hypothesis H0 in (85) using (93) constitutes the AVT anomaly detector for the 
top-view problem. A decision threshold T can be determined via  ,)(2

1∫
∞

=
T

dww αχ  

where α  is the type I error (i.e., the probability of rejecting H0, given that H0 is true). 
The user chooses α, and for values of ZAVT greater then T, hypothesis H0 is rejected, 
implying that x0 and x1 are most likely sampled from different populations. Hence, 
they are anomalous to each other. Otherwise, they are not significantly anomalous to 
each other. 

Note that the comparison between x0 and x1 via (93) is performed indirectly using 2ˆuσ , 
which holds information about the union of the samples t, and the other estimators, 
which only hold information about the reference sample x0. 

3.5.3 Ground View Anomaly Detection 
For anomaly detection using ground-view imagery, I fuse the individual results 
produced by each object class in the same manner that I described for the SemiP 
detector. In other words, for a given testing location in the image, I index the 
expression in (93) for each corresponding class and denote )( p

AVTZ  the detector’s output 
for the pth class and collect the outputs for N classes; a single decision value of this 
detector per testing location is attained by 

 .)()2()1( ,,,min~
⎭
⎬
⎫

⎩
⎨
⎧= N

AVTAVTAVT
ZZZ ZAVT L  (94) 



 43 
 

In (94), if the local spectral radiance happens to be significantly anomalous to all N 
classes then AVTZ~  would be a relatively large value; otherwise, it would be relatively 
small, indicating that the local spectral radiance probably belongs to at least one of 
the N classes. Two likely hypotheses for the multiclass problem using (94) are 
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where ( ) )(2
0

pσ  is the reference sample variance associated with the corresponding pth 
class, ( ) )(2)( p

u
p στ = , ( ) )(2 p

uσ  is the sample union variance associated with the pth class.  

Testing the null hypothesis H7 in (95) using (94) constitutes the adaptation of the 
AVT anomaly detector to the ground-level view problem. 

3.6 Analysis: Power of the Test 
In deciding to accept or reject the null hypothesis, a detector is expected to make 
mistakes. Usually, hypothesis tests are evaluated and compared through their 
probabilities of making mistakes, as I discussed in Section 2. In this section, I discuss 
how these error probabilities can be determined, or at least approximated, for both 
types of problems, top view and ground level view. For the top view anomaly 
detection problem, I will use as examples two of the algorithms covered in this 
section—the AVT and AsemiP detectors. For the ground view anomaly detection 
problem, I will use as an example the AVT detector, since the analyses of its error 
probabilities are readily applicable to any detector that is asymptotically governed by 
a known distribution family, under its null hypothesis.    

3.6.1 Top View 

Using as a reference the AVT detector shown in (93), figure 6 shows a decision 
threshold T separating two hypotheses H0 and H1. In the context of our discussion, 
values in the abscissa ZAVT greater than T are automatically labeled as anomalies. As it 
was discussed earlier, decision errors are unavoidable. I would like to know whether 
the asymptotic behaviors of these errors can be determined, and whether they are 
favorable. The power function can provide those answers. The power function of the 
AVT detector for the top view problem is the following: 
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In essence, the power function Ψ yields the cumulative probability P of rejecting the 
null hypothesis H0, when either H0 ( τσ =2

0 ) or H1 ( τσ ≠2
0 ) is true. This rejection 

region is ZAVT > T, where ZAVT is defined in (93) and T is a decision threshold. Notice 
in (96) that Ψ under H0 corresponds to the well known type I error (i.e., the 
probability of rejecting H0, given that H0 is true) and that Ψ under H1 corresponds to 
the complement of the type II error (i.e., one minus the probability of rejecting H1, 
given that H1 is true). The type I and type II errors constitute the only error types 
encountered in the context of our discussion. In the ideal case, ψ yields 0 when H0 is 
true and 1 when H1 is true. Except in trivial situations, this ideal cannot be attained. 
So, one of our goals is to show that Ψ tends in probability to α (a scalor controlled by 
the user), when the null hypothesis H0 is true, and that Ψ tends in probability to 1, 
when the alternative hypothesis H1 is true. Figure 6 illustrates this desirable behavior.  

In this subsection, the equality 2
uστ =  (the sample variance from the union of two 

observed sequences) is always set to be true for every location in the image. If Ho in 
(85) is true, the AVT detector has the asymptotic behavior shown in (93), and the 
type-I error is readily obtained by  

   ( )  ,)(2
0

αξ
τσ

=>⎯⎯ →⎯> ∞→=
TPTZP nAVT  (97) 

where ξ is a chi-square distributed random variable with 1 degree of freedom, ZAVT as 
defined in (93), and T a nonnegative real value. 

Setting ( ) ( )TZP AVT >=
=τσ

σψ 2
0

2
0 , ψ is indeed an asymptotic size α test, which is 

controlled by the user.   

Now consider an alternative parameter value, such that τσ ≠2
0 , and let 

.02
0 ≠−= τση  From (93) I can write  

 

Figure 6. The asymptotic behavior of the AVT anomaly detector and the 
desirable asymptotic behavior of its power function ψ for the top view 
problem. 
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Since, for a constant τ, ( ) ητ =−2

0sE  and ( ) 0
2
0

2
0

2
0  nsVarsVar ζτ ==− , the application 

of CLT ensures us that term A in (98) will converge in distribution to the standard 
Normal, N(0,1), as n0 tends to ∞+ , no matter what the value of η . Notice that term 
B will converge to ∞+  or ∞−  in probability, as n goes to ∞+ , depending on 
whether η  is positive or negative. And finally, notice also that no matter what the 
value of η , the estimator proposed in (89) is consistent. The term C then will 
converge to 1 in probability, as n0 goes to ∞+ . Thus, ZAVT will converge in 
probability to ∞+ , and the probability of rejecting Ho (given that τσ ≠2

0 ) tends to 
1, or  

 ( ) .12
0

⎯⎯ →⎯> →∞≠ nAVT TZP
τσ  (99)  

In this way, the AVT anomaly detector for the top-view problem has the properties of 
asymptotic size α and asymptotic power 1, as it is desired. 

Similar analysis can be made for other detectors presented in this section, for 
instance, using now as a reference the AsemiP detector, consider the following: If Ho 
is true in Proposition 1, the type I error probability is  

 ( ) ,)(),(0~
10

αγξγβ =>⎯⎯⎯ →⎯> ∞→=
PZP nnAsemiP  (100) 

where ξ is a chi-square distributed random variable with 1 degree of freedom, AsemiPZ  
as defined in (31) and expressed in a different form in (46), and γ an arbitrary scalor. 

( )γβ >= AsemiPZP 0~  is indeed an asymptotically size α test, which is controlled by the 
user.  

Now consider an alternative parameter value 0~
≠β . In this case, 2

1
2
0 σσ ≠  and from 

(46) I can write  
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Note that the term A in (101) converges in distribution to the standard Normal, 
N(0,1), as n0 and n1 go ∞+ , no matter what the values of 2

1
2
0 or  , ,~ σσβ  are. Note 

also that the term B converges to ∞+  or ∞−  in probability, as n0 and n1 go ∞+ , 
depending on whether β~  is positive or negative. 2S  converges in probability to 

zero, as does 2
tS , but the term C converges to ∞+  because ( ) 422 SS = is in the 

denominator. Thus, AsemiPZ  converges to ∞+  in probability and 

 ( ) ( ) .1reject  ),(0~00~
10

⎯⎯⎯⎯ →⎯>= ∞→≠≠ nnAsemiPZPHP γββ  (102) 

In this way, the test in Proposition 1 also has the properties of asymptotic size α  and 
asymptotic power 1, as desired. 

3.6.2 Ground-Level View 
From the discussion in this section, I learned that the output of the AVT detector for 
top-view anomaly detection problem has two asymptotic outcomes: 

2
10

χ⎯⎯ →⎯ ∞→nAVTZ  (in distribution, if the null hypothesis is true) or 

+∞⎯⎯ →⎯ ∞→0nAVTZ (in probability, if H1 is true). For the ground view anomaly 
detection, refer to the null hypothesis H7 and the alternative hypothesis H8 shown in 
957), and consider the following: For a given spatial location in a ground-view 
imagery, let )( p

AVTZ  be the AVT detectors’ output for the pth object class, and assume, 
without loss of generality, that each one of the first W outputs in the independent 
sequence of results ( NW ≤≤1 ; N is the total number of classes) has the asymptotic 
chi-square behavior shown in (93), and that each one of the remaining results have 
the asymptotic behavior shown in (99). Using (94) and results from this section (Top 
View), I have 
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Notice in (103) that AVTZ~  is bounded and that, as ∞→n , AVTZ~  will converge in law 
to the distribution of the lowest order statistics. (The order statistics of a random 
sample Z1, … , Zn are the sample values placed in ascending order. They are often 
denoted by Z(1), … , Z(n), where inii

XZ  min)1( ≤≤
=  and iniin XZ  max)( ≤≤

= .) To attain an 

approximation of the type I error using (103), I first ignore all the components in 
(103) that converge in probability to ∞+ , since they do not converge in distribution 
but in probability. Then I consider only the components that converge in distribution, 
i.e., ( ))()2()1(  , , , W

AVTAVTAVT ZZZ L . The distribution of )(
)1(  min i

AVTWiiAVT ZZ
≤≤

=  from the culled 

sequence can be attained with the application of Theorem 3.2. 

Theorem 3.2: Let X(1), … ,X(n) denote the order statistics of a random sample from a 
continuous population with cumulative distribution function (cdf) F(x) and pdf f(x). 
Then the pdf of X(j) is 

 [ ] [ ] ,)(1)()(
)!()!1(

!)( 1 jnj xFxFxf
jnj

nxf −− −
−−

=  (104) 

where )!(⋅  denotes the factorial operator.  

The proof of Theorem 3.2 can be found in [35].  

Setting j = 1 and n = W in (104), the pdf of ZAVT(1) is 

 [ ] ,)(1)()( 1−−= WzFzWfzg  (105) 
 
where f(z) is the chi square pdf with 1 degree of freedom in the case of the AVT 
detector (also for SemiP and AsemiP), and F(z) is the equivalent cdf. Note that f(z) is 
the F1,1 for the AFT detector. 

Denote ( ) )(2
0

m
σ  the reference sample variance associated with the minimum order 

statistics ZAVT(1), and let ( ) )(2 m
uσ  be the combined sample variance associated with 

ZAVT(1). As the number of the reference sample associated with ZAVT(1), n = n(m), 
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increases; setting ( ) )(2)( m
u

m στ = , the probability of rejecting H7 in (3.87), when 

( ) )()(2
0

mm
τσ = , converges to 

 ( )[ ] ( ) ( ) ( ) ,)(~ˆ
11)1(1

)(2
0 2)()(2

0

εξσψ
τσ

=>⎯⎯→⎯>≈>= ∞→=
TPTZPTZP nAVTHAVT

m
mm (106) 

where ≈  means approximately equal to, ξ is a random variable distributed by g(z), as 
defined in (105); T1 a nonnegative real value; and ε a positive real value, controlled 
by the user. The variable ψ̂  in (106) is the type I error, and it is indeed an 
asymptotically size ε test. 

Now consider the alternative hypothesis H8 in (95), where all 
( ) ( ) Niii ,,1  ,(i)2

u
)()(2

0 L==≠ στσ . From (103) I write  
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From (107), AVTZ~  will converge in probability to ∞+ . Hence, the probability of 

rejecting the null hypothesis H7 [given that all ( ) )()(2
0

ii
τσ ≠ ] tends to 1, or 

 ( ) .1~
18

⎯⎯ →⎯> ∞→nAVTH TZP  (108) 

In this way, the AVT expression in (94) for the ground-view problem has the desired 
properties of asymptotic size ε, which is controlled by the user, and asymptotic power 
1. (This discussion is readily applicable to any anomaly detector, whose test statistic 
tends in law to a known distribution, including of course the detectors SemiP, 
AsemiP, AFT, and RX.) 

3.7 Results and Discussion 

In this section, the performance of the conventional and non-conventional anomaly 
detectors that were previously discussed are evaluated using the imagery collected by 
two sensors: (i) the HYDICE sensor, which provided top view perspectives, and (ii) 
the commercially available hyperspectral sensor SOC-700, which provided ground 
view perspectives. I will start off by making a few comments on the data 
preprocessing used for the different types of algorithms, and proceed by showing 
various performance results for these detectors operating on the top-view and ground-
view imagery. I also include a subsection describing a proof of principle experiment, 
where the discriminant power of an anomaly detector is adapted to function as an 
unsupervised learning classifier. 



 49 
 

3.7.1 Data Preprocessing 

In this subsection, I discuss the data preprocessing used for the four approaches based 
on the union of samples, followed by the data preprocessing used for the other types 
of detectors. The discussion in this subsection is relevant to both types of imagery, 
top view and ground level view. 

The models based on the union of samples (i.e., SemiP, AsemiP, AFT, and AVT) are 
clearly based on idealized assumptions. In the context of using relatively high 
resolution imagery, at best one could hope that, in the presence of certain types of 
terrain, those assumptions would not be grossly violated. The assumptions dictate that 
not only the random samples x0 must be statistically independent of x1, their 
corresponding components x0j and x1j must be iid. For those assumptions not to be 
violated using HS data, the information in the spatial domain must be independent, as 
well as the information in the spectral domain.  

In Subsection 3.1, I proposed two transformations aimed at promoting statistical 
independence in both domains: apply a HP filter in the spectral domain, followed by a 
spatial SAM. Both transformations use the same basic idea: They take the difference 
between dependent random variables. For instance, the difference among three highly 
dependent random variables will produce two independent random variables. The 
application of a HP filter, which is equivalent to a first order differentiation, in the 
spectral domain, followed by an angle difference mapping jointly will produce 
approximately iid random variables. An output result depicting transformed spectral 
samples, as described, was already shown in figure 4. The data preprocessed just 
discussed were used for all the detectors based on the union of samples, and for the 
ANOVA method.  

For the other anomaly detectors discussed in this section (i.e., FLD, DPC, EST, RX, 
and KRX), I used the data preprocessing suggested by their corresponding authors. In 
other words, I applied a HP filter in the spatial domain of the actual reference and test 
hyperspectral samples (thus promoting spatial independence) and aimed at 
capitalizing on the spectral correlation of natural clutter background, which in essence 
constitutes the rationale for the development of detectors RX and KRX. Since neither 
the detectors DPC and EST are based on an assumed statistical model, but on 
principal component decomposition, data preprocessing was not applied to the actual 
hyperspectral samples. 

3.7.2 HYDICE Top-View Hyperspectral Imagery 

An experiment was carried out on data set from the hyperspectral digital imagery 
collection experiment (HYDICE) sensor. Recall that the HYDICE sensor records 210 
spectral bands in the visible-to-near infrared (VNIR) and short-wave infrared 
(SWIR), 0.4-2.5 μm, forming a cube of spatially registered pixels. Each pixel then in 
the scene represents a sequence with 210 components.  

To challenge this new family of local anomaly detectors, I used two sub-cubes from 
the HYDICE dataset. These sub-cubes depict the radiance from two different types of  
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terrains, forest and desert. The imagery used are the so-called Forest Radiance I (FR-
I)—the same one used to test the conventional anomaly detectors, see figure 2—and 
Desert Radiance II (DR-II). Their spectral averages—from 150 bands—were shown 
in figure 3, as two dimensional (2-dim) images. (Water absorption and low signal-to-
noise ration bands were discarded. Hence, only remaining 150 bands were used; the 
discarded bands are: 23rd-101st, 109th-136th, and 152nd-194th.) Recall that in DR-II, 
five stationary military vehicles can be observed aligned on a road in Yuma, AZ. In 
FR-I, 14 stationary military vehicles can be observed on sparse grasses, near a forest 
in Aberdeen, MD. The military vehicles in both scenes are considered as the targets in 
this report; they vary in sizes in both images. The HS images shown in figure 3 were 
magnified differently to fit in the same capture. FR-I consists of 600 x 140 pixels with 
a ground resolution of about 1.3-m per pixel. The DR-II subcube consists of about 
320 x 140 pixels with the same ground resolution per pixel.  

The goal of local anomaly detectors on these types of scenes is to hopefully detect all 
objects that seems clearly anomalous to its immediate surroundings in some 
predetermined feature space. The local sampling mechanism is discussed next. 

The SemiP, AsemiP, AFT, ANOVA, and AVT detectors were implemented using the 
sampling mechanism discussed in Section: Formulation of Problems and data 
preprocessing as discussed in Subsection: Data Preprocessing. The test window 
consisted of 9 pixels, while the reference window consisted of 56 pixels, and the 
variability window consisted of 60 pixels. The random sequence of angles obtained 
from the variability and the reference windows, as described in Section: Formulation 
of Problems, was labeled as the reference random sample x0 for the new detectors. 
The sequence of angles obtained from the variability and test windows was labeled as 
the test random sample x1. Note that the size of the variability window determines the 
size of the random samples, that is, x0 and x1 have the same size, 60.  

From empirical results using the top-view imagery, I learned that sample sizes above 
40 comfortably satisfied the large sample requirement of the detectors based on large 
sample theory, i.e., estimated values did not change significantly using additional 
samples. The reason may be related to the pixel resolution of 1.3-m of the HYDICE 
imagery being relatively low, which implies that the radiances from multiple objects 
(e.g., grass and dirt) were integrated in the sensor as being originated from a single 
object. The number of pixels in a single object, which is dependent on the sensor’s 
pixel resolution and on the altitude of the data collection platform, will possibly 
influence the minimum required sample size for any method based on large sample 
theory. This dependence, however, is not very sensitive, as the reader will be able to 
verify later in this report.  

Figure 7 shows again the output surfaces of the conventional detectors FLD, DPC, 
RX, and EST on the FR-I data, which were also shown in figure 2, in addition to the 
output performance of ANOVA.  Figure 8 depicts output surfaces of the detectors 
based on the union of samples testing the FR-I data, in addition to KRX’s output 
surface. 

 



 51 
 

Note that the surfaces of FLD, DPC, RX, KRX, and EST did not require a suitable 
clipping threshold for the purpose of display. On the other hand, the detectors SemiP, 
AsemiP, AFT, AVT, and ANOVA required the application of suitable thresholds for 
the only purpose of display. All ten output surfaces shown in figure 7 and figure 8 
were mapped using the same 28 pseudo-color map (colormap), as shown.  

Notice in figure 8 that, for a particular initialization (i.e., [ ] [ ]0,0ˆ,ˆ =βα ), the SemiP 
detector suppresses very well what would be considered by an image analyst as 
meaningless detections from forest radiance, and that the other detectors based on the 
same principle of indirect comparison, but having no dependence on initial 
conditions, performs about the same.  

 
Figure 7. Decision surfaces using the HYDICE FR-I data, forest radiance. The intensities and 
heights of local peaks reflect the strength of anomaly evidences as seen by different detectors. 
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Figure 8. Decision surfaces for the HYDICE FR-I data. 

By visual inspection alone of the output surfaces shown in figure 7, figure 8, one 
would be hard pressed not to ignore the advantage of applying our proposed principle 
of indirect comparison to the problem of local anomaly detection. These output 
surfaces suggest that our semiparametric and nonparametric detectors outperform 
conventional techniques by being able to significantly suppress noise, hence, 
accentuating in that scene the presence of meaningful objects.  

Recall that the detectors SemiP, AsemiP, AFT, and AVT are based on the union of 
samples and that their assumptions do not depend on parametric models. Recall that 
the ANOVA detector does depend on the normality assumption, albeit it enjoys—
partially—the advantage of using the union of samples by comparing the means of 
individual random samples to the mean of the random samples combined. Recall also 
that the theories of FLD, RX, and KRX detectors are based on the properties of 
normality and that DPC and EST detectors are merely based on the scores of random 
samples on the Eigen space. These differences explain the disparity in performance 
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between the two groups. For instance, when the spectral radiance of a grassy area is 
compared to a composite set of grass and shadow, the composite sample violates the 
normality assumption in those conventional models. 

In order to provide a better appreciation for the indirect-comparison detectors, I 
present in figure 9 and figure 10 the 3D perspectives of a selected number of output 
surfaces, they are: AsemiP, AVT, AFT, ANOVA, and KRX. These 3D surfaces are 
the same surfaces shown in figure 7 and figure 8. 

Notice in figure 9 that the clipping thresholds applied to the AsemiP, AVT, AFT, and 
ANOVA surfaces are 8000, 3000, 80, and 300, respectively. These thresholds were 

 
Figure 9. Decision surfaces (3D) produced by the detectors AsemiP, AVT, AFT, ANOVA 
testing on FR-I. Surface clipping applied. 
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applied and the results stretched so that the reader could better appreciate the intensity 
of targets’ responses in contrast to the clutter background’s in the entire image. 

The high intensity peaks in all four surfaces correspond to the presence of the 
stationary land vehicles in the scene, although the ANOVA detector also accentuated 
some meaningless signs of local anomalies due to region discontinuities. The surfaces 
shown in figures 7–9 were clipped because some of their dominant peaks do continue 
to relatively higher numbers, completely obscuring the presence of less dominant 
target responses. The criterion for deciding on clipping values was based on the peak 
value of the weakest target response in each surface.      

In figure 10, I present the same output surface of the AsemiP detector shown in figure 
9, but in this case clipped at a significantly higher threshold (i.e., 2 x 104), and the 
KRX surface, which required no clipping. They are put side by side in figure 10 for 
visual comparison.  As mentioned earlier, in both  3-dim surfaces, the fourteen land 
vehicles by the treeline responded as the most dominant peaks in those surfaces, 
indicating that the spectral characteristics of the vehicles’ paint and vehicles’ shadows 
are significantly different from their immediate surroundings. The difference between 
the output surfaces produced by detectors AsemiP and KRX, shown in figure 10, is 
quite dramatic. That difference emphasizes the inherent ability of indirect-comparison  

 
 

Figure 10. Decision surfaces (3D) produced by the detectors AsemiP and KRX testing FR-I data. 
Virtually no surface clipping applied. 
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based detectors to suppress the clutter background and to accentuate what would be 
characterized by image analysts as meaningful detections in that scene, when 
compared to conventional detectors. 

Similar results could also be observed testing these two detectors on the DR-II data, 
see figure 11. The five most dominant peaks shown in the 3D AsemiP surface 
correspond to the presence of the five stationary vehicles on a desert road (see fig. 11, 
left). Figure 12 shows 3D output surfaces produced by detectors SemiP, AFT, 
ANOVA testing the DR-II data. 

To obtain quantitative results from performances of the different technique types, I 
use ROC curves. Figure 13 shows ROC curves produced by the output of the ten 
algorithms on FR-I. Detection performance was measured using the ground truth 
information for the HYDICE imagery.  

I used the coordinates of all the rectangular target regions and their shadows to 
represent the ground truth target set; call it TargetTruth. If I denote the region outside 
the TargetTruth as ClutterTruth, then the intersection between TargetTruth and 
ClutterTruth is zero and the entire scene is the union of TargetTruth and ClutterTruth. 
In this text, for a given decision threshold, the proportion of target detection (PD) is 
measured as the proportion between the number of detected pixels belonging to 
TargetTruth over all pixels belonging to TargetTruth. 
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On the other hand, the proportion of false alarms (PFA) is measured as the proportion 
between the detected pixels belonging to ClutterTruth over all pixels belonging to 
ClutterTruth. 

 
Figure 11. Decision surfaces (3D) produced by the detectors AsemiP and KRX testing on DR-II. 
No surface clipping applied. 
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Figure 12. Decision surfaces (3D) produced by the detectors AsemiP, AFT ANOVA testing on 
DR-II. 

 

Using the ROC curve as a metric, figure 13 further suggests the significant level of 
improvement produced by the indirect-comparison based techniques over alternative 
approaches. The differences in performance are better appreciated in figure 13 (right), 
where PFA is further restricted to a maximum value of 0.01—an extremely low PFA. 
Although the results shown in figure 13 (right) help the reader appreciate the contrast 
in performance among the ten detectors, they do not do full justice to the quality of 
the indirect-comparison detectors. For instance, the threshold that yielded a PD of 
0.55 using the SemiP, AsemiP, AFT, and AVT detectors comfortably found the 14 
targets in FR-I, but not necessarily all the pixels on those targets. In other words, 
these detectors were able to detect sizeable portions of all 14 stationary land vehicles, 
yielding in the test a zero PFA. 
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Figure 13. ROC curves using the HYDICE data scene FR-I (forest radiance). These figures 
suggest that indirect comparison based detectors are noticeably less sensitive to different 
decision thresholds compared to alternative conventional methods. An ideal ROC curve 
resembles a step function starting at point (PFA = 0.0,  PD = 1.0).  

 



 59 
 

Asymptotic Performance: In Appendix B, I present asymptotic performances of 
detectors SemiP and AsemiP under their null hypotheses. Their empirical 
distributions were computed from their output (FR-I) surfaces and qualitatively 
compared to empirical distributions generated from two epochs of 2,000 simulated 
realizations of a random variable following a chi square distribution with 1 dof. The 
SemiP and AsemiP detectors yielded a good fit between their empirical distributions 
and two empirical distributions computed from these simulated realizations.    

Processing Time: I report the processing time in minutes (min) for a cube 600 x 140 
(pixels) x 150 (bands) using a personal computer (CPU speed: 1.80 GHz; RAM 
memory: 1.0 Gbytes), MATLAB™ software (release 13), and three detectors (RX, 
AsemiP, and SemiP). The recorded times were: 20.6 min (RX), 13.4 min (AsemiP), 
42.9 min (SemiP). Computing the local variance-covariance matrix and its inverse 
dominated the RX processing time. Applying locally a HP filter in the spectral 
domain and applying SAM on the resulting vectors dominated the AsemiP processing 
time. Finally, applying locally a HP filter and a spatial SAM, and using an 
unconstrained minimization routine dominated the SemiP processing time.  

The detection results presented in figure 13 using the FR-I data were consistent with 
results produced by these detectors using DR-II. The ROC curves corresponding to 
the performances of the anomaly detectors discussed in this section are shown in 
figure 14. Results presented in figure 13 and figure 14 suggest that performance 
disparities conventional (e.g., KRX), are significantly larger testing scenes dominated 
by major transitions of class regions. The overall scene background in FR-I has 
clearly more transitions of class regions (e.g., shadow and grass) than observed in 
DR-II. 

The processing times of the detectors using the DR-II were proportional to the results 
shown using FR-I, proportional to the cube size of DR-II. 
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between the two types of detectors, indirect-comparison (e.g., AsemiP) and  

 

 

 
 

Figure 14. ROC curves using the HYDICE data scene DR-II (desert radiance). 
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3.7.3 SOC 700 Ground-Level View Hyperspectral Imagery 

The ground-view imagery used for this work was collected with a novel visible to 
near-IR spectral imager (SOC-700) from Surface Optics Corporation, San Diego, CA. 
The system is a relatively small, portable hyperspectral imager, which collects a 
hyperspectral cube consisting of 640 x 640 pixels x 120 spectral bands and has a 
spectral range covering 0.38 to 0.97 μm. The sensor is commercially available off the 
shelf [38].  

The data were collected during June, 2004 in Fort Hunter-Liggett, CA, to support a 
research effort by the U.S. Army. Three scenes from that data collection were used 
for this study. The first row in figure 15 shows the photos of those scenes, which were 
taken using a standard digital photo camera, and the second row depicts those scenes 
as the average of 120 bands, which were collected using the SOC-700 HS camera. 
Although not important to the impact of this work, notice that the photos and the HS 
imagery were not taken precisely at the same time, which explains some of the 
differences between the two types of images.   

From actual ground truth, it is known that Scene 1 contains three motor vehicles and a 
standing person in the center of that scene (i.e., two pick-up trucks to the left in 
proximity to each other, a man slightly forward from the vehicles in the center, and a 
reflections from certain parts of the vehicles captured by the sensor in Scene 1 and 2 
are not as dominant in Scene 3 because the vehicle there is in the shadow; hence, the 
terrain in Scene 3 appears to be a strong reflector.    
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In essence, I would like to capture in this study the overall behavior of an anomaly 
detector in two ways: (i) seeking for global anomalies in a natural clutter background, 
given that only a few spectral samples from the most abundant object classes in the 
background (in this case, trees and terrain) are drawn from the same HS data and 
presented as references to the detectors and (ii) seeking for global anomalies, given 
that the reference samples are not drawn from the same HS data. I would be able to 
determine in (i) the effectiveness of these detectors within the same data of a 
particular area in the valley and in (ii) their effectiveness and robustness using data 
from different areas in the valley.  Results are shown in figures 16–19. 

                                                       

                      Scene 1                         Scene 2                            Scene 3 

                   Cube 1                           Cube 2                            Cube 3 

Figure 15. Scene photos and their corresponding SOC-700 hyperspectral cubes (band averages).  
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I applied the RX and the AsemiP detectors to those scenes and present their output 
surfaces in figure 16, columns 2 and 3, respectively. (Using the initial condition 
[ ] [ ]0,0ˆ,ˆ =βα , the SemiP detector could not converge to a solution at every location 
in those images. Thus, I excluded its incomplete performances from this subsection.)   

The sampling mechanism and data preprocessing used for the AsemiP detector were 
described in detail in Subsection 3.1, where, in this implementation, the test window 

                     Cubes                             RX                              AsemiP 
 

  

 

Figure 16. Scene anomaly detection using two reference sets of spectral samples (their locations 
are shown as yellow boxes in the top scene) from California tree leaves and valley terrain. The 
unconventional AsemiP anomaly detector was developed based on a principle of indirect 
comparison, and the conventional RX anomaly detector is the standard technique for anomaly 
detection. The RX and AseemiP output surfaces are displayed using the same pseudo color map, 
where white depicts the strongest sign of anomalies, yellow strong, red intermediate, and black 
lowest sign of anomalies. 
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consisted of a 3 x 3 cell (nine 120-band spectral samples) and the two reference 
sample sets (one representing responses from tree leaves and another from a patch of 
terrain) consisted each of 100 spectral samples, for a total of 200 reference samples—
a mere 0.05% {[200 / (640 x 640)] x 100} of the image area. The two yellow boxes 
shown in HS Cube 1 (row 1 and column 1 in figure 16) represent the general 
locations—chosen arbitrarily—where the two reference sets were drawn from. Using 
our proposed data preprocessing, both a reference angle sequence )(

0
py  and a test 

angle sequence )(
1

py  were obtained for each test location, as in (15), where, in this 
implementation, p = 1 denotes tree leaves and p = 2 denotes terrain. Note that the size 
of a reference set determines the size of its equivalent random sequences of angles, 
thus, )(

0
py  and )(

1
py  in this implementation have the same size, 100, as only the 

average of 9 test samples is used to generate the test sequence of angles with each 
reference sample set. 

The AsemiP detector is expected to systematically compare across the imagery the 
preprocessed test samples with the fixed preprocessed samples pertaining to both 
reference sets. If a local set of preprocessed test samples is significantly different 
from the fixed reference sets, the AsemiP detector should produce an accentuated 
value at that location indicating this fact; otherwise, it should produce a suppressed 
value. This expectation can be achieved by fusing results using (47) for p = {1, 2}, 
representing the two classes.   

I adapted the RX detector to the ground-view problem using the recommended data 
preprocessing discussed in [10], i.e., a spatial high pass filter was applied to the 
untransformed hyperspectral samples belonging to the same reference sets used for 
the AsemiP detector, and also to the samples from the test samples across the 
imagery. This procedure removes the spatially nonstationary mean, which is not 
useful for the RX detector, and promotes spatial independence, allowing this detector 
to exploit an expected correlation in the spectral domain among samples belonging to 
the same class. Under the assumptions given in the RX model, this detector is 
expected to produce an accentuated value when the simplified Mahalanobis distance 
between a high-pass filtered reference set and a test set is significantly high; 
otherwise, it is expected to produce a suppressed value. Since I have, in this 
implementation, two fixed reference sets, the minimum between the two distances 
was also used as a means to produce a final result per location in the imagery. Recall 
that by using this decision logic, an anomalous test sample to both reference sets 
would still produce a high value, since both results would likely yield high values.  

In figure 16, I present the output surfaces produced by both detectors and invite the 
reader to make a visual comparison between the corresponding surfaces. The output 
surfaces of the RX and AsemiP detectors are shown in columns 2 and 3, respectively, 
for the corresponding HS cubes in column 1. I used a suitable colormap to emphasize 
anomalies with respect to the reference samples by their false-color (intensity) levels, 
i.e., white is equivalent to the strongest anomalies, yellow to strong anomalies, red to  
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intermediate anomalies, brown to weak anomalies, black to weakest anomalies. The 
false colors change gradually and are relative only to those results within the same 
surface, for instance, a yellow pixel in one surface does not mean necessarily that its 
value is equivalent to another yellow pixel in another surface.   

The local results shown in the first RX surface (row 1, column 2) are consistent with 
the study cases discussed in Section 1, see figure 1. A detector based on conventional 
methods performs well suppressing objects in the scene having low variability and 
belonging to the same class of a reference set (Case 3)—the trees were suppressed. 
Likewise, it performs well accentuating objects that are significantly different from 
the reference set (Case 1)—for instance, some parts of the vehicle at the right hand 
side (row 1, column 2) were highly accentuated. (One can actually observe white 
pixels within the boundaries of those vehicles by zooming close enough on both RX 
surfaces (rows 1 and 2, column 2), which indicates that those portions are 
significantly different from the reference sets. Unfortunately, as it was observed in the 
top-view problem, local areas characterized by class mixtures (transition of regions) 
may be also accentuated by these detectors, obscuring therefore the presence of 
meaningful objects in that scene. In fact, for the HS cubes presented in figure 16, the 
RX detector seems to perform more as an edge detector than as an anomalous object 
detector.    

The AsemiP detector, on the other hand, was able to suppress virtually all the 
background of Cube 1, and to accentuate large portions of the vehicles and of the 
standing man. In a qualitative sense, test samples consisting of, say, a mixture of 
shadow and terrain were likely suppressed due to the indirect comparison between the 
mixture itself and the union between that mixture and a component of that mixture, in 
this case, terrain.  

Next, compare the impact of shadowed objects to a reference consisting of the non-
shadowed version of the same object.  

The reason our indirect comparison based detectors work so well suppressing 
shadowed patches in the ground may be explained by the following: Regions 
characterized by tree shadows, for instance, may be interpreted as partially obscured 
terrain because tree leaves do partially obscure the incident solar light; however, 
since significant spectral radiances are still reflected from the partially shadowed 
terrain, such a region will be suppressed when compared to the union of itself and the 
reference set of open terrain. 
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Now, let us shift our attention to the results shown for Cube 2 in figure 16 (row 2, 
column 2 and 3). The RX surface shown in rows 2, column 2, suggests that the RX 
detector may be susceptible to subtle spectral differences of the same terrain when 
observed by the same HS sensor in a different area. Recall that Scenes 2 and 3 were 
tested using the same reference sets drawn from Scene 1. The surface shown in row 2, 
column 3, suggests that the AsemiP detector is significantly more robust to spectral 
differences of the same terrain. The concern of such robustness was addressed as one 
of our examination goals cited in (ii).  

Shifting our attention now to the results corresponding to Cube 3 in figure 16 (row 3, 
column 2 and 3), the interpretation of a shadowed object as a partially obscured 
object is especially relevant to the interpretation of output results for Scene 3. The 
output surface shown in figure 16, row 3, column 2, emphasizes the fact that the RX 
anomaly detector performs as expected: it detects local anomalies in the scene. 
However, as I have been discussing throughout the report, these local anomalies are 
not guaranteed to be meaningful to an image analyst in the context of our problem. 
For instance, in reference to the RX output surface for Cube 3, notice that some of the 
tracks made by the shadowed vehicle, and the transition between the shadowed and 
the non-shadowed terrain were the most anomalous regions in the scene, as seen by 
the RX detector. Fortunately, with the indirect comparison approach that is inherent 
in the AsemiP detector, these same regions were virtually suppressed, while the more 
meaningful anomalous structures (vehicle and human pants) were accentuated, (see 
the corresponding AsemiP surface in figure 16 (row 3, column 3)). 
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For additional performance results, refer to figure 17 and figure 18, where I present 
consistency in performance between the detectors AVT and AsemiP using HS Cube 3 
and an additional cube (Cube 4), and also the results produced by the detectors FLD 
and DPC. The RX and AsemiP surfaces shown in figure 17 (row 2, column 1) and 
(row 1, column 3) are exactly the same ones corresponding to those detectors in 
figure 16. Notice that the FLD output surface shown in figure 17 (row 2, column 2) 
emphases the spectral differences between the shadowed tree region and the two 
reference sets, which incidentally are the same reference sets drawn from HS Cube 1. 
Notice that the FLD detector accentuates significantly a large portion of the shadowed 
land vehicle and of the person, among other shadowed objects in that region, e.g., 
shadowed tree trunks and leaves. The DPC detector, on the other hand, focused on a 
portion of the vehicle’s tire tracks as being the most anomalous object class in the 
entire scene when compared to the reference sets. Taking a closer look at the DPC 
surface in figure 17 (row 2, column 3) did reveal that about three pixels within the 
boundaries of the tire tracks are actually white (highest intensity). Yellow pixels 
shown within the boundaries of the vehicle, within the boundaries of the person, and 
within the boundaries of other object classes in the shadowed region indicate that 
those shadowed object classes are the next lower level of anomalies in respect to the 
reference spectral sets, as seen by the DPC detector. (Incidentally, the RX, FLD, and 

                                                              

                  Cube 3                           AVT                            AsemiP 
 

 

 
 

               RX                             FLD                                 DPC 

Figure 17. Scene anomaly detection using two reference sets of spectral samples from California 
tree leaves and valley terrain. 
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DPC surfaces in figure 17 are shown without clipping their values, which is also true 
for the RX surfaces shown in figure 16. The AVT and AsemiP surfaces, however, 
required some clipping for the reasons discussed earlier using top view imagery.) 

The results in figure 16 and figure 17 further support our claim that conventional 
approaches are flawed in anomaly detection, as described in this report. In other 
words, they either account for a clear presence of anomalies when compared to a 
homogeneous background or no presence, but they do not account for transition of 
distinct regions, which unfortunately are quite abundant in digital imagery of natural 
clutter background. The indirect comparison detectors, on the other hand, account 
inherently for all three study cases, as described in Section 1. 

                                                              

                                    Scene 4                             Cube 4 
 

 

               RX                               AVT                           AsemiP 

Figure 18. Scene anomaly detection using two reference sets of spectral samples from 
California tree leaves and valley terrain. 
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digital imagery of natural clutter background. The indirect comparison detectors, on 
the other hand, account inherently for all three study cases, as described in Section 1. 
In figure 18, a new scene in presented, where the photo was not taken exactly at the 
same time the SOC-700 camera collected its data. Notice that the performances of 
detectors AsemiP, AVT, and RX in figure 18 are consistent with their corresponding 
results shown in figures 16 and 17. I included HS Cube 4 primarily due to the 
relatively small scale of two of the targets in that scene, i.e., two persons consisting of 
very few pixels on them. In fact, as it is evident from the output surfaces shown in 
figure 18, these human targets were not even detected as anomalies by either one of 
the indirect-comparison detectors, AVT or AsemiP. Part of the problem is that the 
farther away a target is from the sensor, the more attenuated its total radiance will be 

      AsemiP                       AFT                        ANOVA 
 

Figure 19. Performance results of detectors AsemiP, AFT and ANOVA testing ground level 
imagery (Cubes 1, 2, and 3, shown in fig. 3.13). 
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due to the atmospheric transmission properties. Moreover, the target radiance will be 
corrupted by the radiance of adjacent object classes. In addition, the most 
discriminatory feature of both persons (the material of their pants) was significantly 
immersed in high grass. These facts made those two targets not so discriminatory 
from the two sets of spectral samples used as references: tree leaves and terrain.   

Figure 19 shows additional results for a direct comparison between the F-distribution 
detectors, AFT and ANOVA. Those results reinforce the fact the normality 
assumptions in the ANOVA model can degrade performance. The results between the 
AFT detector, which does not assume normality, and the ANOVA detector, which 
does, were reasonably comparable testing the top view imagery, but this 
comparability dissipated testing ground level view imagery. A conclusion that I can 
draw from the output surfaces presented in this section is that results of all indirect 
comparison based approaches developed in this research were all consistent, whether 
the problem used top view or ground level view imagery. To complete this 
subsection, I present some results related to the sensitivity of our approach to varying 
sample size, (see fig. 20). Using the same sampling mechanism described for Scene 1 
(see fig. 5 and fig. 16), I varied the sample size per class and used the AsemiP 
detector as a benchmark to test Cube 1. Denoting N the sample size per class, I used 
N = 30, 60, 100 and 500 spectral samples to represent the two classes: tree leaves and 
general terrain. (N = 100 has been used by default in our discussion in this 
subsection.) The results shown in figure 20 suggest that the AsemiP detector is not 
significantly sensitive to sample sizes greater than 30, a desirable property. Even at N 
= 30, there are strong detection markers on the vehicles and on the man’s pants, 
which would be sufficient to extract those objects as being anomalous to the two 
references, tree and terrain. The extraction of objects from their background using 
anomaly detection markers via post image processing will be discussed next. 
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3.7.4 Extension to Unsupervised-Learning Based Classification 

It is well known that an effective anomaly detection technique may be adapted to 
function as an unsupervised learning classifier. In this subsection, I adapt our indirect 
comparison, anomaly detection approach to function as a self classifier and present a 
proof-of-principle experiment. Figure 21 depicts the concept. The notion of self 
classification, in the context of our discussion, simply means that a given algorithm 
suite consisting of two stages can be used to detect meaningful objects (stage 1) as a 
collection of point anomalies in respect to some reference set (available a priori). 
Upon applying a clustering algorithm to separate these detections as mutually 
exclusive clusters, the anomaly detection engine would be reused to function as a 

                      N = 30                                          N = 60                
 

 
      

                  N = 100                                         N = 500    
Figure 20. Sensitivity of the AsemiP detector to varying sample sizes. Denoting N the sample size 
per object class (two classes: tree leaves and terrain) the output surfaces are presented for N = 
30, 60, 100, and 500. 
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classifier by reintroducing, to the anomaly detector, samples from the clustered 
detections, as references, and—relying on the anomaly detector’s ability to 
discriminate—to determine the classification among the detected objects. For 
instance, suppose that samples from two objects are detected and then clustered into 
two groups, Class 1 and Class 2. It would be of further interest to know rather Class 1 
and Class 2 are the same or different classes. If these classes are the same, one could 
use the same color code to indicate this fact. Otherwise, the two classes would be 
displayed with different colors.  

Using this procedure, it would be appealing to have, for instance, land vehicles that 
are detected in the same HS cube being able to retain the same color code, a color 
code that would be different from the one obtained by a different object class (e.g., 
human beings) also present in the scene. Note that self-classification, in this context, 
would not provide information on the actual classes of the objects, although it 
separates objects by class membership using the discriminatory power of the anomaly 
detector—given that these objects are separable.  

The output results shown in figure 21 depict this notion of self-classification using 
AVT as the chosen anomaly detector.  The red surface in figure 21 (lower right hand 
corner) represents the AVT detector’s output surface for Cube 1. That surface clearly 

Figure 21. Proof of principle experiment illustrating a concept of self-classification using the 
AVT anomaly detector twice in the loop. 
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shows strong anomaly peaks due to the presence of the vehicles and to the standing 
person in the open field. Based on the proximity of the two vehicles in the left of the 
person (reader’s perspective), they seem to form a single anomalous object, which is 
labeled at this preliminary stage as class 1. The person was labeled at this stage as 
belonging to another class, 2. And the vehicle at the right of the person was labeled as 
belonging to a third class (labeled as 3). The surface immediately above the red 
surface is exactly the same surface, but displayed as a 2D surface using a different 
colormap. The circles around the anomalous structures were put artificially in this 2D 
surface to emphasize the fact that automatic post processing can be applied to exploit 
the detection markers and to spatially bound each unknown individual object. I used 
standard morphological filters (i.e., logical combinations of dilation and erosion to 
function as an opening operation to reduce noise, and as a closing operation to fill 
holes within the same object) to produce a silhouette for each class using the most 
dominant peaks as detection markers.  

Spectral samples from within each silhouette (class 1, 2, or 3) were used as a 
reference set—one at a time—through the same anomaly detector to decide whether 
the other two classes belonged to the reference class. There could only have five 
outcomes: (i) the three classes are about the same, (ii) the three classes are 
significantly different, (iii) classes 1 and 2 are about the same but different from class 
3, (iv) classes 1 and 3 are about the same but different from class 2, or (v) classes 2 
and 3 are about the same but different from 1.  

The blue surface shown in figure 21 shows the final result from the self classification 
procedure just described, where the blue region represents the suppressed clutter 
background after stage 1. The AVT detector produced the outcome (iv), i.e., the 
vehicles fell into the same class (depicted by yellow) and an overwhelming portion of 
the standing person fell into a different class (depicted by red). In summary, using 
initially two sample sets as references drawn from the scene shown in figure 21, the 
AVT anomaly detector was able to find three spatially independent objects as scene 
anomalies and could conclude that two of them (the three vehicles) belonged to the 
same class, and the remainder one (the standing person) most likely belonged to a 
class of its own.  

A similar proof of principle experiment was carried out using the AsemiP anomaly 
detector. It produced the output results shown in figure 22. Figure 22 also depicts the 
output result produced after stage 1 and the post processing procedure that spatially 
clustered the mutually exclusive objects, as seen by the detector, see surface at the 
upper left hand side in figure 22. One may interpret the joint functions of anomaly 
detection and the follow-on post image processing as the extraction of meaningful 
objects from the scene, or as a meaningful focus of attention, this interpretation is 
emphasized by the 3D surface shown at the upper right hand side in figure 22. The 
spectral samples shown at the lower right and lower left hand sides are samples of the 
corresponding objects, person and right side vehicle, and were drawn from the scene 
using the detection masks (produced by post image processing) shown  
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in figure 22 as white solid shapes. The vehicles at the left side of the person have 
similar spectral responses. The final output surface produced by reintroducing the 
new reference sets of spectral samples from the vehicles at the left, from the vehicle 
at the right, and from the standing person to the AsemiP detector is shown at the 
lower center in figure 22. The final AsemiP result is consistent with the 
corresponding result produced by the AVT detector, as I expected. 

         Human Being          Classification (AsemiP)            Right Vehicle 
        Spectral Sample                                                                 Spectral Sample 

Figure 22. Proof of principle experiment illustrating a concept of self classification using the 
AsemiP anomaly detector twice in the loop. 
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4. Conclusions 

The objective of this work was to develop statistical techniques with applications to a 
fundamental problem in machine vision: Empower a machine with the ability to focus 
its attention to meaningful objects in a scene, without human intervention. 
Meaningful objects are of course subjective, which may bring in prominence the 
individuality of an image analyst, or the objective of a particular surveillance task. In 
this work, meaningful objects are characterized by their material properties being 
significantly anomalous to an overwhelming presence of other types of materials 
forming a background, e.g., foliage clutter. Examples of meaningful objects are 
stationary equipments on natural terrain, a standing person in an open field, etc. 

Although not evident from the problem statement, such a capability implies that the 
automatic procedure must be highly effective performing subtasks that are well 
known in the image processing community for being challenging problems by 
themselves. For instance, a challenging subtask is the ability to automatically 
suppress the entire clutter background in a digitized scene that may be dominated in 
abundance by local transitions of different types of material regions. Another 
challenging subtask is the ability to automatically accentuate the presence of certain 
types of objects, as a collection of localized anomalies, with respect to sets of 
predetermined material types.  

To accomplish this work, I opted to use hyperspectral rather than broadband imagery 
and to focus our algorithmic development on adaptive anomaly detection rather than 
on a particular type of material detection. A key benefit for choosing hyperspectral 
data over broadband is that a particular type of material may be identified by testing a 
few pixels of the tested object, independently of the object’s orientation, elevation 
angle, and distance from the sensor. A key benefit for choosing anomaly detection 
over a particular type of material detection is that often the exact material of interest 
is not known a priori, or the number of spectra in a material of interest library is 
simply too exhaustive to search for all possible materials. The prospect then of using 
HS imagery jointly with anomaly detection techniques holds the prospect of detecting 
both known and unknown targets of any shape, size (assumed to be greater than the 
sensor’s pixel resolution), and material type as statistical outliers. This outcome has 
an important practical value, if, and only if, the final product yields a significantly 
low false alarm rate compared to the prior art.   
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Most conventional anomaly detectors use multivariate models to define the spectral 
variability of the data, and the majority of the data pixels are assumed to be spectrally 
homogeneous and are modeled using a multivariate probability density function with 
a single set of parameters. Until now, no significant work had been done to find non-
normal statistical models, or unconventional alternatives, for the development of 
anomaly detection techniques using hyperspectral data. This work shows that 
conventional anomaly detectors can detect the presence of targets using hyperspectral 
data from the HYDICE and SOC-700 sensors, but also yield in the process a large 
number of false alarms. This type of performance has little practical value. 

I aimed at improving overall performance by implementing a principle of indirect 
comparison, where samples are not compared to each other as individual entities, but 
as individual entities compared to the union of these entities. I implemented this 
principle in different forms and showed that they outperform significantly 
conventional techniques on two types of anomaly detection problems: one from the 
top view perspective and another from a ground level view perspective. 

The more important findings and developments of this report are summarized next. 

4.1 Summary 

This subsection summarizes the more important findings and developments of this 
research in eight parts: Hyperspectral Data, Conventional Anomaly Detection, 
Principle of Indirect Comparison, Semiparametric Anomaly Detector, Approximation 
of the Semiparametric Anomaly Detector, F-distribution Anomaly Detectors, 
Asymmetric Variance Based Anomaly Detector, and Impact of Work.  

• Hyperspectral Data: HS imagery played a major role in the quality of the 
results shown using the unconventional anomaly detectors developed in this 
work, especially in detection problems from the perspective of a ground 
level view, where the size, material type, object to sensor range, and pose of 
potential targets are unknown and virtually impossible to account for all 
their possible permutations. I further state that hyperspectral imagery may 
give some hope for object detection scenarios typically characterized by an 
image analyst as hopeless using an alternative sensor type, such as 
broadband. Examples of challenging situations where the use of HS data 
may help over broadband data are: partially obscured targets, targets parked 
in tree shadows, camouflaged targets, and (if operating in the long wave 
infrared region of the spectrum) stationary relatively cold targets. Although 
not discussed in this work, sensors that operate over a few number of bands 
(e.g., ten)—known as multispectral, may enjoy the same advantage of HS 
sensors, but this advantage may depend on the material type of potential 
targets and on the operational bands of multispectral sensors. This work 
shows that using HS sensors can help on challenging anomaly detection 
problems (e.g., be able to find targets in tree shadows), albeit the impact of 
this help was shown to be highly dependent on the effectiveness of the 
anomaly detector. 
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• Conventional Anomaly Detection: I discovered that conventional techniques 
do not adequately address all of the most common spatial/spectral variability 
occurrences that may be observed locally in HS imagery. Therefore, they 
often produce an intolerable high number of false alarms, as it would be 
characterized by an image analyst performing the same task in the image. In 
the strict statistical sense, these false alarms are actually justifiable 
detections, i.e., they actually represent local anomalies when compared to 
their immediate surroundings. To better understand the behavior of 
conventional anomaly detectors on actual HS data, I applied five known 
techniques on HYDICE top view imagery, including the industry standard, 
and decomposed spatial/spectral variability occurrences into three most 
probable study cases: Case 1, Case 2, and Case 3. Case 1 represents a 
comparison between two samples from distinct distributions, Case 2 
represents a comparison between a two-material sample and a sample of one 
of the two materials, and Case 3 represents a comparison between two 
samples from the same distribution. I concluded through simulation and 
inspection of these detectors’ performances on actual HS data that the 
application of conventional techniques to local anomaly detection problems 
is flawed. They are developed to account for Case 1 and Case 3, but not 
Case 2. Case 2 occurs quite often on digitized scenes, representing major 
transitions of regions (e.g., a spatial transition between tree shadows and 
surrounding terrain), or simply as strong edges owing, for instance, to the 
presence of manmade objects in a natural clutter background. This 
discovery applies to conventional techniques based on parametric or 
nonparametric approaches. (Although the application of a strict 
nonparametric technique was not included in this research, inspection of the 
empirical distributions shown in figure 1 should convince the reader.)  I had 
a plausible idea for the development of algorithms aimed at explicitly 
accounting for all three study cases: compare samples indirectly by 
combining them.  

• Principle of Indirect Comparison: I proposed to compare samples not as 
individual entities, but as individual entities and the union among these 
entities. This idea was motivated by a discovery and a key recognition. I 
first realized that improving data models would not improve performance of 
anomaly detectors based on these models, as Case 2 would still be a cause 
of anomalous responses using these detectors. In addition, I recognized that 
Case 2 may be interpreted as an indirect comparison between two samples 
from different populations, where the union of these samples are compared 
to one of the samples. In the context of anomaly detection, let X and Y 
denote two random samples, and let Z = X U Y, where U denotes the union. 
Features of the distribution of X can be indirectly compared to features of 
the distribution of Y by comparing instead features of the distributions of Z 
to Y. Distribution features correspond to lower and/or higher moments and 
central moments. I developed and showed that anomaly detection algorithms 
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based on this simple principle enjoyed the desirable outcome of preserving 
what is often characterized by image analysts as meaningful detections (e.g., 
a manmade object in natural clutter), while significantly reducing the 
number of meaningless detections (e.g., transition of distinct regions). These 
algorithms are discussed next. 

• Semiparametric Anomaly Detector: I used a statistical approach that 
implements the principle of indirect comparison naturally in its 
mathematical development through a semiparametric model (a logistic 
model). This model assumes that the distributions of, for instance, two 
random samples X and Y are related by an exponential distortion. A 
statistical hypothesis test is then applied to decide whether the exponential 
distortion is insignificant. If this null hypothesis is rejected, then X and Y are 
declared anomalous in respect to each other. This model requires that all the 
components of X and Y are independent, identically distributed (iid) by their 
corresponding distributions. (I proposed a data preprocessing technique, 
which applies a first order differentiation in the spectral domain followed by 
angle mapping, to transform highly correlated spectral samples into 
approximately iid samples). Under this null hypothesis, the test statistic 
tends in law to a chi square distribution, as the number of samples increases 
to infinity. I tailored this technique (SemiP) to address the top view anomaly 
detection problem using HYDICE HS (V-SWIR) data and showed a 
significant improvement over conventional techniques suppressing natural 
clutter backgrounds and accentuating, as a collection of localized anomalies, 
the presence of stationary land vehicles in the scene. I tested the SemiP 
detector on HS radiance data from two different types of backgrounds, 
forest and desert. Its performance was consistent in both backgrounds. The 
implementation of this detector, however, revealed a major drawback. It 
requires an iterative optimization algorithm which may be sensitive to 
arbitrary initial conditions. A fixed initialization used for the HYDICE data 
worked very well on that dataset, but not so well on the SOC-700 HS (V-
NIR) data, which was collected to address target detection as a collection of 
anomalies observed from a ground level perspective. The problem was that 
using a fixed initialization, the detector could not converge to a solution at 
each tested location in the SOC-700 imagery, so, in order to continue its 
function at those locations, I would have to account for varying initial 
guesses, which of course is computationally too expensive. I developed 
other algorithms based on the same principle of indirect comparison as 
alternatives to the semiparametric approach. 

• Approximation of the Semiparametric Anomaly Detector: I developed an 
alternative detector based on the functional behaviors of the different 
components in the semiparametric test statistic. By defining new functions 
and applying fundamental theorems of large sample theory, I showed that 
under its null hypothesis the new test statistic (AsemiP) also converged in 
law to the same chi square distribution of the semiparametric test statistic, as 
the number of samples increased. I also showed that performance of the 
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AsemiP detector is comparable to performance of the SemiP detector on 
HYDICE data by comparing ROC curves and decision surfaces. Prominent 
advantages of the AsemiP detector over the SemiP detector are that the 
former is free from parameter initialization, computationally less expansive, 
and significantly simpler to implement. Its independence from initialization 
allowed us to test the AsemiP detector on SOC-700 imagery, using as 
references two sets of spectral samples from tree leaves and general terrain, 
as a priori information. The same reference sets were used to test additional 
HS cubes, including a cube having a land vehicle and a standing person 
being almost invisible in the tree shadows. Its results were compared to the 
RX detector (industry standard) and to other conventional detectors on this 
dataset by computing decision surfaces. This experiment showed the 
difficulty of attempting to find manmade objects in natural clutter as a 
collection of localized anomalies in respect to some fixed spectral sets used 
as reference. The results produced by the conventional techniques were 
virtually useless for the intended purpose. The AsemiP detector, on the other 
hand, using the principle of indirect comparison was able to suppress almost 
entirely the clutter background and to accentuate the manmade objects 
(vehicles and a man) in the SOC-700 HS data. 

• F-distribution Anomaly Detectors: I developed a third detector using the 
principle of indirect comparison and large sample theory, as an alternative, 
albeit this time I aimed at using a known property of the F-distribution 
family as a model. Our interest to introduce a detector having an asymptotic 
behavior governed by the F-distribution family was motivated by the classic 
one-way ANOVA, which has a test statistic governed by an F distribution—
exactly, under its null hypothesis and model’s assumptions. The ANOVA 
model uses the normality assumption. I tested both techniques on the 
HYDICE data (forest and desert radiance), computed ROC curves, and 
concluded that their performances are highly comparable to each other on 
desert radiance (sparse vegetation), but the SemiP and AsemiP detectors 
significantly outperformed both F-distribution based detectors at a region of 
extremely low false alarm rate. In the forest radiance data (where region 
discontinuity is quite abundant in the scene), both F-distribution based 
detectors performed comparably to results produced by the SemiP and 
AsemiP detectors, i.e., they significantly outperformed conventional 
detectors. The ANOVA detector yielded significantly more false alarms in 
the forest radiance data at a region of extremely low false alarm rate 
compared to the results produced by the indirect comparison detectors. The 
reason may be arguably attributed to the normality assumption in the 
ANOVA model. This reason may also have contributed to the differences in 
performance between the AFT and ANOVA detectors testing the ground 
view data from the SOC-700 sensor. 

• Asymmetric Variance Based Anomaly Detector: I developed a fourth 
detector, albeit this time I aimed at designing the most compact form to 
implement the notion of indirect comparison. I showed how effective a 
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simple asymmetric hypothesis test (based exclusively on variances) can be 
determining whether random samples are governed by different 
distributions. I tested this detector (AVT) on HYDICE and SOC-700 data 
and compared to other detectors through ROC curves and decision surfaces. 
The AVT detector is simple, elegant, and performs comparably with the 
other indirect comparison based detectors. It significantly outperformed the 
conventional detectors presented in this research. Using both AVT and 
AsemiP detectors, I also showed the result of a proof of principle 
experiment that extended the utility of an effective anomaly detector from 
merely performing a first level of object detection on a HS scene to further 
discriminating these detected objects by their own classes. I named this 
notion self-classification. The notion is that after an anomaly detector tests a 
HS data using pre-stored reference sets of spectral samples, spectral samples 
from the most accentuated anomaly clusters (which can be interpreted as 
taking samples from spatially independent multi-pixel objects) are 
reintroduced to the detector as a new reference set of spectral samples aimed 
at separating these clusters by class. In this context, I showed that in a scene 
consisting of three stationary land vehicles and a standing person, the 
vehicles were classified to belonging to the same class and the person 
classified to belonging to a different class. 

• Impact of Research: The results of our research have introduced novelty in 
the concept and development of algorithms to a difficult problem of 
localized anomaly detection using a passive sensor device. The impact of 
this research is summarized as follows: (i) A principle of indirect 
comparison (i.e. given random samples X and Y, let Z = X U Y and compare 
instead in some form features of the populations of Z and Y) has been 
proposed as novelty to address a computer vision problem; (ii) a 
semiparametric approach has been proposed as novelty to address object 
detection problems in the geoscience and remote sensing, image processing, 
and pattern recognition communities significantly outperforming 
conventional techniques; (iii) alternative techniques have been developed 
using the same principle and shown to perform comparably with the 
semiparametric approach, albeit free from its potential implementation 
drawback ; (iv) the role of anomaly detectors testing digitized scenes has 
been elevated from performing mere screening to performing focus of 
attention in a form that is meaningful to an image analyst; (v) the presence 
of stationary manmade objects under heavy tree shadows has been shown to 
be detectable as a collection of localized anomalies using visible to near 
infrared HS imagery. Philosophically, it has been remarkable to learn 
through this research that a relatively simple set of rules (rules to preprocess 
spectral data followed by rules to test the transformed data) applied locally 
to HS imagery produce spatially independent results, which are not very 
useful independently owing to their atomic nature, but that once they are 
cumulatively assembled in some logical form (e.g., as a 2D surface), they 
produce spatial structures that can virtually agree with an outcome produced 
by the analysis of an image analyst performing a surveillance task in the 
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same data. The most remarkable part is that by default these local rules are 
completely unaware of the global scene, or of the spatial object patterns, 
which is not the case for image analysts. Image analysts use all the 
information (local and global) that they can sense from digitized scenes to 
perform shape analysis and pattern recognition before focusing their 
attention to objects they characterize as meaningful. 

4.2 Limitations 

In this subsection, I focus on foreseeable limitations of the overall approach 
developed in this research. Some of the limitations have been already discussed in a 
previous subsection, such as our decision to use HS imagery rather than broadband 
imagery in order to realize robust object detection in natural clutter background, and 
the dependence of the semiparametric detector on an initial parameter guess. This 
problem was remedied by developing alternative detectors.  

Perhaps the most important limitation in applying our approach to anomaly detection 
is that targets in some background can only be detected, if indeed they are 
detectable—this statement also applies to conventional or non-conventional detectors. 
In other words, the presence of manmade objects, for instance, in some scene can 
only be accentuated using our approach, if in fact samples from these targets have 
measurable differences from samples referred here as references. For example, if a 
soldier is hiding somewhere in a natural foliage background using a camouflage 
sniper suit, which is designed to have similar material spectral characteristics of 
foliage, the camouflaged sniper will certainly be concealed and be able to deceit 
casual or even critical observers of that scene. If manufacturers of camouflaged sniper 
suits are in fact successful achieving their goals, the approach developed in this work 
would not be able to assist an image analyst in this scenario. 

The main strength of our approach using HS data is that it can significantly suppress 
areas in digitized scenes that are characterized by transitions of regions, and it is more 
tolerant to spectral variability of objects belonging to similar classes. I expect this 
strength to be diminished by some measure when our approach is applied to anomaly 
detection problems using broadband imagery, for reasons already discussed in this 
section. But independent of which sensor type is used, our approach should never be 
applied to the so-called subpixel target detection problems. Subpixel targets are 
objects of interest that are smaller than the pixel resolution of the data, given the 
range between target and sensor. A pixel consisting of a subpixel target displays the 
integrated radiances of both target and clutter, thus, our indirect comparison detectors 
may actually suppress the value of such a pixel. 

Another foreseeable limitation is that a sensor, to have a practical value, must be able 
to produce a digitized scene in a rate comparable to that of a video rate (e.g., 30 to 60 
frames per seconds), which is significantly above the rate of the state of the art 
portable hyperspectral sensors (1 to 10 cubes [640 pixels x 640 lines x 120 bands] per 
minute). This fact would impose a major practical constraint attempting to apply our 
approach to an actual surveillance task using a HS camera as the primary sensor to 
collect data. Advances in technology, however, have been occurring in remarkable 
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speeds since the 1990’s, especially in the field of electronic material technology, 
which make us believe that such a limitation will no longer exist in the next few 
years. This concern on HS hardware speed can be also extended to the computational 
time required to execute our approach in hardware. Algorithms that are developed to 
perform detection tasks using HS data are notorious for being slow (taking hours, 
sometimes days to operate on a cube), not necessarily because of the algorithm itself, 
but because of the vast amount of data a HS cube actually represents, i.e., a cube 
represents the same digitized scene as a collection of B images having some size, B 
denoting the number of bands. A method that is often used to reduce the 
computational time of HS algorithms, making then feasible to apply our approach to a 
practical surveillance task, requires instead a compromise between HS and broadband 
sensors. The method is known as band selection, which is briefly discussed in the 
next section. 

4.3 Future Work 

In the future, work is needed to develop more insight into the following: 

• Spectral Band Selection: A method that may be used to circumvent the 
speed limitation issue discussed in this section is to use instead a sensor that 
is a compromise between hyperspectral and broadband, i.e., a sensor that 
collects radiance using only a few spectral bands (e.g., 10), forming in the 
process a multispectral cube. Notice that, by default, a multispectral sensor 
should be able to collect data faster by an order of magnitude or two than a 
hyperspectral sensor can, given the same swath coverage. In addition, the 
computational cost of detection algorithms due to this reduced amount of 
data representing a scene may decrease by the same order of magnitude. A 
key decision, however, that must be made before developing multispectral 
sensors is to determine how many of these frequency bands and which ones 
should feature in these devices. A long list of contributions can be found in 
the literature (see, for instance, [39]) devoted exclusively to answer this 
question. The conclusions of these contributions, however, independently of 
the method applied share explicitly, or implicitly, a common message: It 
depends. It depends on the type of materials one is interested in detecting. It 
depends on the number of material classes one expects to find in the same 
scene, and it depends on the region of the EM spectrum the sensor is 
expected to operate, etc. To follow on with our research, I plan to use a test 
statistic (e.g., AsemiP) as a decision criterion, and also I would like to find 
all types of manmade objects in natural clutter backgrounds to determine the 
minimum number of combination of bands that will maximize performance 
in a HS dataset from a particular sensor (e.g., SOC-700).  

• Randomly Sampling the Scene: It was evident from our discussion using 
imagery from a perspective of the ground level view that I used two 
reference sets of spectral samples obtained a priori for the online operation 
of our detectors. I plan to evaluate different types of random sampling 
techniques to study the effects of eliminating the need for a priori spectral 
information, while attempting to perform the same task. I suspect that some 
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parameter settings may be required, either by the user or already built into 
the detector, to determine the optimum number of samples. This 
determination will require a given set of known parameters (e.g., image size, 
pixel resolution) and a given set of unknown parameters (e.g., expected 
maximum range between targets and the sensor, expected maximum size of 
a target). 

• Self Classification: A proof of principle experiment was presented to show 
the feasibility of using an effective anomaly detector, as a solo discriminant 
engine, to perform both detection and self classification among the detected 
objects. The preliminary results were quite promising, which motivate us to 
pursue this avenue further using additional data and different types of 
materials.         

• Cultural Clutter Backgrounds: Another natural extension of this work is to 
evaluate the behavior of our approach as it attempts to detect the presence of 
certain types of targets (e.g., standing personnel, stationary motor vehicles) 
in an urban scenario, often referred to in the target detection community as 
cultural clutter backgrounds. Thus, I am interested in determining whether 
the introduction of spectral samples from cultural clutter (e.g., painted walls 
of local buildings, sidewalks and asphalt from the streets), as reference 
samples, to our approach would produce a performance level comparable to 
its equivalent performance level on natural clutter backgrounds. I are 
actively searching for such a HS dataset of cultural clutter to perform this 
evaluation.  
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Appendix A.–Asymptotic behavior of the SemiP algorithm 

References are made to models (17)-(18) and to hypotheses (19). Lemma 1A is 
relevant to estimators based on function maximization with respect to unknown 
parameters.    

Lemma 1A [40]. Assumptions: 

(i) Let Θ  be an open subset of the Euclidean K-space. (Thus the true value θο is an 
interior point ofΘ.) 

(ii) QT(y,θ) is a measurable function of vector y for all θ ∈ Θ  and θ∂∂ /TQ  exists 
and is continuous in an open neighborhood N1(θο) of  θο. (Note that this implies 
QT(y,θ) is continuous forθ ∈ N1, where T is the sample size.)   

(iii) There exists an open neighborhood N2(θο) of  θο such that T -1 QT(θ) converges 
to a nonstochastic function Q(θ) in probability uniformly in θ in N2(θο), and 
Q(θ) attains a strict local maximum at θο. 

Let ΘΤ  be set of roots of the equation              
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corresponding to the local maxima. If that set is empty, set ΘΤ equals to {0}. Then, for 
any ε >0, 
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In essence, Lemma 1A affirms that there is a consistent root of (1A). (For the proof, 
see [40]. Under certain conditions, a consistent root of (1A) is asymptotically Normal. 
The affirmation is shown in Theorem 1A, where asymptotic convergence is denoted 
by BA → . 

Theorem 1A [40]. Assumptions: 

(i) All the assumptions of Lemma 1.  

(ii) '
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Let }ˆ{ Tθ  be a sequence obtained by choosing one element from ΘΤ defined in 
Lemma 1 such that .ˆ

0θθ →T   

Then ( )    ),,0(ˆ 0 whereNT T Σ→−θθ  (5A) 
 .)()()( 1

00
1

0
−−=Σ θθθ SVS  (6A) 

For the proof, see also [40].  

The semiparametric model’s MLE solution satisfies the assumptions of Lemma 1A, 
including of course (1A) via (27). Therefore, by Lemma 1, ML estimators α̂  and β̂  
are consistent and, as I shall see by Theorem 1A, it converges asymptotically to a 
Normal distribution. 

Under H0: β = 0 (g1=g0), I shall use the following notation for the moments of t (the 
union of the samples x0 and x1) with respect to the reference distribution g0: 
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Let (α0,β0) be the true value of (α,β) under model (17)-(18) and assume ρ = n1/n0 

remains constant as both n1 and n0 go to infinity. Define  ( ),α β
∂ ∂
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  and notice 

from (27) that ( )0 0, 0E l α β⎡ ⎤∇ =⎣ ⎦ . Under the null hypothesis (H0: β= 0 [g1 = g0]), 
using (18), (26), (27), and (7A) one can verify that 
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where K1 and K2 are constants involving (n1,n0) and ρ/(1+ ρ)  =  n1/n (where  

n = n1+ n0. Using similar argument to arrive at (8A) and the application of WLLN, 
one can use assumption (iii) in Theorem 1A to recognize that 
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in probability as ∞→n   It follows that S is nonsingular and its inverse is 
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Our interest is only in the parameter β, so, let Sβ denote the lower-right component of 
the expanded version of S –1 and use (7A) to obtain 
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Using also the application of CLT in Theorem 1A (iv) and the fact that 

 [ ] ,0),( 00 =∇ βαlE  (12A) 
from (27), one can write 
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V(α0,β0) is a direct result from (4A), see, for instance, [28]. Using the conclusion of 
Theorem 1A, or (5A)-(6A), in terms of Sβ in (11A) and the lower-right component of 
the expanded version of V(α0,β0) in (14A), I can conclude that 

 ( ) ,
)(

)1(,0ˆ
21

0 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
⎯⎯ →⎯−

−

∞→ tVar
Nn n

ρρββ  (15A) 

and having the left side of (15A) normalized by the asymptotic variance and then 
squared, one can conclude that the  resulting random variable 
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converges to a chi square distribution with 1 degree of freedom, where )(ˆ tV  
estimates Var(t). A multivariate solution is presented in [27]. ⁯ 
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Appendix B.–Asymptotic Performances of Detectors SemiP and 
AsemiP 

To complement our analysis between detectors SemiP and AsemiP, I took a closer 
look at the performances of (28) and (46), under their corresponding null hypotheses, 
and display our results in figure 1B. Recall that under these null hypotheses (and 
having assumptions not grossly violated), the random outcome of both SemiP and 
AsemiP detectors should converge to a chi square distribution with 1 dof, as the 
number of samples increases to infinity. I checked for this behavior by empirically 
estimating the pdf using values from both output surfaces and comparing it to an 
empirical distribution obtained from independent realizations of an equivalent 
number of random samples from a chi square pdf with 1 dof. (MATLAB™ software 
was used to generate the chi-square samples.) To achieve our goal, I only used 
samples from the SemiP and AsemiP surfaces with values less than 5.0—about 2,200 
samples from each surface—since the probability of obtaining the realization of chi-
square (1 dof) random variables above this value is less than 0.001. Results are shown 
in Fig. 1B in the form of bar plots (empirical pdf obtained from samples of the SemiP 
and AsemiP surfaces) and line plots (empirical pdf obtained from a set of 2,000 
independent chi-square realizations, with 1 dof). 

Figure 1B shows a remarkable agreement between the empirical distributions of 
SemiP and AsemiP for output results below 5.0; it also shows an even more 
remarkable fit of their asymptotic behaviors to the chi-square distribution with 1 dof, 
as it was predicted from both theories, under their null hypotheses and idealized 
assumptions. The quality of those fits gives also a vote of confidence to our choice of 
suitably transforming highly spatially/spectrally correlated HS data with the 
applications of a HPF (or first order differentiation in the spectral domain) followed 
by SAM (or angle difference in the spatial domain) to promote statistical 
independence in HS data for a test statistic that do not assume normality. 
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Figure 1B. Asymptotic behaviors of detectors SemiP and AsemiP. 
The bar plots represent the empirical distributions of samples from 
the SemiP and AsemiP output surfaces. The line plots represent the 
empirical distribution obtained from 2,000 independent realizations 
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