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1. Introduction 

The quasicontinuum (QC) method is commonly employed to solve a wide variety of multiscale 
problems (1–6).  Typically, problems of interest are those involving a small number of defects 
such as dislocations, a crack, or grain boundary interactions (7).  Unconstrained optimization 
constitutes the key computational kernel of this method (8–11).  In this research, the objective is 
to study minimization solvers in order to optimize computational performance.  Due to the 
implicit solution nature of the QC method and the predominant nonconvex nature of the potential 
energy surface with vast numbers of metastable configurations, one needs to use an effective and 
efficient iterative minimization solution technique.  The efficiency of the techniques depends on 
the time needed to evaluate the energy expression and the number of iterations needed to 
converge to the minimum.  In this context, a minimization iteration is defined as an iteration 
when the direction vector is updated.  Iterations should not be confused with function evaluations 
nor the iterations involved with the linear equations solvers within the minimization framework.  
In this report, iterative solution techniques are explored for the local/nonlocal variant of the QC 
method (4) for the two-dimensional (2-D) situations.  The fully nonlocal QC method with 
variable clusters (12) will be employed in a companion report for three-dimensional (3-D) 
situations. 

Three popularly used unconstrained optimizing methods are steepest descent (SD), nonlinear 
conjugate gradient (NCG), and Newton-Raphson (NR) methods.  Compared to the SD method 
(13), NCG methods (8, 14, 15) and the NR method (16) converge considerably faster.  Compared 
to the NCG method, the NR method converges even faster as it employs the curvature of the 
objective function, in addition to the gradient information, to predict a search direction during the 
minimization iterations.  However, due to the use of the second derivative of an objective 
function (i.e., Hessian matrix), the NR method suffers from two drawbacks.  First, in each 
iteration, the search direction is obtained by solving the Newton equations, which have  
computational complexity when employing factorization-based direct solvers.  Secondly, the 
Hessian is a dense matrix where the storage complexity is .  Alternatively, variants of the 
Newton method are available such as the quasi-Newton (QNR) and the truncated Newton 
methods (TNR).  In TNR, a truncated strategy is used such that only an approximate solution to 
the Newton equations (16–25) is provided.  The basic idea behind the QNR method follows from 
the NCG method by employing the gradients information of previous minimization iterations 
within the Newton framework, thereby avoiding a Hessian calculation.  The TNR method differs 
from the QNR method in two aspects.  First, an iterative method is employed for the solution of 
the line search direction.  Second, the Hessian is not computed from previous gradient 
information.
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Among these four minimization methods, the NCG and the NR methods are currently 
implemented for the local/nonlocal variant of the QC method found at qcmethod.com for 2-D 
situations.  In this research, we examine the performance differences for two additional solver 
methods.  We report the effectiveness of the TNR method with the conjugate gradient method for 
truncating the search direction and QNR method with low-rank Hessian update strategies used 
for computing the Hessian that are evaluated against the NR and the NCG methods.  Results of 
illustrative examples mainly focus on the number of iterations and CPU time for the 2-D 
nanoindentation and shearing grain boundary problems. 

The remainder of this report is organized as follows.  In section 2, we review the basic equations 
and concepts related to the local/nonlocal variant of the QC formulation for the calculation of 
gradients and Hessians.  In section 3, the four iterative solution techniques considered in this 
report are overviewed.  Through these solvers, the objective is to determine the stable 
equilibrium configurations of a deforming crystalline material.  In section 4, the result findings 
of the TNR method and QNR with low-rank Hessian update strategy are evaluated against the 
NR and the NCG implementation.  Concluding remarks in section 5 follow. 

2. Quasicontinuum Method 

The two key components required for the minimization process are the gradient and Hessian 
computations.  Over an energy landscape, the minima are identified as the lowest local point.  
When the state of the system is not co-located with a minimum, in a linear strategy, the 
minimum can be sought by following a combination of the local direction of the topology (i.e., 
the gradient and its local curvature, the Hessian).  The gradient and Hessian are directly 
determined from the respective first and second gradients of an energy function.  In this section, 
the local/nonlocal QC formulation is overviewed as it provides the energy function for our work.  
In section 2.5, the gradient and Hessian specific to this function is presented.  As this report is to 
be self-contained, only those elements of the QC formulation vital to our discussion are 
presented.  For further details, readers are referred to Shames and Dym (4). 

2.1 Energy Framework 

Figure 1a shows the computational framework of a typical QC simulation.  In each load step, 
both the load-increment and resultant deformation are considered finite but small.  Therefore, a 
Lagrangian description is used to formulate the kinematic behavior of the crystal.  The heart of 
the QC method is the formulation of the total potential energy as an ensemble of a function 
whose independent variables are atom and finite-element (FE) nodal coordinates.  The ground 
state (or state of static equilibrium) at zero temperature is found by minimizing the total potential 
energy or, equivalently, finding the zero out-of-balance force values of the following: 

 (1) , 
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Figure 1.  (a) Iterative process of quasicontinuum formulation and (b) local and 

nonlocal framework:  black-filled circles are interface atoms shared by local 
and nonlocal regions; gray-filled circles are atoms selected as elemental 
nodes in local region; white-filled circles in the local region are formulated 
using kinematic constraints. 

where the displacement of the representative atoms  is incurred by the incremental 
external force ( ).  Here, N is much smaller than the total number of degrees of freedom of the 
whole ensemble if the ensemble were comprised only of atoms, and  and  are the reference 
and deformed atomic coordinates, respectively.  The total potential energy can be further 
represented as: 

  (2) 

where E is the strain energy of the crystal.  As illustrated in figure 1b, the crystal is divided into 
two regions—a local (continuum) region and a nonlocal (atomistic) region.  Thus, the target 
strain energy function may be additively decomposed into local and nonlocal components as 
follows: 

 
  (3) 

Here, ,  are labels for the local region, nonlocal region, interface nodes, and 
transition area nodes (6), respectively.  It is noted that  and the transition area nodes 
provide a seamless coupling between local and nonlocal regions, and , and are the 
associated degrees of freedom of the regions , ,  and , respectively.  The first three, , 

, and constitute the different components of , while is derived from  by using 
kinematic constraints.   is computed at the element integration points and  at the nodes.  
Figure 1b further illustrates that within the nonlocal (atomistic) region, a fully atomistic 
description is used to accurately depict the defect of the crystal.  In addition, within the local 
(continuum) region, only a small number of atoms (representative -) are selected to describe the 
local material properties used in the FE method.  In the end, it should be remarked that the 
partition of the ensemble is not fixed.  An adaptive partition strategy is required to obtain an 
accurate description of the ensemble.

, 
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2.2 Atomistic Framework 

In this work, the energy is formulated from the embedded atom method (EAM), which takes the 
atomic coordinates as direct input (17).  In the nonlocal region, there is a one-to-one 
correspondence between nodes and atoms.  Therefore, the energy of the nonlocal region is 
identical to a fully atomistic region.  In the local region, where there is a smaller number of 
nodes than atoms, the energy over all atoms is determined by a kinematic approximation of atom 
deformation.  By interpolating some of the atoms (i.e., those atoms that are not nodes), the strain 
energy is a locally constrained homogeneously deformed system.  This kinematic approximation 
is known as the Cauchy-Born (CB) rule, which postulates that when a monatomic crystal is 
subjected to a small linear displacement of its boundary, then all atoms will follow this 
displacement (shown in figure 2).  

B 1

B 3
B 2

undeformed lattice deformed lattice

F

FB

FB

FB3

2

1

 

Figure 2.  CB rule which transforms the reference lattice into homogeneously deformed 
(unified deformation gradient tensor F) lattice. 

Like other empirical atomistic models,  can be approximated as the sum of the energies 
contributed from individual atomic sites (summation rule), i.e.,  

 
 (4) (4) 

 
Here,  is the site energy of  as computed using the EAM potential: 

  (5) 

where 

  (6) 

 
and 
 .  . (7)

, 

. 
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The embedding energy  is the energy associated with placing an atom in the electron 
environment described by local electron density , and  is the interatomic 
distance.  The pair-potential  describes the electrostatic contributions of core ions, and  is 
the radius of the cutoff sphere.  The cutoff is introduced to limit the number of modeled  
pair-wise interactions, which effectively truncates longer range interactions and accelerates the 
convergence of the sum.  Assuming that there are  neighboring atoms inside the cutoff sphere 
of atom , the deformed relative position of atom i near atom  is as follows: 

 
  (8) 

 
If atom i is located in the transition or local region (shown in figure 2), u i

β  is formulated using 
the following kinematic constraint: 

  
(9) 

Here,  is the displacement of representative atom , and  is the FE shape function.  It 
follows that 

 (10) 
 

where  is the number of atoms represented by atom .  Since a full atomistic strategy is 
employed to formulate the nonlocal region, we choose . 

2.3 Continuum Framework 

The strain energy related to local region  is computed by summing the potential 
energy of all elements within the local region as follows: 

 (11) 
 
where 

 (12) 
 
In these two formulae, M is the number of elements within the local region and  is the strain 
energy density depending on , a deformation gradient tensor of element e.  Equation 12 is 
derived in accordance with the CB rule.  Implied in equations 10 and 12 is that the present 
energy measures changes relative to the equilibrium lattice energy of the crystal such that the 
strain energy at zero deformation (Fe = I) in equilibrium is zero.  The elemental deformation 
gradient tensor 

. 

, 

. 

, 

. 
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  (13) 

describes the local and homogeneous stretching and rotating of element e.  According to the 
principle of the FE method (26, 27), the displacement field of the element is formulated by using 
the following relation: 

 
  , (14) 

 

where  is the number of nodes per element,   is the shape function related to elemental 
node k, and  is the displacement of node k.  Consequently, 

 
  , (15) 

 
where  is the tensor product.  Furthermore, using a specific numerical integration method, it 
follows from equation 11 that 

  , (16) 

 

which is evaluated at the quadrature points, and where  is the total number of atoms inside 
element e. 

2.4 Coupling Atomistic and Continuum 

The interface between local and nonlocal regions is nontrivial.  For seamless joining between 
atomic and finite-element method (FEM) regions, the FEM region must have an internal atomic 
structure such that:  (1) the assumption that strain in each element is homogeneous is reasonable, 
(2) elements have a scale, and (3) element corner nodes ( ) are positioned on one of the atoms.   

For each element, the work involved is as follows:   

• Construct deformation gradient for this element.  

• Pick a representative atom in the element.  

• Calculate the energy per atom using the atomistic model. 

• Assign energy to the element. 

The link between atomistic and continuum material simulations requires a procedure for 
determining the nonlinear elastic continuum response of a material with a particular atomistic 
representation.  The continuum response should match the results produced by discrete lattice 
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simulations at near atomistic length scales, while allowing more efficient simulation at larger 
scales through the application of the nonlinear continuum theory (28). 

In general, particularly in the presence of lattice defects, the deformation cannot be assumed to 
be uniform at scales approaching lattice dimensions, even for infinitesimal deformations.  The 
quasicontinuum procedure introduces degrees of freedom into the stored energy expressions 
which modify the computed constitutive properties to give better agreement with experimentally 
determined values.  Following equations 10 and 16, it is derived that 

  
, (17)

 

where  is the weight function related with representative atom .  In general, the interface 
between local and nonlocal atoms does not preserve force symmetry because atoms in local 
elements do not feel nearby nonlocal atoms, though nonlocal atoms do feel nearby local 
elements.  As a remedy, the so-called ghost force correction is employed.  To this end, the 
energy function is rewritten as follows: 

  . (18) 

2.5 Formulation of Gradient and Hessian 

In order to obtain the equilibrium configuration of the solid, unconstrained minimization of the 
potential energy  is required.  Therefore, the corresponding gradient  and sometimes 
Hessian  have to be computed. 

2.5.1  Analytic Formulation of Gradient 

Using the chain rule, it follows from equation 18 that 

  
, (19) 

where  is the first Piola-Kirchhoff stress tensor.  Using 

  (20) 

where  is the element centroid, it follows that 

  . (21) 

Similarly, 

 , , (22) 

where  is the Kronecker Delta.  As a result, the out-of-balance nodal forces are computed by 
the following:

, 
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 (23) , (23) 

 

where  is the first Piola-Kirchhoff stress tensor and  is the element centroid. 

2.5.2  Analytic Formulation of Hessian 

Based on the gradient in (17), it can be further obtained that 

  (24) 

where  is the Lagrangian tangent stiffness tensor,                 is the atomic level stiffness 
matrix, and  is the first Piola-Kirchhoff stress tensor.  It is also useful to note that the 
general lack of symmetry in forces due to conjoined local/nonlocal domains, in the absence of 
correctively applied ghost forces, also translates to asymmetry in the Hessian.  To demonstrate 
this, we refer to the following equations: 

 
  , (25) 

and 

 . (26) 
 

It can be shown that the partial derivative  is zero.  However, 
the same is not true for the transpose 

  , (27) 

 
where the only nonzero term in the summation is when .  Since, in practice, , and 
based on the model in figure 2, , we may simplify equation 18 
as follows:  

  . (28) 

 

, 



 9

3. Solvers for Unconstrained Optimization 

In this section, the TNR and QNR methods are presented.  The NCG and the NR methods are 
also briefly reviewed. 

In order to obtain the equilibrium configuration of the solid, unconstrained minimization of the 
total potential energy Π (d) needs to be performed.  From the discussions in the previous 
sections, we have gradient g (equation 23), the Hessian H (equation 24, referred as G before), 
and approximate inverse (B) of the Hessian.  Then a general minimization iterative solver 
framework for unconstrained minimization can be described by algorithm 1.  It is evident from 
this algorithm that if only the gradient is available, then QNR (29), steepest descent, and NCG  
(30, 31) are applicable.  While the NR method has better convergence properties, the 
computation of an exact H is time-consuming and may require large amounts of storage for 
large-scale problems.  In algorithm 1, convergence is said to occur if ||gk|| < ε is achieved. 

 
•Algorithm 1:  General iterative solver framework for minimization. 

 

 
3.1 Nonlinear Conjugate Gradient Method 

The nonlinear conjugate gradient method is of the following form: 

   (29) 

 
where αk >0 is the step length and dk is search direction.  Normally, the search direction at the 
first iteration is computed employing the steepest descent direction, namely, d0 = −g0.  The other 
search directions can be defined recursively as follows: 

 . . (30) 

,



 10

Nonlinear conjugate gradient methods use search directions that combine the negative gradient 
direction with another direction, chosen so that the search will take place along a direction not 
previously explored by the algorithm.  For the linear problems, the function minimizer is found 
exactly within just n iterations, thus performance is always predictable.  For nonlinear problems, 
performance is problem dependent, but these methods have the advantage that they require only 
gradient evaluations.  Memory requirements are minimal, making this a popular class of 
algorithms for large-scale optimization.  Among common implementations, such as the Fletcher-
Reeves, Polak-Ribiere, and Hestenes-Stiefel methods, the Polak-Ribiere nonlinear conjugate 
method appears to have the best convergence performance (described in algorithm 2).  

•Algorithm 2:  Polak-Ribiere conjugate gradient with given tolerance ε: 

 
 

3.1.1  Line Search Algorithm 

Define  where d and u are given.  This potential energy can be redefined as a 
single variable function as , which transforms  into the 
minimizing problem .  Commonly used line-search methods are the NR method 
(where  is needed) and the backtracking approach (9). 

3.1.2  Backtracking 

The step length control in the line search algorithm is mainly governed by the Wolfe conditions, 
which first requires that to avoid over-approximating the step length , 
where , which is based on the sufficient decrease condition.  Secondly, to avoid under-
approximating the step length, a condition is placed on the curvature and is given by 

, where .  A backtracking line-search method is described 
in algorithm 1. 

•Algorithm 3:  Backtracking line search:  given  and  
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Statement (3) in algorithm 3 is implemented via the bisection method, gold section, or 
polynomial interpolation method (9).  In our study, three point cubic interpolation methods are 
employed and are described briefly.  Assume  that satisfy  

, , and .  Then, 
, where 

 
  (31) 

 

and .  Using  such that  is minimized, it follows that 

. 

3.2 NR Methods 

For efficient and robust implementation of the NR methods, the following issues are critical:  

• To make the method converge toward a local minimizer, the Hessian  has to be positive 
definite to guarantee the search direction  a descent direction, i.e., .  The NR 
method is not necessarily globally convergent, meaning that it may not converge from any 
starting point.  The current guess  should be sufficiently close to  so that the 
truncation error in equation A-1 of the appendix is negligible.  In such case,  will 
converge to  at a quadratic rate, i.e.,  where  is a positive 
constant. 

• In large-scale problems, the computation and storage requirements of the Hessian may 
become substantial.  This can be handled by either using the diagonal terms in the Hessian, 
i.e., ignoring the cross terms, or avoiding recalculation at each iteration (can be done in 
instances of slow variation of the second derivative). 

• The backtracking line-search scheme is recommended in the Newton-Raphson algorithm, 
i.e., in the full Newton step.   is tried first.  If these steps fail to satisfy the criterion for 
the decrease of the function, backtrack in a systematic way along the Newton direction.  
The advantage of doing this is that fast convergence of the NR method will be obtained as 
the solution gets closer to the minimum. 

3.2.1  Numerical Formulation of Hessian 

Figure 3 illustrates several strategies in computing the Hessian (or the inverse of Hessian)  
(16–25), which are categorized into three branches of numerical methods.  These are the analytic 
method, the difference method, and the low-rank update method.  The formulation of the analytic 
(exact) Hessian is given by equation 24.  In this section, we discuss only the low-rank update 
method. 
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Analytic Method Difference

Numerical Strategy to Form Hessian

Central Diff.

Forward Diff. Backward Diff.

Low Rank Update

Variable Metric Method

Gill−MurryBFGS

PSB DFP

Symmetric Rank−one

LBFGS  

Figure 3.  Numerical methods to formulate Hessian matrix. 

3.2.2  Low-Rank Update Method 

A low-rank update method (10, 32, 33) builds up an approximation to the Hessian by keeping 
track of the gradient differences along each step taken by the algorithm.  Various conditions are 
imposed on the approximate Hessian.  For example, its behavior along the step just taken is 
forced to mimic the behavior of the exact Hessian, and it is usually kept positive definite.  Given 

 as an approximation to the Hessian , the low-rank update method iteratively updates 
this matrix by incorporating the curvature of the problem measured along the step according to 
the following secant condition (or Quasi-Newton condition): , where 

.  Table 1 lists four commonly used low-rank update 
methods.  Broyden-Fletcher-Goldfarb (BFGS) is generally considered to be the most effective 
variable metric method.  

In many applications, an inverse approximate Hessian   is more commonly used.  
Table 2 lists four commonly used rank-2 approximate inverse Hessians, which are formulated 
subject to the following secant condition: . 

3.2.3  Convergence of the NR Method Based on Iterative Solver 

Let  be a sequence converging to .  The convergence about the associated gradient is 
linear, super-linear, and quadratic if there exists constants  and  such that 

  
, (32) 

 

  
, (33)
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Table 1.  Approximate Hessian computed from previous iteration gradient information. 

Broyden-Fletcher-Goldfarb (BFGS) 
 
.
 

Powell-Symmetric (PSB) 

 

Davidson-Fletcher-Powell (DFP) 

 

where 
 

SR1 (Symmetric Rank-1 Update ) 
 
.
 

 

Table 2.  Rank-2 update approximation of Hessian inverse. 

BFGS 

 

PSB 

 

DFP 

 

Gill and Murray 

 

 
and 

  
. (34)

 
 
Theorem 1 in the appendix shows that the truncated NR method converges at a super-linear rate.

. 

. 

. 

. 

. 

. 
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3.2.4  Implementation of the NR Method 

In our work, the NR method is utilized and described by algorithm 2. 
 
•Algorithm 4:  Newton-Raphson algorithm with given tolerance :  

 

(1)  Initialize  
(2)   
(3)  FOR  DO 
(4)     /* line search */ 
(5)   ; 
(6)   update  
(7)   IF ( ) THEN exit; 
(8)    /* search direction */ 
(9)   ENDFOR 

 
Two variants of NR strategies are:  (1) a standard NR strategy where the Newton equations are 
solved using the direct method, i.e., LU factorization, and (2) a truncated NR method, where the 
Newton equations in statement (8) of algorithm 2 are solved approximately by preconditioned 
conjugate gradient algorithm (PCG). 

 
•Algorithm 5:  A preconditioned conjugate gradient solver for Gd = g, where the initial guess  

about the solution is given and C is the given preconditioner comprises algorithm 3. 

 

(1) ; ;  
(2) FOR   till Convergence DO  /* Krylov Iteration */ 
(3)  

 
(4)   /* update solution */ 
(5)   /* update residual */ 
(6)   /* preconditioning */ 
(7)  

 
(8)   
(9) END FOR 

 
Using the Hessian matrix, the optimal search direction can be obtained in the NR method.  
However, the  memory requirements and   associated with solving a linear system 
involving a Hessian restricts the NR methods only to (1) small-scale problems, (2) problems with 
special sparsity patterns, or (3) near a solution.  As a remedy, Quasi-Newton, discrete Newton, 
and truncated Newton methods arise.  The principle of these alternate methods is to obtain an 
approximation to the inverse of the Hessian matrix, i.e., , to obviate the difficulties 
that accompany its calculation and storage.  One may also perform a nontrivial port of the NR 
method onto distributed computer systems using representative-atom-based, domain-
decomposition methods.  In light of these difficulties involving the Hessian, an out-of-core 
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truncated NR strategy is implemented and tested.  This truncated Newton method is based on the 
idea that an exact solution of the Newton equation at every step is difficult and unnecessary and 
can be computationally wasteful in the framework of a basic descent method.  The defining 
feature is that the search direction d in the truncated Newton algorithm is computed using 
algorithm 6.  While employing conjugate gradients (34) to approximate the search direction, the 
resulting convergence rate of algorithm 6 is strongly dependent on the condition number of .  
Among various methods, the preconditioning based on incomplete Cholesky factorization (34) 
has the best convergence performance.  However, considering the large dimension of QC 
simulations and truncated nature of the search direction, only a diagonal-scaling preconditioner 
is often needed.  This is the preconditioning approach employed in this work. 

 
•Algorithm 6:  Generating search direction d in truncated Newton method: 

 

(1)   Initialization: 
(2)   
(3)   
(4)  Iteration:  
(5)  FOR ( ) DO 
(6)  /* Section(1): negative curvature test */ 
(7)  IF  ( ) RETURN 
(8)  /* Section(2): truncation test */ 
(9)  

 
(10)   
(11)   
(12)  

 
(13)   RETURN 
(14)  

IF  
(15)   
(16)  ENDFOR 

  

4. Numerical Experiments and Results 

The deformation of crystalline materials is commonly studied based on lattice mechanisms and 
boundary mechanisms.  In the lattice mechanisms, deformation occurs by processes taking place 
within the grains.  In the boundary mechanisms (7), deformation occurs by processes associated 
with the presence of grain boundaries.  Grain boundary sliding and diffusional creep are two 
major processes of boundary mechanisms.  The NR, NCG method, QNR, and TNR methods are 
employed to simulate these two problems.
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4.1 Shearing Grain Boundary 

The grain boundary is comprised of two twins connected through an angled domain wall.  The 
shearing boundary conditions are applied at the upper and lower boundaries.  Lateral boundaries 
are connected through periodicity conditions.  This problem is merely used as a test for 
convergence properties of the various solution algorithms.  A grain boundary sliding process (7) 
employing the TNR method is demonstrated in figure 4.  The solutions exactly match with the 
results of the NCG and NR methods found on qcmethod.com. 

 

 

Figure 4.  Sliding of grain boundary:  (a) 1st load step, (b) 4th load 
step, (c) 7th load step, and (d) 11th load step. 

 
Figures 5–7 compare the performance of the NR, NCG, and TNR methods.  In this report, the 
NR method is based on LU factorization (direct solver, available in qcmethod.com) and PCG 
iterative solver (algorithm 3, implemented).  A convergence tolerance for the PCG is said to be 
reached once the following condition is met: 

  , (35) 

where ε =10–7, 10–3, 10–2, 10–1 are employed in our numerical experiments for TNR method and 
r is the residual in the PCG solution iterations.  In our implementation, a diagonal scaling 
preconditioner is used to accelerate the convergence of PCG.  Figure 5 shows that the number of 
required Newton iterations increases with the increase in the convergence criteria selected for the 
approximate search direction solver (PCG).  In the limit, as the convergence criteria is decreased, 
the TNR method reduces to the NR method while, on the other hand, it will incur more inner  
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Figure 5.  Number of minimization iterations for NCG, NR, and TNR for shear grain boundary 

problem for 10th load step. 

 
Figure 6.  CPU time for NCG, NR, and TNR for shear grain boundary problem. 

 
Figure 7.  Time cost per minimizing iterations for TNR and NCG and number of iteration of 

linear conjugate gradient for the TNR for shear grain boundary problem.
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PCG iterations.  Figure 6a and b shows the CPU time for the four methods considered.  It can be 
seen that for small PCG convergence tolerance (less than ε = 10–7) and larger PCG convergence 
tolerances (> ε = 10–1), the CPU time is greater than the NR method.  For tolerance between  
10–7 < ε < 10–1, the CPU time is less than the NR method.  In all the cases, the CPU time is less 
than the NCG method.  The NR and TNR methods reduce the number of nonlinear iterations by 
orders of magnitude.  Figure 7 shows that the NR method takes about 66 s per iteration and NCG 
only takes 0.5–1.4 s per iterations. 

4.2 Simulation of Nanoindentation 

In nanoindentation, a nanometer scale indenter is pushed at constant speed from a given height to 
a given depth into the material (loading), and is subsequently retracted to its original position 
following the same path (unloading).  For single crystals the measured load-displacement 
response, which shows the force required to push the tip a certain distance into the substrate, 
shows characteristic discontinuities.  A sequence of deformation of the simulations is shown in 
figure 8.  Figure 9 shows performance comparisons of the NCG, NR, and the QNR methods.  
From the figure, it is clear that the QNR performance is almost the same as the NCG method.  
Figure 10 shows the convergence performance of the NR, NCG, and TNR methods with respect 

 

 

Figure 8.  Nanoindentation problem:  (a) 15th load step, (b) 20th load step, 
(c) 25th load step, and (d) 30th load step. 
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Figure 9.  Performance comparison of the NCG, the NR, and QNR 
based rank-2 update Hessian for 10th load step of 
nanoindentation problem. 

 

Figure 10.  Convergence by nonlinear iteration for nanoindentation:  (a) initial load step; (b) stage 1 of 1st load step; 
(c) 2nd load step; (d) 3rd load step; and (e) 4th load step; NR–PCG = TNR.
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to various stages of the indentation process.  It can be seen that NCG takes the largest number of 
iterations followed by TNR, with ε = 10–2 and with ε = 10–3 during the initialization stage,  
1st load step and 10th load step.  Further, figure 11 shows the CPU times of the NR and NCG 
methods for various load stages.  It can seen again that NCG takes most CPU time followed by 
the TNR method, with ε = 10–2 and with ε = 10–3 during the initialization stage, 1st load step and  
10th load step.  This is same performance as in the case of shear grain boundary problem 
considered previously. 

 

 

Figure 11.  Convergence by timing cost (s) for nanoindentation:  (1) initial load step; (2) stage 1 of 1st load step; 
(3) stage 2 of 1st load step; (4) stage 1 of 10th load step; (5) stage 2 of 10th load step, and (6) 5th load 
step; NR–PCG = TNR. 

 

5. Conclusions 

In the context of the two example problems studied in this report, we can reasonably conclude 
that the NR methods are more efficient than the NCG methods.  However, the computational 
cost incurred for a full Newton method, in which the Hessian is recomputed and stored at every 
instance, can be prohibitive in general.  A truncated Newton method may therefore be employed 
with a careful selection of the convergence tolerance such that the search directions are predicted 
with reasonable accuracy.  Many complexities left unconsidered in this work still remain.  First, 
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the nature of atomic forces and interactions are highly nonlinear with respect to atomic 
coordinates.  Thus, in implicitly solving for quasistatic configurations of the material, the 
performance of matrix methods that are founded on linearization principles heavily depend on 
the condition of the material, namely its proximity to a minimum.  Such approaches are therefore 
intrinsically unsuitable for capturing the “nonconvex” issues involved in atomistic problems.  
Indeed, one can identify states of deformation that result in instantaneous negative-definite 
configurations of atoms that violate the presumptions needed to employ linear solvers.  Thus, the 
“region of viability” of linear solvers can be rather small in the overall energy landscape of 
possible solutions, and methods such as the proposed TNR method may suffer significant 
limitations in general problems.   
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Appendix.  Supporting Derivations 

A.1  Derivation of Newton-Raphson (NR) Method 

The NR method is based on a quadratic approximation to the given function  in each 
minimization iteration.  The Taylor expansion yields the following:   

 
(A-1) 

where both gradient  and Hessian  are evaluated at .  By ignoring the truncation 
error, it follows from equation A-1 that 

 
(A-2) 

Mathematically,  is always symmetric if  is twice continuously differentiable around , 
resulting in 

  
(A-3) 

According to the necessary condition of minimization, it is known that  is a symmetric 
positive definite (SPD) matrix.  Assuming that  is the minimizer, then 

  
(A-4) 

which leads to the following Newton equation: 

  (A-5) 

As a result, NR is obtained by defining the search direction  as , 
and the step length  is set to be 1.0 by default due to the existence of truncation error in 
equation A-1.  A line search is still required to find an appropriate .   

A.2  Difference Hessian 

The difference Hessian method is evaluated for a large scale three-dimensional situation in the 
companion report, which approximates the elements of the Hessian using a finite differencing 
technique, and is motivated by Taylor’s theorem.  When the second derivatives of objective 
function  exists and are Lipschitz continuous, Taylor’s theorem implies the following: 

, 

. 

. 

, 

. 
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  (A-6) 

where “.” is scalar product.  By substituting 

  (A-7) 

it follows that 

  
(A-8) 

Similarly, let  where  be a small increment such that we obtain the following: 

  
(A-9) 

According to equations A-8 and A-9, an approximate Hessian can be formulated using the 
following central difference method: 

 
 (A-10) 

Let B be the approximation of G by ignoring the truncation error, i.e., 

  
(A-11) 

Then the difference Hessian method is easily formulated and suitable for parallel computing 
(each element of the Hessian is formulated independently).  In addition, it only requires the 
numerical evaluation of the gradient g. 

Theorem 1:  Convergence Rate of TNR: Assume that  

1.  is continuously differentiable in a neighborhood of , a local minimizer 
of . 

2.  is nonsingular and that  is Lipschitz continuous at .  Then the truncated 
NR method (see references 16–25 in section 6 of this report), based on an iterative solver, 
has a super-linear convergence rate. 

3. The truncated NR method is employed to find , i.e., the search direction  is obtained 
by solving the following Newton equation: 

  (A-12) 

with the following convergence criterion: 

  (A-13)

, 

, 

. 

. 

, 



 27

where  is the accuracy tolerance, then   

  
(A-14) 

Proof:  Let  be SPD and assume there exists a constant  for all  that is sufficiently 

close to .  Thus, it follows from equations A-12 and A-13 that 

  (A-15) 

According to the Taylor’s expansion about the gradient ,  it follows that 

  (A-16) 

Thus, using equation A-13, it follows that 

  (A-17) 

As a result, if  is sufficiently close to , then equation A-14 holds. 

 
 

. 

. 

. 
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