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1. Introduction 

Predicting the moment attributable to a liquid payload in a spinning and coning projectile is a 
problem of considerable interest to the Army.  Stewartson (1) was first to consider inviscid pay-
loads contained in a right circular cylinder, and his results gave coning Eigen frequencies that can 
possibly cause catastrophic yaw for a liquid-carrying projectile.  First order viscous boundary layer 
corrections of the Stewartson theory were made by Wedemeyer (2) and Murphy (3).  A method for 
calculating the linear liquid moment using the full linear viscous equations with boundary layer 
corrections confined only to the end caps (candlesticks) was presented by Hall, Sedney, and 
Gerber (4, 5).   

A further interest to the army is to consider a series of uniform circular cylinders stacked end to end 
separated by impenetrable end caps.  These candlesticks may be situated along the symmetry axis 
or offset from this axis but parallel to the symmetry axis of the projectile.  Coning motion-induced 
liquid moments are considered here for a number of candlestick configurations.  The Eigen 
frequencies for such configurations are shown to be identical to those found by Stewartson (1).   

Liquid payloads contained in a highly permeable material have been of interest to the U.S. Army 
for some time.  Laboratory tests and flight tests have shown that a highly permeable medium can 
significantly reduce the spin-up time of a liquid payload (6, 7, 8).  Flight stability for liquid-
saturated permeable payloads has also been examined by D’Amico (9, 10).  An investigation by 
Cooper (11) considered inertial waves in a coning projectile with a saturated porous media payload 
so that the media are homogenous and isotropic.  The present work extends the Stewartson and 
Cooper problems by considering a cylindrical cavity filled with a permeable medium that is 
impregnated with an inviscid liquid, but this medium is not necessarily isotropic.  Following 
Cooper, we introduced a further modification by segmenting the cavity along the symmetry axes 
into a sequence of equal length cylinders.  Each of these cylinders is separated by impermeable end 
caps.  The porous media are modeled by a drag term, which is proportional to the liquid velocity 
relative to the assumed ridge porous media that are added to the linearized Euler equations.  This 
analysis examines the induced liquid moment as a function of parameters found by Stewartson (1) 
plus parameters describing the porous media and the number of segments in the cylindrical cavity.   
 

2. Equations of Motion for the Off-Axis Candlestick Configurations 

Figure 1 shows the Z,Y,X ′′′  axes rotating uniformly about X′  with angular velocity ( )0,0,P=P , 
and figure 2 presents details of the internal configuration of the candlestick payloads.  The liquid is 
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assumed to be initially rotating as a rigid body with the same angular speed P  so the velocity V′  of 
the liquid inside the cylinders is 

 ( )θ+θ+′ sinrBsinR,cosrBcosR,x 00×= PV  (1) 

The unperturbed state for equation 1 satisfies the Euler equation: 

 ( )( )
ρ
PsinrBsinR,cosrBcosR,xP s

00xx
2 −∇=θ+θ+×× ee  (2) 

for which sP  is the unperturbed liquid pressure.  Following Stewartson and letting the position 
vector have the Cartesian form ( )θsinrBsinRθ,cosrBcosRx, 00 ++=R  allows equation 2 to 
be integrated as a scalar potential so that 

 ( ) 2rPBcosRPP 22
0

2
S −θ−=ρ  (3) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Coordinate systems of configuration. 
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Figure 2.  Details of payload configuration. 

Now we excite wave motion in the rigidly rotating liquid by perturbing the angular velocity of 
the projectile for small angular components, zy ,ωω , so that the total angular velocity takes the 

form 
 ( )zy ω,ω0,+= PΩ . (4) 

The projectile is assumed to undergo small angle coning motion about the Z,Y,X ′′′  frame and is 
related to the projectile body axes, ZY,X, , by the following transformation (3): 

( ) ( )

( ) ( )

0

0

1 0 0 1 0 01 0

0 cos sin 1 0 0 cos 1 sin 1

0 0 10 sin cos 0 sin 1 cos 1

T P t

T P t

K eX X

Y t PT PT K e t P T t P T Y

ZZ t PT t PT t P T t P T

ε

ε

⎡ ⎤ ⎡ ⎤⎡ ⎤−⎡ ⎤ ⎡ ⎤′ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤′⎢ ⎥ = − − − ⎢ ⎥⎢ ⎣ ⎦ ⎣ ⎦⎥ ⎢ ⎣ ⎦ ⎣ ⎦ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥′⎢ ⎥ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥− − − ⎣ ⎦⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (5) 

where the coning damping rate is ε  the coning frequency is T  and 0K  is the magnitude of the 
small coning angle.  Equation 5 shows that the angular velocity, to first order in 0K , is written as 
a column vector with body frame components 

 ( )( ) ( )( )[ ]
( )( ) ( )( )[ ] ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−ε−−−

−+−ε−
ε

ε

PTt

PTt

e1TPtcos1TPtsinTP0K
e1TPtcos1TPtsinTP0K

P
 (6) 
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This suggests that the velocity of the liquid payload should be given by 

 ( ) vPV ˆsinrBsinR,cosrBcosR,x 00 +θ+θ+×=  (7) 

for which the components of v̂  and the pressure perturbation p̂  all have the magnitudes of order 0K . 

The liquid payload is assumed to have low viscosity and the magnitude P is assumed to be large 
so that the fluid motion is adequately described by Euler’s equations.  (The M864 projectile in 
free flight with a water payload has a Reynolds number on the order of 610 .)  Neglecting all 
higher order terms in small 0K  makes the Euler equations take the following form: 

 

0
xd
p̂d1

td
Ûd

0
d

p̂d
r

1V̂P2
td

Ŵd

0
rd
p̂d1ŴP2

td
V̂d

=
ρ

+

=
θρ

++

=
ρ

+−

 (8) 

in which ( )Û,Ŵ,V̂  are cylindrical components of the perturbed velocity for the perturbed 
pressure, p̂ . 

Normal boundary conditions at the solid wall satisfy 

 ( ) nRΩn •×=• sÛ,Ŵ,V̂  (9) 

in which n  is an outward unit vector on the wall and Rs  a point on any cylinder wall.  Equation 6 
when substituted into equation 9 causes the normal boundary conditions to become 

 

( )
( )( )

( )TiS,1i

eSerRePKeÛ

eSPKxeV̂
iiPttSPi

0
iB

0

iiPttSP
0

+ε≡−=

+−ℜ=

ℜ=
θ−−θ

θ−−

. (10)  

These show that separable solutions to equation 8 are obtained by 

 θ−−

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

iiPTtSPe

p
u
w
v

p̂
Û
Ŵ
V̂

 (11) 

and solving for the velocity components yields 
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( )

( )( )
( )

( )( )

( )iSP
xd
pd

u

iSi3SPr
rd
pdr2iS

d
pd

w

iSi3SPr
d

pd2iSr
rd
pd

v

−ρ
−=

+−ρ

−−
θ−=

+−ρ
θ

+−
−=

 (12) 

Using the continuity equation, ( ) 0u,w,v =•∇ , produces the following equation for the 
pressure p : 

 
( )( )

( )2
2

2

2
22

2

2

2

2
2

iS
iSi3S

0
xd
pdr

d
pd

rd
pdr

rd
pdr

−
+−

−=σ

=σ−
θ

++

 (13) 

At this point in the analysis, it is useful to consider each cylindrical candlestick ranging from 
CxC ≤≤−  to consist of an end-to-end sequence of N  equal length, Δ , cylinders with 

impenetrable end caps so that NC2=Δ .  Applying equation 10 to each of the sub-cylinders 
gives the following Fourier-Bessel series for the pressure in the given candlestick: 

 

( )( ) ( )

( )
( ) ( )
( )( ) ( )( )( )

( )
( )

( )
,Nn0

aSiSReF
aN2S1n2NC2D

SiSE
C2Nkazz

iSzzJzziSzzJNka
i3SSC116A

xFeaDraExr

rkJxCkcosAe
aPKp

0
iB

01
2

2n

k

i2
oddk

1k
i

22
0

≤≤
−=

−−=

−=
σπ=

−−+π
−−

−=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

+++

ΔσπΔ+π
ρ=

θ

∈

θ− ∑

 (14) 

 

3. Candlestick(s) Liquid Moments 

The moment induced by the liquid contained in the segmented cavity is calculated from the time 
derivative of the angular momentum field.  Non-dimensionalizing the moment with 24 PCaρπ2  
makes it convenient to write the side moment components, ZY M,M , as (3): 
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( )

( ) ( )KJ
CKJ LM

CN,T,CCN,T,CC
eKPCa2 TMM

LIMLSMLM

iPttSP
0

24
ZY

+=
ρπ=+ −

 (15) 

Therefore, the induced moment on the entire candlestick consisting of N  end-to-end sub-cylinders 
of length Δ  is given by 

 
( )

Δπ=Ω

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

Ω

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

×ℜ−=ρπ ∑ ∫
−

=

2

1N

0n

24

a2

d

td
Ûd

V̂P2
td

Ŵd

ŴP2
td
V̂d

PCa2 T

x

θ

r

LM

e

e

e

RC
 (16) 

Note that symmetry attributable to the geometry of each candlestick and equation 14 causes the 
axial component of LMC  to integrate identically to zero. 

The calculation of equation 16 is tedious.  The details are not given here (3, 11), but the result is 
the following expression: 

 

( )

( )( )
( ) ( )

( )
( )
( )

( )
( )( ) ( )( )[ ]

,C2Nkazz
kiSzzJzziSzzJ

zzJ
iSNa
i3SSC128

iSNa3
iSSC2

Na12
Na3C4RNeBcosi12

SCi8Na3C4iRNeBcos12
Si

MiMT

oddk
4

01

1
224

32

22

22

22

2222
0

2iB

22222
0

2iB

ZY

σπ=
−−++π

−

+
+
−

+
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−−−

−++

=+

∑
∈

 (17) 

The summation terms of equation 17 show that large over-turning moments can result if  

 
( )( ) ( )( )

oddk,C2Nkazz
0iSzzJzziSzzJ 01

∈σπ=
=−−+

 (18) 

This is the same criterion first found by Stewartson (1) for the symmetrically located liquid 
payload, i.e., at 0R = .  This says that the Stewartson tables can be used to determine such Eigen 
frequencies where the aspect ratio is taken to be NaC2 . 

One further comment regarding equation 17 is that LMC  approaches the value produced by a 
frozen liquid as N  becomes large, provided that Eigen frequencies are sufficiently removed 
from the region of interest.  In fact, the rate of approach to the frozen limit is very rapid since it 
goes as 2N1 .  Typical coning frequencies of the M864 are presented in figure 3.  Figures 3 and 4 
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give examples of moment coefficients, LIMLSM C,C , for the M864 projectile.  The value for the 
axes’ offset is taken to be a2R =  and the orientation angle is 3B π= .  In these plots, the sharp 
spikes correspond to the increased over-turning moment, LSMC , that is encountered when the 
projectile’s coning frequency passes a Stewartson Eigen frequency.  These results clearly show 
that even for small values of N , the moment coefficients are very close to the frozen limit 
values.  The reason for this is the aspect ratio for these examples is relatively large.  Some 
mathematical manipulations of equation 17 show that for large aspect ratios, the values 

LIMLSM C,C  approach their frozen limit values for all values of N  as long as equation 18 is not 
satisfied.  Figure 3 shows that coning rates are in the range of 0 ≤ T ≤ 0.1, and figures 4 and 5 
indicate that large over-turning moments caused by the liquid payload should not result in flight 
instabilities for the parameters examined here.  However, if the parameters and particularly, the 
aspect ratio, were to change, instabilities could result (see figure 6 as an example). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Free flight coning frequencies of the M864 projectile. 
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Aspect Ratio (C/a)=23 R0/a=2
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Figure 4.  Values of LSMC  showing Eigen frequencies as a function of T  and N . 
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Figure 5.  Values of LIMC  showing Eigen frequencies as a function of T  and N . 
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However, if the parameters and particularly the aspect ratio were to change, instabilities could 
result.  Figure 6 is one such example. 

Aspect Ratio (C/a)=23 R0/a=2
 M864
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0

0.0 0.2 0.4 0.6 0.8 1.0
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C
LS

M
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Frozen Liquid

 

Figure 6.  Values of LSMC  showing a possible existence of an instability attributable to 
an Eigen frequency <0.1.   

 

4. Equations of Motion for the Symmetry Axis Porous Media Configuration 

For this problem, the moment arm 0R0 =  so the position vector becomes ( )θsinrθ,cosrx,=R  
since the candlestick axis is the symmetry axis of the projectile.  When the liquid payload axis is 
coincidental with the projectile symmetry axis, the analysis is simplified if we move to the 

Z,Y,X ′′′  frame rather than the body frame used before.  This modifies the transformation given 
by equation 5 so that 

( )

( )

0

0

1 0 0 1 0 01 0

0 cos sin 1 0 0 cos 1 sin

0 0 10 sin cos 0 sin 1 cos

T P t

T P t

K e XX

Y t PT PT K e t P T t PT Y

Z Zt PT t PT t P T t PT

ε

ε

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤−⎡ ⎤′ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤′⎢ ⎥ = − −⎢ ⎣ ⎦ ⎣ ⎦⎥ ⎢ ⎣ ⎦ ⎣ ⎦ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥′ ⎢ ⎥⎢ ⎥ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

%

%

%

 (19) 

and Z~,Y~,X~  are coordinates in the non-rolling reference frame.  The velocity of the media obtained 
from the rotation kinematics is now given by 
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( )
( )

( ) θ−

θ−
θ

θ−

−=′

−+=′

−−=′

iStP
0x

iStP

iStP
0r

eiSPKrV

eiSP0KxirPV

eiSPKxV

 (20) 

and x,,r θ  are cylindrical coordinates in the non-rolling frame.  The Euler equations are now 
modified to account for an inviscid liquid flowing through porous media.  This modification 
assumes that flow in porous media can be represented by additional terms that are proportional to 
the liquid velocity relative to the media which is taken to be rigidly attached to the coning 
projectile.  Using the factor, θ−iPSte , for each independent variable allows the modified Euler 
equations now written in cylindrical components to have the following form: 

 

( ) ( )

( ) ( )

( ) ( ) 0
xd
pd

P
1iSPCruiCxS

0
rP

piiSPCxiv2wiCtS

0
rd
pd

P
1iSPCtxw2viCtS

x

t

=
ρ

+−−−+

=
ρ

−−−+−+

=
ρ

+−+−−+

 (21) 

In this equation, u,w,v are the x,,r θ  components of the fluid velocity and p  is the perturbation 
pressure.  Note the terms that are proportional to the constants xt C,C  represent drag that the 
porous media exerts on flow passing through these media.  Motivation for this model stems from 
Darcy’s Law (12) which says that the drag force caused by porous media, Dr , is given by 

 

2

dynamic viscosity

porosity (dimensions of length  ( ))

velocity of fluid relative to porous media

liquid density

pressure gradient induced by the porous media on the fluid 

P aCr
Pa

2

μ ρ
κ

μ

κ

ρ

= − =

→

→

→

→

→

VrDr Vr -

Vr

Dr flow

Cr dimensionless constant which is a measure of the pressure gradient

so that Cr .
P

μ
ρ κ

→

=

 

Solving equation 21 leads to the velocity field expressions: 
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( )

( )( )
( )

( )

( )( )
( )

( )
( )

iCS
iSPCr

iSP
xd
pd

u

iCS
iSPCxi

iSi3SPr
rd
pdr2piSi

w

iCS
iSPCx

iSi3SPr

riS
rd
pdpi2

v

x

x

t

t

t

t

−+
−

+
−ρ

−=

++
−

+
+−ρ

+−
=

++
−

−
+−ρ

−−
−=

 (22) 

Invoking the fact that the flowing liquid is incompressible causes the continuity equation to give 
the following expression for the perturbation pressure p  

 
( )( )
( ) ( )iCSiCS

iCSi3CS

0
xd
pdrp

rd
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Equations 13 and 23 show when 0C,0C xt ==  causes 22 σ=σ .  Using the demands of equation 20 
modifies the coefficients for the Fourier-Bessel series as follows: 
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5. Porous Media Liquid Moments 

The procedure (equation 16) for calculating liquid side moments gives the following expression 
for liquid-saturated porous media in N  cylinders, separated by impermeable end caps, located 
along the projectile symmetry axis: 



 

12 

( ) ( ) ( ) ( ) ( )( )
( )

( ) ( )

( )( )
( )

( )
( )( ) ( )( )[ ]

C2Nkzz
kiCSzzJzziCSzzJ

zzJ
iCSaN

i3CSiSSC128
4

iS
a12

a3C41SC12

iCSNa3
N1CiSNi2CS1NiSC4CiCT

oddk
4

t0t1

1

t
224

t
22

2

2

2222

t
22

2
t

2
t

222

LIMLSM

σπ≡
−+−++++π

−+−
−

+
−

+
+−−−

+
++

−+++−−
=+

∑
∈

. (25) 

Taking the limits of this expression for large N  or large tC  gives the frozen limit values of 

LIMLSM C and C given by (3) 
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 (26) 

whenever T  is not in the neighborhood of an Eigen frequency S = (i + ε)T which by equation 25 
satisfies 

 ( )( ) ( )( ) 0iCSzzJzziCSzzJ t0t1 =−+−++   (27) 

The definition of σ  given in equation 23 shows that the Stewartson tables (1, 3) can again be 
used to find Eigen frequencies, provided that tx CC =  and tCSS +by  replaced is  while these 
tables are used.  In general, these frequencies S  will have complex values, 0≠ε , thus indicating 
that damping/undamping will occur.  The cases when tx CC ≠  also result in 0≠ε  but numerical 
methods need to be used to find such Eigen frequencies. 

Scheidegger (14) has tabulated permeability’s 25 cm100.1 −×≅κ , and assuming that the media 
studied here for the M864 have similar permeabilities, which average 6.0C,C xt ≅ .  Sample plots 
showing that LIMLSM C and C  again approach the values for a frozen liquid as tC  becomes large 
(see figures 7 and 8), which are in agreement with equation 26 when 0=ε .   

Typical plots showing LSMC  changing with increasing values of N  are given in figure 9.  For 
this plot, the vertical axis assumes values defined as the difference between LSMC  and the frozen 
values given by equation 26: 

 F_LSMLSMLSM CCC −≡Δ  (28) 

The sharp peaks indicate Eigen frequencies which are now complex since 31CC tx ==  and 
therefore 0≠ε .  Evidently, LSMC  approaches the values F_LSMC  as N  gets larger for values of 
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T  sufficiently removed from any Eigen frequencies.  In general, such Eigen frequencies are 
found with a numerical search routine in the complex plane. 

Aspect Ratio (C/a)=23 (R0/a)=0 N=2 ε=0 
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Figure 7.  Values of LSMC  as a function of T  for increasing xt C and C . 
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Figure 8.  Values of LIMC  function of T  for increasing xt C and C . 
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Aspect Ratio (C/a)=23 (R0/a)=0 Ct=1/3 Cx=1/2
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Figure 9.  Values of LSMCΔ  showing possible flight instabilities (Eigen frequencies) as a function 

of T .  (As N  increases, the payload behaves like a frozen [liquid] payload when T  is 
far from Eigen frequencies.) 

 

6. Calculation Method 

The equations of the last sections need to be calculated for a wide range of flight, geometry, and 
porous media parameters all of which require values of Bessel functions.  For small values of zz , 
simply using power series expansions of each Bessel function works very well.  Bessel functions 
at large values of zz  were obtained by asymptotic expansions (13).  Generally, calculating Bessel 
functions for complex arguments for intermediate values of zz  is a non-trivial problem and the 
methods used here employ Gaussian continued fractions.  This author has judged that a further 
discussion of these methods is not appropriate for this article but the reader should be aware of the 
numerical difficulties associated with calculating complex Bessel functions. 
 

7. Conclusions 

The off-axis candlestick problem has been shown to be equivalent to the inviscid Stewartson (1) 
problem whenever porous media are not present or can be ignored.  Resonant frequencies are 
independent of the candlestick off-axis position and can be found with tabulations that have 
already been found (1, 3).  Values not found in such tables can readily be obtained by simple 
numerical root-finding methods.  The design configurations examined here show that flight 
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instabilities should not occur for candlesticks with a low viscosity liquid and as N  increases, the 
liquid behaves more like a frozen liquid. 

Cases when the candlestick contains saturated porous media that are located along the symmetry 
axis of the projectile can possibly force resonances.  In these cases, the Eigen S  frequencies 
assume complex values so that damping or un-damping can occur.  For the particular case when 

XT CC = , it is possible to find the resonances from the Stewartson tables, but if XT CC ≠ , then a 
numerical search for resonances in the complex plane for the Eigen frequencies is required.  The 
current analysis is based on assumed values of the porosities, XT C  C , and the results indicate 
that a flight instability of the M864 is unlikely to transpire.  However, if the actual porosity of the 
proposed media differs significantly from the assumptions used here, catastrophic flight 
instabilities could result.  A thorough search for “problem Eigen frequencies” requires 
experimental measurements of XT C and C  in order to gain a better idea where to search, in the 
complex plane, for such frequencies (7, 8, 10).  In all cases, the liquid moments approach the 
values for a frozen liquid with increasing values of N  if Eigen frequencies are not present.  
Similar results also apply for increasing values of TC . 

 
 



 

16 

8. References 

1. Stewartson, K.  on the Stability of a Spinning Top Containing Liquid.  Journal of Fluid 
Mechanics 1959, 5, Part 4, 577–592. 

2. Wedemeyer, E.H.  Viscous Correction to Stewartson’s Stability Criterion; BRL Report 
1325; US Army Ballistic Research Laboratory:  Aberdeen Proving Ground, Maryland, June 
1966. (AD 489687) 

3. Murphy, C.H.  Angular Motion of a Spinning Projectile with a Viscous Liquid Payload; 
BRL-MR-3194; U.S. Army Ballistic Research Laboratory:  Aberdeen Proving Ground, MD, 
August 1982. (AD A118676) (See also Journal of Guidance, Control, and Dynamics, Vol. 6. 
pp.280-286, July –August 1983.) 

4. Gerber, N.; Sedney, R.  Moment on a Liquid-Filled Spinning and Nutating Projectile:  Solid 
Body Rotation; BRL-TR-02470; U.S. Army Ballistic Research Laboratory:  Aberdeen 
Proving Ground, MD, February 1983. (AD A125332) 

5. Hall, P.; Sedney, R.; Gerber, N.  Fluid Motion in a Spinning, Coning Cylinder via Spatial 
Eigen function Expansion; BRL Technical Report; U.S. Army Ballistic Research Laboratory:  
Aberdeen Proving Ground, MD, August 1997 (AD A190758) 

6. D’Amico, W.P.; Mark, A.  The Application of a Highly Permeable Medium to Reduce Spin-
Up Time and to Stabilize a Liquid-Filled Shell; BRL-MR-02851; U.S. Army Ballistic 
Research Laboratory:  Aberdeen Proving Ground, MD, July 1978. (AD A058595) 

7. Miller, M.C.; Molnar, J.W.  Laboratory Studies to Improve Flight Stability of the M825 
Projectile; CRDEC-TR-153; U.S. Army Chemical Research, Development and Engineering 
Center:  Aberdeen Proving Ground, MD, June 1990. 

8. Miller, M.C.; Molnar, J.W.  Laboratory Flight Stability Evaluation of M825A1 Production 
Payloads; CRDEC-TR-240; US Army Chemical Research, Development and Engineering 
Center:  Aberdeen Proving Ground, MD, October 1990. 

9. D’Amico, William P.; Soencksen, Keith P.  Aeroballistic Testing of the M825 Projectile: 
Phase VII-Larger Radius Felt Wedge Payloads; ARBRL-MR-3586; US Ballistic Research 
Laboratory:  Aberdeen Proving Ground, Maryland, April 1987. 

10. D’Amico, W.P.; Clay, W.H.  Flight Tests for Prototype Felt Wedge/White Phosphorous 
Improved Smoke Concept; BRL-MR-02824; U.S. Army Ballistic Research Laboratory:  
Aberdeen Proving Ground, MD, April 1978. (AD A054643) 



 

17 

11. Cooper, G. R.  Moment Exerted on Coning Projectile by a Spinning Liquid in a Cylindrical 
Cavity Containing a Porous Medium; BRL-MR-3677; U.S. Army Ballistic Research 
Laboratory:  Aberdeen Proving Ground, MD, June 1988. (AD A195291) 

12. Darcy, H.  Les Fontaines Publiques de la Ville de Dijon, 1886. 

13. McLachlan, N.W.  Bessel functions for Engineers; Oxford University Press, London, 1955. 

14. Scheidegger, A. E.  The Physics of Flow Through Porous Media; University of Toronto 
Press, Canada, 1960. 

 

 



 

18 

NO. OF 
COPIES ORGANIZATION 
 
 1 DEFENSE TECHNICAL 
 (PDF INFORMATION CTR 
 ONLY) DTIC OCA 
  8725 JOHN J KINGMAN RD 
  STE 0944 
  FORT BELVOIR VA 22060-6218 
 
 1 US ARMY RSRCH DEV & ENGRG CMD 
  SYSTEMS OF SYSTEMS 
  INTEGRATION 
  AMSRD SS T 
  6000 6TH ST STE 100 
  FORT BELVOIR VA  22060-5608 
 
 1 INST FOR ADVNCD TCHNLGY 
  THE UNIV OF TEXAS AT AUSTIN 
  3925 W BRAKER LN STE 400 
  AUSTIN TX 78759-5316 
 
 1 DIRECTOR 
  US ARMY RESEARCH LAB 
  IMNE ALC IMS 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 1 DIRECTOR 
  US ARMY RESEARCH LAB 
  AMSRD ARL CI OK TL 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 2 DIRECTOR 
  US ARMY RESEARCH LAB 
  AMSRD ARL CI OK T 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 1 SCHOOL OF AEROSPACE ENGINEERING 
  GEORGIA INST OF TECHNOLOGY 
  ATTN DR M COSTELLO 
  ATLANTA  GA  30332 
 
 10 CDR ARDEC 
  ATTN AMSRD AAR AEM C  K CHUNG 
     R LEE  A READDY  M CORZO 
   AMSRD AAR AEM A  W KOENIG 
     B WONG (5 CYS) 
  PICATINNY ARSENAL NJ  07806-5000 
 
 1 MR MILES MILLER 
  504 HAVERHILL ROAD 
  JOPPA MD  21085-4319 
 
 
 

NO. OF 
COPIES ORGANIZATION 
 
 1 ROY KLINE 
  27 FREDON GREENDELL RD 
  NEWTON  NJ  07860-5213 
 
  ABERDEEN PROVING GROUND 
 
 1 DIRECTOR 
  US ARMY RSCH LABORATORY 
  ATTN  AMSRD ARL CI OK  (TECH LIB) 
  BLDG 4600  
 
 2 COMMANDER 
  US ARMY ECBC 
  ATTN  AMSRD ECB RT  D WEBER 
  BLDG E3516 
  APG EA 
 
 1 DIRECTOR 
  US ARMY RSCH LABORATORY 
  ATTN  AMSRD ARL WM   J SMITH 
  BLDG 4600 
 
 2 DIR USARL 
  ATTN  AMSRD AR WM B  M ZOLTOSKI 
  BLDG 4600 
 
 1 DIR USARL 
  ATTN  AMSRD AR WM BA   D LYON 
  BLDG 4600 
 
 1 DIR USARL 
  ATTN  AMSRD ARL WM BD  B FORCH 
  BLDG 4600 
 
 4 DIR USARL 
  ATTN  AMSRD ARL WM BC  P PLOSTINS 
   G COOPER  B GUIDOS 
   P WEINACHT 
  BLDG 390 
 
 1 DIR USARL 
  ATTN AMSRD ARL WM BD  M NUSCA 
  BLDG 390 
 
 




