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Summary 

The Future Force will face challenges in terms of making data accessible to clients in a seamless 
manner.  Clients, running on computers likely featuring differing operating systems (OS), will 
need to access inhomogeneous datasets on servers with different OSs.  An intermediate storage 
area accessible to these widely varying clients is required.  Such a storage area can be 
constructed utilizing JavaSpaces, an interface developed by Sun Microsystems, Inc.  Because 
JavaSpaces are built based on the Java Virtual Machine (VM), any client who can run the Java 
VM will be able to access data objects within a JavaSpace.  Similarly, any server that can run the 
Java VM will be able to place objects into a JavaSpace.   

With the JavaSpaces interface, applications may be developed that allow the user to do the 
following:  1) create templates to represent data “objects,” 2) build objects based on these 
templates, 3) place these objects in a JavaSpace, 4) take these objects from a JavaSpace, and if 
desired, 5) notify a client when a certain type of object has been inserted into the JavaSpace. 

One Future Force application, the Nowcast, is a weather forecast that is to be updated frequently 
with new observations and large-scale model background data.  The first step in this process is to 
obtain large-scale Global Forecast System (GFS) model initialization data to initialize a 
relatively coarser scale (6-km horizontal resolution) Weather Research and Forecasting (WRF) 
model run.  This “outer” WRF run data will, in turn, be used to initialize a Local Analysis and 
Prediction System (LAPS) model run.   

At a remote computer, a client wishing to run LAPS will require this “outer” WRF model output 
data for initialization.  Obtaining an entire WRF output file for this purpose would require 
significant bandwidth.  Also, if the WRF output file were in a database, the client would require 
the database server to be up, as well as need to know the protocols for database access.  To 
circumvent these hindrances, this report shows how a WRF output file can be split into objects, 
each representing one WRF output variable.  Each object will contain the variable name, its 
dimensions, and the data block tied to that variable.   

One of the methods specified in the JavaSpaces interface is “notify.”  With this method, Java 
agents can continuously poll a JavaSpace searching for a particular object.  For this application, 
three Java agents can run on the client that search for one-dimensional, two-dimensional, or 
three-dimensional WRF object variables in the JavaSpace.  When such an object is found, the 
agent performs a take on the space and proceeds to extract the data portion from the entry and 
write it to a file on the client, still in its original serialized format.  The agent then converts the 
serialized format to a readable text format.  Another agent on the client monitors for the presence 
of all the files needed to regenerate the WRF output file into its original network Common Data 
format (netCDF).  When all of the required files are found, the agent runs the program that 
recreates the WRF output netCDF file.  The client now has a file (WRF netCDF) that is suitable 
for input to a model such as LAPS.  Once the LAPS model has been executed, the client can 
generate plots using the LAPS-supplied graphics program, LAPSPLOT.  Sample LAPSPLOT 
output graphics are provided showing both cross sections and planar views of various LAPS 
output parameters.  
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This report also briefly covers how the LAPS model output can be used as input to a finer scale 
(2-km horizontal resolution) WRF model run.  This cascade of a coarse scale WRF run used to 
initialize LAPS and then LAPS used to initialize a finer scale WRF run, performed cyclically, 
comprises one Nowcast scenario. 

For this report, Internet data sources, such as the Meteorological Data Ingest System (MADIS), 
were employed.  Such Internet sources may not be available to the Future Force.  Thus, alternate 
data sources, such as the Air Force Weather Agency, may need to be examined as sources for 
entities such as large-scale model background data and satellite data.   
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1. Introduction  

The net-centric Future Force will require a means for heterogeneous (in terms of operating 
system (OS)) clients to asynchronously query heterogeneous server(s) for a wide variety of 
datasets, including meteorological.  Fault tolerance must be inherent, i.e., the loss of a server 
should not obstruct a client from obtaining the requisite data.  The JavaSpace paradigm addresses 
these issues:  a JavaSpace can be described as “a shared, network-accessible repository for 
objects” and a JavaSpace application as “a collection of processes cooperating via the flow of 
objects into and out of one or more spaces (1).”  One Future Force application is a “Nowcast,” 
which will be comprised of short (1–3 h), frequently updated forecasts based on the Weather 
Research and Forecasting (WRF) model.  WRF is first run at a coarser scale, comprising a 
domain approximately 8 km on a side.  The output from this model run serves as initialization 
data for the Local Analysis and Prediction System (LAPS) model, which also assimilates a 
multitude of datasets including surface, upper air, and satellite.  The boundary conditions from 
the LAPS model run then serve to initialize the finer-scale WRF Nowcast run, which will be 
nested inside both the coarser-scale WRF domain and the LAPS domain.  A demonstration of 
how WRF model output can be converted into objects and made accessible to a generic WRF 
client through a JavaSpace and then reconstituted into a format amenable for use as a 
background field for LAPS will be presented in this report, along with methods for generating 
objects out of Meteorological Assimilation Data Ingest System (MADIS) data and passing them 
through a JavaSpace.  A look at how LAPS can be used as a means to initialize and set up WRF 
runs on a continuing basis, thus yielding a Nowcast, is also covered. 

 

2. JavaSpaces and WRF Variable Objects 

JavaSpaces can be utilized in various ways.  Two ways that apply here are as a means for either 
shared distributed communication or object storage.  JavaSpaces are elegantly simple as 
evidenced by the diminutiveness of its specification (2): 

 
public interface JavaSpace{ 
 Lease write (Entry entry, Transaction txn, long lease) 
    throws TransactionException, RemoteException; 
 
             long NO_WAIT=0; 
 
  Entry read (Entry tmpl, Transaction txn, long timeout) 

Throws UnusableEntryException,TransactionException, 
InterruptedException,RemoteException; 

   
    Entry take (Entry tmpl, Transaction txn, long timeout) 

Throws UnusableEntryException, 
TransactionException,InterruptedException, 
RemoteException; 
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Entry takeIfExists (Entry tmpl, Transaction txn, long 
timeout) 

Throws UnusableEntryException, 
TransactionException,InterruptedException, 
RemoteException; 

 
EventRegistration notify (Entry tmpl, Transaction txn, 
RemoteEventListener listener, long lease, MarshalledObject 
handback) 
 Throws TransactionException, RemoteException; 
 
Entry snapshot (Entry e) throws RemoteException; 

  }  
 
As seen in the aforementioned specification, there are four main methods:  read, write, take, and 
notify.  For this effort, entry classes for one-dimensional (1-D), two-dimensional (2-D), and 
three-dimensional (3-D) variables extracted from WRF output files have been designed.  For 
example, the 2-D entry class is as follows: 

 
public class WrfEntry_2d implements Entry{ 
                                                                                 
 public String variable; 
 public byte[] arry; 
 public String central_latitude; 
 public String central_longitude; 
 public String time_stamp; 
 public Integer Time; 
 public Integer s_n; 
 public Integer w_e; 
                                                                                 
 public WrfEntry_2d(){ 
 } 
                                                                                 
public WrfEntry_2d(String name, byte[] arr, String lat,String lon,String 
ts,Integer dim1,Integer dim2,Integer dim3){ 
   variable=name; 
   arry=arr; 
   central_latitude=lat; 
   central_longitude=lon; 
   time_stamp=ts; 
   Time=dim1; 
   s_n=dim2; 
   w_e=dim3; 
 }  

 
Each field of an entry must be declared public.  Here the variable name; data array; grid center 
latitude and longitude; number of forecast periods; time the WRF output was generated; and  
x- and y-grid dimensions have all been defined.  Note also the required empty constructor as well 
as a constructor to set each of the fields. 
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JavaSpaces are designed to overcome some of the deficiencies in distributed communication 
between computers.  For example, a Remote Procedure Call (RPC) requires the following (3): 

1. The client to know who it is calling 

2. The client to know where the server is 

3. The client and server to be active at the same time 

4. The client and server to agree in detail on what form the call will take 

5. The client and server to agree in detail on how the call will be made 

JavaSpaces surmount these potential bottlenecks by virtue of “loose coupling,” that is, 
“processes interact indirectly through a space and not directly with other processes (2).”  Thus, 
for example, a server can write an object to a JavaSpace with some Lease time (i.e., how long it 
is to remain in the space).  A client can then search this space by virtue of a take (which removes 
the entry) or a read (which obtains a copy of the entry), either of which requires a (entry) 
template as an argument.  This template can be very specific by defining all of the fields or quite 
generic by defining only one of the fields and wildcarding (set to null) all others.  The use of a 
generic template greatly increases the chance of matching an entry in the space. 

In this application, the 1-, 2-, and 3-D variables within the WRF network Common Data Format 
(netCDF) file are extracted using netCDF file operators, the data serialized, and the objects then 
written to the JavaSpace (see figure 1.).  The generic server process, which writes the objects to 
the space, takes arguments consisting of the relevant variable, its dimensions, the number of 
forecast periods, and integers defining each dimension size.  Three client agents monitor the 
JavaSpace, using the JavaSpace notify method, searching for 1-, 2-, or 3-D WRF output variable 
entries.  Each agent blocks until it finds its object type, at which point it performs a take on that 
object with the agent, and then deserializes the data and writes it to a file.  Another agent blocks 
until all of the requisite data files have been garnered by the client.  Upon discovery of the 
required files, it launches a program to reconstruct the separate 1-, 2-, and 3-D variable data files 
back to a single netCDF format file.  Finally, when an adequate number of netCDF files are 
present, LAPS can be executed. 
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Figure 1.  A schematic illustrating the placement of WRF output objects into a JavaSpace and clients 
accessing these objects. 

The WRF objects written to the JavaSpace include the following: 

1. 1-D objects 

• model run time 

• upper weight for vertical stretching 

• lower weight for vertical stretching 

• inverse d(eta) values between full (w) levels 

• inverse d(eta) values between half (mass) levels 

• d(eta) values between full (w) levels 

• d(eta) values between half (mass) levels 

• eta values on half (mass) levels 

• eta values on full (w) levels 

• two extrapolation constants  

• leapfrog time filter constant 

• inverse x grid length 

• inverse y grid length 

• time weight constant for small steps 

• zeta at model top 

• three 2nd order extrapolation constants 

linux OS 
computer 

solaris OS 
computer 

WxSpace 

server 

client 2 

client 3 

client n 

client 1 

write WRF 
objects poll/block 

take WRF 
objects 

ftp WRF 
model 
output 

linux 
cluster 
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• model time step 

• depths of centers of soil layers 

• thicknesses of soil layers 

• pressure top of the model 

2. 2-D objects 

• land use category 

• perturbation dry air mass in column 

• base state dry air mass in column 

• nest position 

• water vapor mixing ratio at 2 m 

• temperature at 2 m 

• potential temp at 2 m 

• surface pressure 

• u-component at 10 m 

• v-component at 10 m 

• land mask—1 for land; 0 for water 

• sea ice flag 

• surface runoff (in mm) 

• underground runoff 

• dominant vegetation category 

• dominant soil category 

• vegetation fraction 

• ground heat flux 

• snow water equivalent 

• physical snow depth 

• canopy water 

• sea surface temperature 

• map scale factor on mass grid 

• map scale factor on u-grid 

• map scale factor on v-grid 

• Coriolis sine latitude term 

• Coriolis cosine latitude term 

• local sine of map rotation 
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• local cosine of map rotation 

• terrain height 

• surface skin temperature 

• accumulated grid scale accumulation 

• accumulated cumulus scale accumulation 

• downward shortwave flux at ground surface 

• downward longwave flux at ground surface 

• latitude, south is negative 

• longitude, west is negative 

• albedo 

• soil temperature 

• landmask—1 for land, 2 for water 

• reciprocal of Monin-Obhukov length 

• planetary boundary layer (PBL) height 

• upward heat flux at the surface 

• upward moisture flux at surface 

• latent heat flux at surface 

• flag indicating snow coverage—1 for snow coverage 

3. 3-D objects 

• U—x wind component 

• V—y wind component 

• W—z wind component 

• perturbation geopotential 

• base state geopotential 

• perturbation potential temperature 

• perturbation pressure 

• base state pressure 

• water vapor mixing ratio 

• cloud water mixing ratio 

• rain water mixing ratio 

• ice mixing ratio 

• snow mixing ratio 

• graupel mixing ratio 



 

• soil temperature 

• soil moisture 

• soil liquid water 

Figure 2 is a screen capture of activity involving WRF objects and a JavaSpace, in which the 
window at the upper left displays activity on the server and the window at the lower right 
displays activity on the client.  In this instance, the server is processing each of the 1-D data 
blocks by serializing each variable entry, placing it in the JavaSpace, and then blocking to give 
the client discovery and processing time.  On the client side, a Java agent, “notify_1d,” 
continuously scans the JavaSpace; as soon as a 1-D entry is found, a take is performed and the 
data is written in its current serialized form to the client machine.  The agent then converts the 
serialized (binary) file into a text file in preparation for the reconstitution into a WRF netCDF 
file later. 

 

Figure 2.  A screen capture showing the server (upper left hand window) placing a WRF variable entry into a 
JavaSpace and the client Java agent (lower right hand window) finding a 1-D entry and processing it. 

The process to place MADIS data into the JavaSpace is quite similar to that described for WRF.  
For this portion, the netCDF operator, ncdump, is also utilized and generates text files of data 
from MADIS mesonet netCDF data for latitude, longitude, report time, 2-m temperature, dew  
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point, relative humidity, wind direction, wind speed, visibility, and elevation data.  Because each 
of these file sizes are relatively small, all of the data types for one time period can be combined 
into one serialized data file prior to placement into the JavaSpace. 

3. Initializing LAPS with WRF 

LAPS requires a coarser scale background model for initialization.  Among those that have been 
used in LAPS are the Rapid Update Cycle (RUC) (4), GFS (5), Navy Operational Global 
Atmospheric Prediction System (NOGAPS) (6), Mesoscale Model Version 5 (MM5) (7), 
Regional Atmospheric Modeling System (RAMS) (8), and WRF (9) models.  The WRF model 
was chosen as the model to initialize LAPS, because it is considered the next generation of the 
MM5 and also because of the author’s prior experience executing WRF in parallel on a local 
Linux cluster.   

The large-scale model background utilized for this effort was the Global Forecast System (GFS) 
model.  This “outer” WRF domain contained 144 by 144 grid points with 6-km grid spacing and 
31 levels in the vertical.  For the 0000 universal time (UT) model run, the analysis fields and the 
3-h, 6-h, 9-h, 12-h, 15-h, 18-h, 21-h, and 24-h forecasts were obtained from the National Center 
for Environmental Prediction (NCEP).  In order to mesh with the 3-h LAPS cycle time 
employed, WRF was run for seven 3-h forecast periods:  0000–0300 UT, 0300–0600 UT, 0600–
0900 UT, 0900–1200 UT, 1200–1500 UT, 1500–1800 UT, and 1800–2100 UT on a 16-node 
dual processor Linux cluster. 

Due to the Linux cluster being located on a private network, it was not possible to communicate 
from it to the JavaSpace, thus the WRF output was transferred to a Linux computer, which acted 
as a server (see figure 1).  In fact, the server and client were deliberately chosen to be systems 
with differing OSs to further illustrate the concept of loose coupling.  JavaSpaces are built on top 
of the Java Virtual Machine; thus, the concept of “write once, run anywhere” applies. 

4. LAPS Execution  

The essence of LAPS is its ability to assimilate a very large number of different data types in 
order to provide the most realistic depiction of an atmospheric volume over short (1–3 h) time 
periods.  A non-exhaustive list of data that LAPS can ingest includes radio acoustic sounding 
system (RASS), high density winds (HDW) (derived from Geostationary Operational 
Environmental Satellite (GOES) data), buoy, Meteorological Aerodrome Report (METAR) 
(surface reports), satellite sounder, satellite imagery, radiosonde observation (RAOB), aircraft 
automated reports (ACAR), pilot reports (PIREP), Next Generation Weather Radar (NEXRAD), 
global positioning system (GPS) (from which moisture profiles can be inferred), profiler, 
radiometer data, as well as data from the background model mentioned in section 2.  For this 
application, MADIS (managed by National Oceanic and Atmospheric Administration (NOAA) 
Global Systems Division (GSD)) provided ACAR, HDW, mesonet, METAR, polar orbiting 
satellite (POES), profiler, radiometer, RAOB, and satellite radiance data.  To insure that local 
effects were accounted for, a utility was built to convert White Sands Missile Range mesonet  



 

“Surface Automated Measurement System” (SAMS) data into an intermediate format, known as 
the LAPS surface observation (LSO) format.  The ability to convert to a text intermediate format 
obviated the need to convert the data into a netCDF format. 

The LAPS domain was nested inside the WRF domain, with 400 by 400 grid points at 2-km grid 
spacing and 21 vertical levels.  This domain was also centered at the Las Cruces, NM, Airport.  
The fields produced by LAPS were output at 0300 UT, 0600 UT, 0900 UT, 1200 UT, 1500 UT, 
and 1800 UT. 

LAPS output can be visualized with a National Center for Atmospheric Research (NCAR) 
graphics-based utility, LAPSPLOT.  Some sample plots from a LAPS run for 30 May 2006 are 
shown in figures 3–12.  Figures 3–8 are cross sections, oriented north (N) to south (S) across the 
domain displaying isotachs.  Note the development of a low-level jet by 0600 UT and its 
dissipation by 1800 UT.
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Figure 3.  N-S cross section of wind speed valid time (VT) 30 May 2006, 0300 UT. 

 
Figure 4.  N-S cross section of wind speed VT 30 May 2006, 0600 UT. 
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Figure 5.  N-S cross section of wind speed VT 30 May 2006, 0900 UT. 

 
Figure 6.  N-S cross section of wind speed VT 30 May 2006, 1200 UT. 
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Figure 7.  N-S cross section of wind speed VT 30 May 2006, 1500 UT. 

 
Figure 8.  N-S cross section of wind speed VT 30 May 2006, 1800 UT. 
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Figure 9 is a N-S oriented cross section of winds.  Note the veering of the winds between 
450 hPa and 700 hPa at the southern end of the domain. 

 

Figure 9.  N-S cross section of wind VT 30 May 2006, 0900 UT. 

 

15 



 

LAPSPLOT can also produce sounding diagrams, as shown in figure 10. 

 

Figure 10.  A sounding within the LAPS domain. 

NOTE:  The x-axis represents temperature (°C) and the y-axis represents pressure (hPa). 
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Figure 11 illustrates LAPS output showing the integrated total precipitable water over the entire 
domain.  This LAPS run preceded the monsoonal flow typical to the region in July and August; 
thus, the deepest moisture is restricted to the extreme eastern portions of the domain. 

 

Figure 11.  Total precipitable water (in cm). 
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Figure 12 depicts the 850 hPa (~1500 m level) temperatures for the 30 May 2006, 0900 UT 
LAPS case. 

 

Figure 12.  The 850 hPa temperatures (°C) for the 30 May 2006, 0900 UT LAPS case. 
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5. Executing WRF Utilizing LAPS as Background 

Next, the resultant LAPS output files served as large-scale background initialization data for yet 
another WRF run, whose domain was set to be inside the LAPS domain.  Specifically, the size 
was 350 by 350 grid points and 2-km grid spacing with 31 vertical levels.  North American 
Model (NAM) model data was also introduced to provide three additional soil temperature layers 
required for the NCEP, Oregon State University, Air Force, Hydrologic Research Lab (NOAH) 
Land Surface Model (LSM), one component of WRF, to successfully execute.  Again 3-h 
forecast windows were used and Advanced Research WRF (ARW) output times were  
0300–0600 UT, 0600–0900 UT, 0900–1200 UT, 1200–1500 UT, and 1500–1800 UT. 

6. Conclusions 

As a result of this study, an application has been developed whereby the following are possible: 

1. A WRF output netCDF file can be split into separate files, each representing one WRF 
variable that has been serialized and then placed into a JavaSpace. 

2. Agents running on a client machine can monitor the JavaSpace for 1-, 2-, or 3-D variables.  
When found, the variable can be taken from the JavaSpace, written first to a file in its 
original (binary) format, and then converted to a text format. 

3. The text files can be reassembled into a netCDF file suitable for input to a model such as 
LAPS. 

Although the finer-scale WRF run will provide the greatest fidelity in terms of horizontal 
resolution, it was instructive to visualize the LAPS data, which will serve as input to the WRF, 
by means of LAPSPLOT, with some of its capabilities illustrated in section 3. 

7. Future Considerations 

For this effort MADIS data from NOAA GSD supplied all of the upper air and satellite 
observations and the majority of the surface observations.  For the Future Force, this Internet 
source will likely not be available; thus, alternate sources for data will need to be pursued.  For 
example, the Air Force Weather Agency can supply the WRF large-scale initialization files 
needed for input to LAPS; however, their Gridded Binary (GRIB) format will require conversion 
to the netCDF format first.  Candidates for satellite data include the SeaSpace TeraScan 
hardware/software system or the NOAAport data feed available from Unidata (10).  Although 
not tested in this effort, radar data can be processed by LAPS and should be examined; however, 
its applicability in a Future Force scenario is unclear. 
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Also, a Future Force Nowcast application is anticipated to have an outer domain model with  
80 by 80 grid points at a 5-km grid resolution with an inner nest of 100 by 100 points at a 1-km 
resolution.  Execution time for a model such as WRF, run at such a fine horizontal scale, needs 
to be investigated to determine what size cluster will be required for “reasonable” run times. 
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1-D one-dimensional  

2-D two-dimensional  

3-D three-dimensional 

ACAR aircraft automated reports 

ARW Advanced Research WRF 

GFS Global Forecast System  

GOES  Geostationary Operational Environmental Satellite 

GPS global positioning system 

GRIB Gridded Binary 

GSD       Global Systems Division 

HDW high density winds  

LAPS  Local Analysis and Prediction System 

LSM Land Surface Model 

LSO LAPS surface observation 

MADIS Meteorological Assimilation Data Ingest System 

METAR Meteorological Aerodrome Report  

MM5 Mesoscale Model Version 5  

N north 

NAM  North American Model  

NCAR National Center for Atmospheric Research 

NCEP  National Center for Environmental Prediction 

netCDF Network Common Data Format 

NEXRAD  Next Generation Weather Radar 

NOAA  National Oceanic and Atmospheric Administration 

NOAH  NCEP, Oregon State University, Air Force, Hydrologic Research Lab 

NOGAPS Navy Operational Global Atmospheric Prediction System  

OS operating system 

PBL  planetary boundary layer 

PIREP  pilot reports 
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RAMS Regional Atmospheric Modeling System 
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RPC Remote Procedure Call 

RUC  Rapid Update Cycle 
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SAMS Surface Automated Measurement System 

UT  universal time 

VM Virtual Machine 

VT valid time 

WRF Weather Research and Forecasting 
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