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1. Introduction 

This report addresses the current uses of field programmable gate arrays (FPGAs) and their 
potential for use in high performance computing (HPC).  FPGAs are devices programmed using 
languages and methodologies originally developed for describing the circuit layouts used in 
today’s integrated circuits.  As such, they are well suited for applications involving bit 
manipulations performed on a continuous stream of data.  However, their general applicability to 
HPC applications is open to debate.   

An FPGA is a chip designed to emulate a user-specified integrated circuit.  As such, FPGAs can 
be very useful in prototyping efforts.  More recently, they have been incorporated into add-on 
boards which frequently consist of the following: 

• One or more FPGAs. 

• A small to moderate amount of fast memory (static random access memory [SRAM]). 

• Optionally a larger amount of dedicated on board memory (dynamic random access 
memory [DRAM]). 

• An interface for connecting the board to the system that will be hosting it.  In most cases 
this will be based on either the peripheral component interconnect (PCI) or the newer 
peripheral component interconnect extended (PCI-X) standards. 

There are many companies that make these boards.  Information for two of them can be accessed 
at the companies’ websites (http://www.nallatech.com and http://www.celoxica.com). 

Xilinx and Altera are the major manufacturers of the FPGAs.  Many of their products include 
additional features such as the following: 

• A small amount of on chip fast memory. 

• A complete embedded PowerPC processor. 

• Specialized circuitry such as analog-to-digital converters. 

• Digital signal processor (DSP) slices, from which entire DSPs and other types of 
computational units can be efficiently constructed. 

More information can be accessed at the companies’ websites (http://www.xilinx.com and 
http://www.altera.com). 
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2. FPGA Uses 

There are many uses for FPGAs, and currently, most of the following them have nothing to do 
with HPC.  Examples of non-HPC applications for FPGAs include the following: 

• Replacing application specific integrated circuits (ASICs) in a design in an attempt to 
reduce the time to market. 

• Replacing ASICs in a low volume product in an attempt to save money (ASICs are 
cheaper, but only when ordered in quantity). 

• Temporarily replacing ASICs (or possibly even the processor itself) during the design 
phase of a project.  This would make it easier to test out the merits of alternative designs 
before committing to one. 

• Accelerating applications that are primarily composed of a large number of bit 
manipulations, including signal and image processing and cryptography, which can all be 
HPC applications under the correct circumstances. 

• Simulating networks, which would otherwise be an HPC application. 

• Simulating ASICs prior to their production. 

FPGAs may be applied to HPC applications in the following distinct ways: 

• The acceleration of bit manipulations (as just mentioned). 

• Integer calculations. 

• Fixed-point (sometimes called decimal) calculations. 

• Floating-point calculations using dedicated adders, multipliers, and/or fused multiply-add 
units.  These may be formed entirely from reconfigurable cells, or they may be formed 
from DSP slice technology combined with glue logic created out of reconfigurable cells. 

• Floating-point calculations using soft implementations of embedded microprocessors (the 
Xilinx Virtex 2 and Virtex 4 FPGAs currently support a maximum of two such 
microprocessors per FPGA). 
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3. Mapping HPC Applications to FPGAs 

When discussing the mapping of HPC applications to FPGAs, it is important to gain insights into 
how this might be done based on historical experience in moving HPC applications to new 
platforms.  In particular, four case studies will be considered: 

1. Many early parallel architectures meant for HPC used large numbers of very simple 
processors (e.g., 1-bit processors in the DAP and early Connection Machine and 4-bit 
processors in the MasPar MP-1).  These processors were well-suited for calculations 
involving simple bit manipulations and were frequently a good choice for integer and 
fixed-point calculations.  However, experience rapidly demonstrated their limitations when 
it came to floating-point calculations.  Interestingly, it was found for some signal and 
image processing applications that the number-theoretic transform could be used in place 
of the floating-point intensive fast fourier transform (FFT) (1).  Therefore, it can be seen 
that by significantly altering the algorithm, they were able to change a floating-point 
intensive application into a bit-manipulation intensive algorithm that was well suited to the 
new systems. 

2. Many of the early parallel architectures used processors that ranged from very weak (1–4- 
bit processors) to relatively weak (early microprocessors equipped with 32-bit floating 
point units capable of delivering at most a few MFLOPS*/processor).  Therefore, it was 
necessary to use thousands (sometimes tens of thousand) of these processors to solve a 
single problem.  Many applications were poorly suited to these systems.  However, 
rewriting the applications to use embarrassingly parallel applications (e.g., Monte Carlo 
methods), made it possible to use these large numbers of processors.  Unfortunately, some 
of these new algorithms were computationally less efficient than their predecessors, which 
complicated efforts to compare the new systems to the benchmark Cray vector processors 
of the time. 

3. As the power of the microprocessors started to catch up with that of the Cray vector 
processors, it became possible to discuss using significantly less than 1000 processors in an 
HPC application.  However, it was found that codes based on implicit algorithms were 
difficult to parallelize in a distributed memory environment.  As a result, today one finds 
that many of the most frequently used applications on distributed memory parallel 
architectures use an explicit algorithm, which supports the concept of scaled speedup (also 
known as soft scalability, as opposed to the traditional metric of fixed size speedup, also 
known as hard scalability) (2).  Again, there were some misgivings about this since the 

                                                 
* MFLOPS = million floating point operations per second. 
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most computationally efficient algorithms on Cray vector processors were generally 
considered to use an implicit formulation. 

4. With the advent of reduced and complex instruction set computer architectures with large 
caches (1 megabyte [MB] or larger), many researchers noted two things.  The first was that 
vector-tuned codes ran very inefficiently on the new processors, frequently delivering less 
than 1% of peak (compared to the 20%–50% of peak many applications were reputed to 
achieve on Cray vector processors).  The second thing that was noted was that 
implementation level tuning aimed at reducing the number of cache and translation look-
aside buffer misses could frequently improve performance by a factor of 2–10 or more.  
Additionally, many of the Cray optimized applications were out-of-core solvers relying on 
the fast, solid state disk with which the Cray X/MP, Y/MP, etc. were equipped.  In fact, 
some of these applications could have run slightly more efficiently on the Crays as in-core 
solvers, but they were vastly easier to schedule and therefore provided faster turn around 
times when run as out-of-core solvers.  The new parallel architectures lacked solid state 
disks but, in general, had significantly more generous amounts of main memory (as did the 
Cray 2).  Therefore, one could frequently improve performance by one or more orders of 
magnitude if the application could be rewritten as an in-core solver, when using enough 
processors to support that mode of operation without paging (on distributed memory 
architectures, the number of processors used determines the amount of available memory). 

From this it can be seen that, when trying to take advantage of a new architecture with 
dramatically different characteristics, it may be necessary to adapt significantly different (and 
even entirely new) approaches to solving the problem.  In particular, it would be interesting to 
investigate the substitution of the number-theoretic transform for a 64-bit FFT in one or more 
appropriate HPC applications.  While there are multiple ways in which one can view an FPGA, 
two of the most productive, in terms of HPC, are likely to be the following: 

1. A huge number of 1-bit processors. 

2. A significant number of computational units that need to be combined as some sort of 
systolic array so that the memory bandwidth/requirements are well-matched to the 
limitations of the hardware (3). 

4. Peak Performance of FPGAs vs. Microprocessors 

There are a variety of ways in which one might compare the performance of an FPGA to that of 
a microprocessor.  This report considers four such comparisons to demonstrate that it is possible 
for FPGAs to be the right tool for one job, a reasonable tool for a second job, and a questionable 
tool for other jobs.  For all four of these cases, a comparison will be made between a 200–500- 
MHz FPGA based on the Xilinx Virtex 4 FPGA with 200,000 cells (with at least one usable gate 
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per cell) and the 3.6-GHz Intel Pentium 4 processor.  Both of these are state-of-the-art chips.  
The Pentium 4 is equipped with 1 MB of cache.  The Virtex 4 has some on-chip SRAM, up to 16 
MB of off-chip SRAM, and optionally hundreds of megabytes/several gigabytes of dedicated  
on-board DRAM.  The four comparisons of an FPGA’s performance to that of a microprocessor 
are as follows: 

1. The simplest use of an FPGA is to perform a series of bit manipulations.  Most frequently, 
this would be done in place of an ASIC.  Since the usable clock rate of an FPGA can 
decrease as the percentage of gates in use increases, it will be assumed that one can 
construct a 200-MHz system using 200,000 usable gates, producing 40-trillion bit 
operations per second.  In contrast, the Pentium 4 can carry out one SSE2/SSE3 operation 
on 128 bits per cycle.  This translates into 461-billion bit operations per second.  Both of 
these numbers are, of course, peak speeds.  Clearly, the FPGA has a significant 
performance advantage over the Pentium 4. 

2. One can also use the FPGA to emulate up to 256 DSPs interconnected in a systolic array.  
In the case of the Virtex 4, these DSPs would be clocked at 500 MHz and implement 18-bit 
fixed-point arithmetic.  This comes out to 128–256 billion operations per second.  The 
closest comparison for the Pentium 4 would be to use SSE2/SSE3 operations on eight 16-
bit operations per cycle.  This comes out to 29-billion operations per second.  The Virtex 4 
is still better, but not by as much.  Furthermore, depending on what exactly it is you want 
to do and which FPGAs you will be using, either the FPGA or the Pentium 4 might be 
better for fixed-point arithmetic. 

3. Alternatively, it is also possible to use a combination of two DSPs and some glue logic to 
perform 32-bit floating-point operations.  Presumably, one can use four DSPs with glue 
logic to perform 64-bit floating-point additions (multiplications require a larger number [at 
least eight] of DSPs).  This would come to 64 GFLOPS for 32-bit operations, or roughly 20 
GFLOPS for 64-bit operations.  The peak speed for a Pentium 4 when using SSE2/SSE3 is 
14.4 GFLOPS for 32-bit operations and 7.2 GFLOPS for 64-bit operations.  Clearly, if one 
can combine a large fraction of the DSPs on a single Virtex 4 (or multiple Virtex 2s) into a 
systolic array, one has a reasonable chance of beating the Pentium 4.*   

4. Finally, one can implement a complete embedded microprocessor on the FPGA.  The 
Vextex 4 supports a maximum of two 450-MHz PowerPC microprocessors.  If they are 
each capable of carrying out one fused floating-point multiply-add operation per cycle, this 
gives a peak speed of 1.8 GFLOPS.  The peak speed of the Pentium 4 when using 
SSE2/SSE3 is 14.4 GFLOPS for 32-bit operations and 7.2 GFLOPS for 64-bit operations.  
Therefore, one would expect the Pentium 4 to be the clear winner in this case.  In some 
cases, access to the large amounts of off-chip SRAM may significantly close the gap in 

                                                 
* On systems lacking a large number of hardwired DSPs, one could do this entirely in reconfigurable logic, but it would 

probably be less efficient (in terms of space) and would probably operate at a lower frequency. 
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terms of delivered performance.  However, this is not the end of the story.  The following 
are at least three ways in which FPGAs can catch up with, and possibly even overtake, 
microprocessors when performing floating-point operations (4): 

  (1) Many systems use more than one FPGA per microprocessor. 

  (2) FPGAs, with their large amounts of tightly coupled SRAM, will usually get a very 
high percentage of peak on well-structured loops/loop nests.  Please note, in many 
cases, it is possible to tune the code for these loops to achieve a high percentage of 
peak on the microprocessors as well. 

  (3) If one uses dedicated floating-point adders/multipliers/multiply-add circuitry in 
conjunction with “nonstandard” floating-point representations, one can significantly 
increase the number of floating-point operations that can fit onto a single FPGA. 

As another point, the growth in the peak speed of mainstream microprocessors has significantly 
slowed and, in some cases, shifted into reverse while the industry adopts the concept of chip 
multiprocessors.  In contrast, the clock rate for FPGAs is still increasing.  At the same time, the 
number of circuit elements per FPGA is rapidly increasing with each new generation of process 
technology (chip-manufacturing technology).  This observation has come to be known as 
DeHon’s Law (5).  Unfortunately, as was pointed out by Underwood and Hemmert (4), as the 
number of gates per FPGA increases, most vendors of reconfigurable systems are decreasing the 
number of FPGAs per system, therefore keeping the gate count per system nearly constant.  

5. Metrics:  Understanding the Problem 

In developing viable metrics for proposed FPGA programs, it is important to first determine the 
most important characteristics of the program.  Our office is just getting into this field, and in our 
opinion, the most important characteristics of the program are the following (6): 

• Ability of the program to produce the correct answers 

• Performance of the FPGA implementation of the program 

• Portability of the FPGA implementation of the program 

• Time and effort required to produce the FPGA implementation of the program 

The first metric is self evident.  From the standpoint of HPC, it only makes sense to consider 
using exotic hardware, such as FPGAs and general purpose graphical processing units, as 
application accelerators if they provide a significant boost to performance.  It should be noted 
that for other applications (such as embedded processing) other considerations (such as time to 
market and energy consumption) may be more important.  The requirement for a significant 
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boost to performance is based on the assumption that there is significant pain as well as added 
expense in using exotic hardware.  It should also be noted that HPC is not about making a run 
take a millisecond instead of a second.  For serial runs, HPC usually is considered to start around 
24 hr of wall-clock time when one has at least one CPU month’s worth of runs to make.  For 
parallel runs, HPC runs probably start around 3 hr of wall-clock time with at least 1 CPU 
month’s worth of runs to make.  However, given the current resources throughout the  
U.S. Department of Defense High Performance Computing Modernization Program (HPCMP), 
most of these runs would be considered to be poor candidates for using FPGAs.  Challenge-type 
runs are much more likely to be the best candidates (in terms of justifying the time, cost, and 
effort/pain that goes into programming an FPGA).  More information can be found at the 
HPCMP’s website (7).  Therefore, it is suggested that in order to obtain a good tradeoff, the 
prime candidates should have allocations in excess of 100-million CPU seconds (30,000 CPU 
hours) per year, and 1 or 2 orders of magnitude above that would be even better. 

When tuning/parallelizing programs, it is not uncommon for the effort to be measured in man 
months if not man years.  It is expected that, initially, the effort involved in using FPGAs will be 
at least as great, and probably greater, until one has put together a fully trained staff with 
experience using these tools.  Therefore, it is probably inappropriate to use these tools on a 
project that is expected to last less than 1 year.  Furthermore, it is important that the project 
continues to use existing technology until the FPGA solution is up and running and has been 
fully tested. 

The two remaining characteristics, performance and portability, with respect to FPGAs, are 
somewhat mutually exclusive.  If one programs to the strengths of an FPGA and the chips (e.g., 
SRAM) it is packaged with, one is likely to see improved performance at the expense of losing 
some degree of portability.  Therefore, if one is starting out with a program written in a higher 
level language, one will probably want the compiler/programming tools to produce a new layout 
for each of the prospective platforms.  Anything less is equivalent to programming to some 
common subset of the equipment (e.g., in terms of conventional microprocessors, using software 
emulation of floating-point since some early microprocessors lacked floating-point hardware).  It 
is also important to note that it is not always desirable to use all of the FPGA for a single loop 
nest, since that would require the FPGA to be reprogrammed (a very slow task—milliseconds to 
possibly as long as a second in duration) when transitioning between loop nests. 

Experience has shown that, depending on the requirement, FPGAs can frequently produce 
speedups in the range of a factor of 2–100 (8).  In most cases, speedups of less than a factor of 10 
do not appear to justify, at this time, the effort of switching to a system augmented with FPGAs.  
Ideally, for parallelized applications, this improvement in performance should be achieved 
without significantly interfering with the scalability of the code up to at least 1000 processors. 

Prior examples that justified the effort required to design and build custom HPC systems include 
the following: 
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• Signal- and image-processing for satellite reconnaissance data/sonar net data 

• Quantum chromodynamics (1- and 2-year runs on IBM’s GF11, as well as systems from 
Japan, Columbia University/Brookhaven National Lab, etc.) 

• Cryptography dating back to Turing’s work during World War II 

• Astronomy for problems that do not lend themselves to tree-based approximations (the 
various incarnations of the GRAPE project) 

• A few high-end chemistry projects (MD-GRAPE) 

It is important to consider what types of programs are the best candidates for using a  
FPGA-based solution.  The ideal program should have a single loop that iterates forever and is 
simple enough that it can be translated into VHDL (VHSIC hardware description language, 
where VHSIC stands for very high speed integrated circuit) that will easily fit onto the available 
hardware, while at the same time meeting the performance objectives previously mentioned.  In 
reality, most HPC applications will have multiple loops that need to be placed on the hardware.  
This will require tradeoffs between the benefits of using a larger percentage of the hardware for a 
particular loop versus the cost of reprogramming the hardware when transitioning between loops.  
In particular, it is unlikely that one will want to place the entire basic linear algebra subprograms 
(BLAS) library on an FPGA at once, since at any given time nearly all of the hardware would be 
idle.  On the other hand, if one does not place the most frequently used routines on the FPGA at 
the same time, then one will be spending nearly all of the time waiting for the FPGA to be 
reprogrammed. 

Another consideration is the time required to pass data/control between the processor and the 
FPGA.  This is an expensive process to be avoided whenever possible, as it is with virtually all 
approaches to using attached processors.  However, this raises the question of Amdahl’s Law.  If 
we assume that the portion of the code that runs on the FPGA produces a speedup of a factor of 
20, at least 95% of the work would now have to be done on the FPGA in order to achieve an 
overall factor of 10 speedup.  If one includes reasonable assumptions concerning the cost of 
transitioning between the processor and the FPGA and back again, then these transitions will 
need to be few and far between, or one will need better than a factor of 20 speedup for the 
hardware assisted code and/or close to 100% of the work will need to be done on the FPGA. 

Vincent Natoli, Ph.D. of Stone Ridge Technology has given presentations in which he 
recommends sticking to dense computational kernel and/or iterative algorithms whenever 
possible.  His slides stress the importance of keeping the calculation entirely within the FPGA 
for as long a period as possible (ideally, this would be forever or at least until the end of the run). 
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6. Metrics:  Practical Guidelines 

Based on these and some other considerations which will be briefly touched on, it is suggested 
that the following metrics are used in judging the effectiveness of a VHDL program for use with 
an HPC application: 

1. To what extent is the program a good candidate, based on the expected number of runs, 
time required per run, allocation, and number of years over which one expects to be using 
the program? 

2. On a loop by loop basis, what are the estimated speedups ignoring overhead costs, the costs 
of data motion, reprogramming costs, etc?  If you are not seeing a significant speedup (e.g., 
a factor of 10) when combining these speedups on a weighted basis, then you should 
probably stop or consider running some of the less efficient loops on the node’s processor. 

3. Consider the cost of moving data between the FPGA and main memory (or, for FPGAs 
with dedicated DRAM, the FPGA’s DRAM and main memory) and/or between the FPGA 
and the microprocessor.  In particular, consider the portion of this cost that ordinarily 
would not be overlapped with useful work by either the FPGA or the microprocessor.  
According to Natoli (9), when using an FPGA on a PCI card to execute the BLAS-1 
routine for Dot Product, the FPGA will spend nearly all of its time waiting for data to 
transfer through the rather slow PCI bus, allowing the CPU to run the standard library 
routine in a fraction of the time required by the FPGA.  For FPGAs with more efficient 
access to memory (e.g., Cray XD-1, SGI Altix, or newer cards using PCI-express) and/or 
their own dedicated DRAM, this might be less of a problem. 

4. Estimate the number of times that all or portions of the FPGA would need to be 
reprogrammed during the life of an average run, and estimate the expected costs associated 
with that reprogramming.  Adjust this number when appropriate so it only reflects the 
portion of time required that is not overlapped with useful work. 

5. Recalculate on a loop-by-loop basis what the estimated speedups are, but include the data 
from steps 3 and 4.  If you are still showing any speedup less than a factor of 2, you should 
stop.  There are still too many other factors to consider, and the actual speedup will 
probably be even less than you have estimated. 

6. If you are determined to move ahead, and your estimated speedup was on the low side, you 
might want to see where all the time is going.  If you are spending too much time switching 
the work between the microprocessor and the FPGA and back again, look into the 
possibility of moving all of the work to the FPGA, even if some of the loops are inefficient.  
On the other hand, if you are spending an excessive amount of time reprogramming the 
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FPGA, you might want to consider approaches to reducing this time (e.g., using simpler 
instantiations of the loops so that they require fewer gates). 

7. As was previously mentioned, most FPGAs have on-chip SRAM.  Many are also equipped 
with off-chip SRAM and/or large amounts of dedicated DRAM.  In general, some data 
needs to be staged in the SRAM, while other data will be streamed through the FPGA 
directly from main memory (or in the case of signal and image processing applications, 
directly from the satellite/sonar array/radar system, etc.).  So far, only the cost of staging 
the data in the SRAM has been considered.  Consider the cost of moving the data into and 
out of the FPGA as well.  In cases where data flows directly from the gates associated with 
one loop into the gates associated with another loop, the cost of this also needs to be 
considered.  An implementation is considered well balanced if the required memory 
bandwidth (in terms of bandwidth to/from the SRAM and to/from any other relevant units, 
each considered separately) is less than or equal to 100% of the peak bandwidth.  If it isn’t, 
the memory system will not be able to keep up with the demands of one or more loops, and 
these loops will need to be redesigned. 

8. If you have made it this far and everything still looks promising, you may want to consider 
the possibility that things will not fit on the FPGA quite as easily as hoped.  In Byoungro  
et al. (10), it is suggested that one should use “behavioral synthesis tools” to estimate the 
actual requirements for placing the VHDL on the FPGA.  They can be used in a relatively 
short amount of time to check the fit and, when necessary, consider the fit of alternate 
implementations.  Once the most promising implementation(s) have been identified, you 
may proceed to using the placement tool—a process that may take hours/days per 
implementation. 

7. Metrics:  Non-HPC Applications 

It is nearly impossible to come up with metrics for non-HPC applications without additional 
guidelines.  Why does one want to use FPGAs?  Perhaps for one of the following reasons: 

• For the fun of it 

• To get your feet wet 

• To save money 

• To get the product to market faster 

• To create a test bed for ideas before creating dedicated silicon 

Some applications of interest to the military have traditionally used some combination of 
custom/semicustom processors and custom ASICS.  Examples of these include the following: 
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• Real time encryption/decryption (not code breaking) of message traffic 

• Other aspects of communication 

• Guidance systems (especially for missiles, and antiaircraft artillery) 

• Low to moderate resolution radar/sonar (high resolution [used in missile defense or for the 
distant early warning (DEW) line where an entire border needs to be protected] is more 
properly considered an embedded HPC application) 

• Almost any other use of embedded electronics 

Many of these areas could use FPGAs and/or other types of specialized hardware.  In general, 
only the proponent for those systems can supply any but the most general of metrics/ 
requirements.  It should be noted, however, that in many cases, metrics/requirements such as the 
following list will be just as important as getting the correct answer (and may be more important 
than the precise speed of the system): 

• Size 

• Weight 

• Durability 

• Energy requirements 

• Compatibility with current practices 

• Time to market 

In many cases, the major contractor will ignore issues such as code portability or the long-term 
availability of system components.  They may buy some of the components in large batches in 
order to assure the availability of those components during the initial phases of the contracts.  In 
other cases, they may work with small specialized companies to continue the production of 
components long after the original supplier discontinued the parts (this is increasingly a problem 
with designs that use discreet components and/or components with a low scale of integration). 

According to West et al. (11), MIT Lincoln Laboratory has a benchmark written in serial C 
called RASSP (rapid prototyping of application specific signal processors).  They adapted it for 
use in benchmarking a hybrid system consisting of FPGAs, DSPs, and general purpose 
processors.  They also used a program called RT_STAP (real time STAP) that was originally 
developed by the MITRE Corporation to benchmark this hardware for space-time adaptive 
processing. 
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8. Conclusions 

This report has discussed the potential for using FPGAs to accelerate HPC applications.  While 
there are clear potential benefits for certain classes of applications, one needs to be aware of the 
many obstacles before one can realize even a fraction of the anticipated benefits.  Even so, 
several vendors (Cray, SRC, SGI, and Linux Networx) have developed HPC architectures that 
incorporate FPGAs. 

Currently, one of the most serious limitations in using FPGA-based/augmented systems is the 
steep learning curve associated with VHDL.  Therefore, a number of groups have developed 
proprietary tools that sit between the programmer and the VHDL compiler.  These tools fall into 
two main categories:  graphical-user-interface-based tools and compilers based on an augmented 
version of the C programming language. 

Only time will tell the degree to which this approach to HPC is generally applicable.  However, 
there is already strong evidence to believe that for many integer and bit-oriented applications, 
FPGAs are already the correct solution. 
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