

GPUs: An Emerging Platform for

General-Purpose Computation

by Sha’Kia Boggan and Daniel M. Pressel

ARL-SR-154 August 2007

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5067

ARL-SR-154 August 2007

GPUs: An Emerging Platform for
General-Purpose Computation

Sha’Kia Boggan and Daniel M. Pressel

Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

 ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

August 2007
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

1 October 2006–31 May 2007
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

GPUs: An Emerging Platform for General-Purpose Computation

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

7UH7CC
5e. TASK NUMBER

6. AUTHOR(S)

Sha’Kia Boggan and Daniel M. Pressel

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
AMSRD-ARL-CI-HC
Aberdeen Proving Ground, MD 21005-5067

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-SR-154

10. SPONSOR/MONITOR’S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The affordability and computational power of GPUs have made them the focus of an emerging area of research designed to
explore their performance for general-purpose computation. GPGPU, as this area of research is called, involves the exploration
of the computational power of programmable GPUs and their suitability for non-graphics applications through algorithm and
software development. Although there are some challenges with using these specialized devices for numerous applications,
their attributes and significant speedup for some applications continue to make them an attractive platform for research.

15. SUBJECT TERMS

GPU, HPC, supercomputing, scientific computing

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON
Daniel Pressel

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE

UNCLASSIFIED

17. LIMITATION
OF ABSTRACT

UL

18. NUMBER
OF PAGES

50

19b. TELEPHONE NUMBER (Include area code)
410-278-9151

 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Figures v

List of Tables v

1. Introduction 1

2. GPU 2

3. Limitations 5

4. The Curse of Memory 5

5. Software 8

6. GPU Programming Model 13

7. GPGPU Applications 14

8. Results 15

9. Conclusion 15

10. References 18

Appendix A. Code Examples for BrookGPU 21

Appendix B. Code Programming Example for Cg 23

Appendix C. Code Programming Example for GLSL 27

Appendix D. Code Programming Example for PeakStream 29

Appendix E. Code Programming Example for Scout 31

Appendix F. Code Programming Example for CGiS 33

 iv

Appendix G. Code Programming Example for Accelerator 35

Glossary 37

Distribution List 40

 v

List of Figures

Figure 1. The programmable floating-point performance of GPUs (measured on the
multiply-add instruction counting two floating-point operations per MADD) (3)....................3

Figure 2. The graphics hardware pipeline (3). ..4
Figure A-1. Matrix vector multiply implemented in BrookGPU. ..22
Figure A-2. BrookGPU kernel definition. ..22
Figure B-1. Transforming a section of code for performing an Advect from C++ to Cg.24
Figure B-2. Implementing the Black-Scholes model in Cg..25
Figure B-3. Implementing the cumulative normal distribution function......................................25
Figure C-1. GLSL Fragment program implementing the combined passes 1 and 0 for row-

wise sorting of the bitonic merge sort..28
Figure D-1. Computing PI with PeakStream. ...30
Figure E-1. Heat diffusion implemented in Scout. ...32
Figure F-1. Part of a CGiS program for calculating refractions. ..34
Figure G-1. A 2-D convolution implementation using C# version of Accelerator.36

List of Tables

Table 1. GPU programming tools. ..11
Table 2. Application performance CPU-based vs. GPU-accelerated implementations................16

 vi

INTENTIONALLY LEFT BLANK.

 1

1. Introduction

Rendering graphics is a mathematically intensive task that, if tackled solely by the CPU, could
cause performance to slow down. To offload this work from the CPU and onto hardware that
has been optimized for the task, personal computers, workstations, and game consoles use a
GPU.* The GPU is a combination of a coprocessor and tightly coupled high-speed memory
(GRAM) that is responsible for rasterizing images through a graphics pipeline. The CPU is still
required for other classes of work (e.g., solving the physics-based equations in a CFD simulation
or a state-of-the-art video game).

GPUs can be grouped into the following two classes:

1. Low-end units that provide support for two-dimensional (2-D) applications (e.g., Microsoft
Word, XTerm, and Telnet, surfing the web, and watching videos).

2. High-end units equipped with Z-buffers and full hardware support for sophisticated three-
dimensional (3-D) applications. Up until a few years ago, these were very pricey and
usually were only found in midrange to high-end products from companies like SGI.

As a result of advances in manufacturing technology and their widespread use in game consoles
and PCs that have been optimized to play video games, the cost of high-end GPUs has declined
dramatically. The rest of this report will assume that these are the units being discussed.

Historically, GPUs operated within a fixed-functionality pipeline, with limited capabilities for
rendering. Modern GPUs consist of fully programmable floating-point pipelines with notable
computational power and memory bandwidth. These architectural advances equip the GPU for
more than just graphics. GPUs are best suited for applications that are highly parallel,
computationally intensive, and have highly regular memory-access patterns.

Over the past few years, GPUs have surpassed CPUs in performance, in absolute terms and in
relative speedup over time (i.e., at a rate greater than predicted for CPUs by Moore’s Law).
Researchers and code developers are intrigued by the potential to use GPUs as an attached
processor for the purpose of speeding up nongraphics algorithms. GPUs have been leveraged
into a number of nongraphical applications, including signal and image processing,
bioinformatics, CFD, chemical dispersion, database operations, and mathematical libraries (e.g.,
BLAS).

This report discusses the current uses of GPUs and their potential for use in general-purpose
computing. Section 2 describes the evolution of the architecture of the GPU as it lends itself to
general-purpose computation. Sections 3 and 4 discuss some limitations and issues that must be

*Note: definitions for many of the terms used in this report can be found in the glossary section.

 2

considered when harnessing the GPU’s power for nongraphics applications. Some software and
programming tools that have been helpful in the programming of GPUs are explored in sections
5 and 6. Section 7 outlines some applications that have proven to be well-suited for computation
on the GPU. Lastly, section 8 discusses performance results that various researchers have
reported when using GPUs for nongraphics applications.

2. GPU

Driven by the economics of the game industry, GPUs have become an affordable and attractive
platform for research techniques to increase the speed of general computation. The performance
of GPUs has increased yearly and is projected to continue at rates that surpass the performance
growth rate of CPUs (figure 1). Current GPUs have achieved significant gains in performance
and memory bandwidth over CPUs. Stanford University, in their protein-folding simulation
project, has observed performance gains of up to 40× that of an Intel Pentium 4 CPU while using
high-end ATI GPUs (1). According to Fan et al. (2), the performance advantage of GPUs over
CPUs can be attributed to the following:

1. “A current GPU has as many as 16 pixel processors and 6 vertex processors that execute
four-dimensional (4-D) vector* floating-point instructions in parallel.

2. Pipeline constraint is enforced to ensure that data elements stream through the processors
without stalls.

3. Unlike the CPU, which has long been recognized to have a memory bottleneck for massive
computation, the GPU uses fast on-board texture memory, which has one order of
magnitude higher bandwidth.”

In his survey, Owens gives credit for the GPUs’ better performance to the “highly data-parallel
nature of graphics computations,” which “enables GPUs to use additional transistors more
directly for computation, achieving higher arithmetic intensity with the same transistor count”
(3). Because of the performance disparity, the GPU has been established as an economical
evolving research platform and its power is being used for general-purpose computation.

With the GPU as a computing device dedicated to rendering graphics tasks, it is important to
understand its architecture. Early GPUs were the size of a large file cabinet. Over the years,
advances in technology have shrunk them to the point that GPUs and their associated chips will
fit onto a small printed circuit card, and, in some cases, are found directly on a computer’s
motherboard. The GPU renders a graphics task through a pipeline (figure 2) consisting of a

*This 4-D vector refers to the RGBA texture data.

 3

0

20

40

60

80

100

120

140

160

180

2002 2004 2006

Year

G
FL

O
PS

NVIDIA [NV30 NV35 NV40 G70]

ATI [R300 R360 R420]

Intel Pentium 4 (single-core except
where marked)

Figure 1. The programmable floating-point performance of GPUs (measured

on the multiply-add instruction counting two floating-point
operations per MADD) (3).

vertex processor, a rasterizer, a fragment processor, and a frame buffer. In order to enhance the
performance of the GPU, it is now common practice for the GPU to contain multiple vertex and
fragment processors working in parallel. The newest GPU architectures are merging the vertex
and fragment processors into a single unified pool of processors, which leads to more optimal
performance because of the increased capacity of the GPU to respond to the varying shading
demands of an application. The vertex processor assigns or modifies color and texture
coordinates for each vertex and performs any necessary updates of a vertex’s positional data.
The GPU stores pixel properties, such as texture, in the high-speed graphics memory, which uses
a combination of multibanking, data streaming, specialized cache designs, and other techniques
to provide superior levels of bandwidth and latency (4). A nonprogrammable unit with fixed-
functionality within the pipeline then transforms the streams of vertices of a 3-D geometric scene
description to a 2-D screen position (5). The vertices are then grouped into geometric primitives
(normally, triangles or quadrilaterals) and sent to the rasterizer, which generates a stream of
fragments for each pixel covered by the primitive. In the fragment processing stage, a battery of
tests is conducted on each fragment to determine if it will affect the final image. If all tests pass,
the fragment is written to the frame buffer. GPUs employ the paradigm of stream programming,
which allows high-efficiency parallel programming without the complicated software
engineering and design issues (6). GPUs also have been labeled as vector processors operating
within the SIMD programming model. The basic architecture of GPUs has remained stagnant
for the last 20 years; however, they have gained flexibility with increased programmability, with
modern GPUs containing programmable vertex and fragment processors.

 4

Figure 2. The graphics hardware pipeline (3).

GPGPU

The increased flexibility of GPUs has created a new area of research that explores their
performance for general-purpose computation. This area of research entitled general-purpose
computation on GPUs, or GPGPU, is a highly evolving one because of GPU’s cost effectiveness
and computational power (7). Historically, the graphics pipeline described earlier was a “fixed
function pipeline, where the limited number of operations available at each stage of the graphics
pipeline was hard-wired for specific tasks” (3). Evolution has allowed a more flexible
programmable pipeline, to emerge with efforts concentrating primarily on the vertex and
fragment stages. The light and transformation operations on vertices that were present in the
vertex stage of the earlier design of the graphics pipeline have been replaced by a user-defined
vertex program; moreover, the fixed fragment operations that took place in the fragment stage
have been replaced with a user-defined fragment program. “A programmer can now implement
custom transformation, lighting, or texturing algorithms by writing programs called shaders” (8).
Owens’ survey highlights the “vital step for enabling general-purpose computation” on GPUs as
being “the introduction of fully programmable hardware and an assembly language for
specifying programs to run on each vertex or fragment” (3). GPUs now include fully
programmable processing units with support for 32-bit floating-point precision. Each generation
of GPUs is expanding on its already favorable qualities as the next generations from NVIDIA
and ATI (the major players in this part of the market) are expected to support 64-bit floating-
point precision (9, 10). The speed, increasing precision, and rapidly expanding programmability
of GPUs continue to promote them as a platform for general-purpose computation.

 5

3. Limitations

Although the expanding capabilities of modern GPUs make them a compelling platform for
general-purpose computation, limitations and difficulties exist and must be considered. GPUs
are highly specialized devices and were designed to make images of 3-D scenes; the evolution
and tuning of these devices have mainly been to optimize the highly parallel tasks of computer
graphics. Although various applications have been enabled by this performance tuning, many
applications are outside the narrow focus and are not well-suited for computation on a GPU. The
lack of integers, logical operations, and fixed-point arithmetic renders the GPU ineligible for
many computationally intensive tasks. Furthermore, “the lack of double precision hampers or
prevents GPUs from being applicable to many very large-scale computational science problems”
(3). In addition to their limited applicability, GPUs are not trivial to program; they require the
programmer to consider an application that is normally nongraphics in graphics terms, which
requires the programmer to be knowledgeable of the design, evolution, and limitations of the
underlying GPU architecture. However, by hiding many of their architectural features, the
vendors of GPUs have made it almost impossible to predict on an a priori basis what the
potential performance of a specific algorithm on a specific GPU should be. This architectural
black box makes it difficult to identify the correct chip for the job and determine when it is time
to stop tuning the code and move to a new project. A multidisciplinary effort by developers in
computer graphics and the field of interest is usually required to program efficiently. Since the
GPU is designed to process images for the screen, “it may handle as many pixels as the
maximum resolution of the image it can process”, which translates to “the largest size for a
dimension of a data stream is 2,048 floating-point elements” (11). This limitation, as well as the
number of input parameters that can be passed to a GPU function being limited to eight, affects
the GPUs’ relevance to large-scale scientific problems. Transferring results back to main
memory has proven to take a considerable amount of time on GPUs, although this limitation has
been significantly alleviated by the higher bandwidth offered with PCI-Express ports.

4. The Curse of Memory

Most HPC applications require large amounts of memory (several gigabytes to many terabytes)
and multiple fast processors (frequently with a combined peak speed exceeding gigaflops, with
the largest systems having peak speeds that exceed 10 teraflops). It is instructive to look at how
such systems are programmed. There are three main approaches to parallelizing applications on

 6

the distributed memory parallel architectures used in most of today’s HPC systems:

1. Pseudo shared memory, also called globally addressable distributed memory, such as UPC,
CAF, Global Arrays (used in NWCHEM), and the SCALAPACK library.∗ This approach
assumes that the application requires a large amount of memory and, therefore, spreads the
data across multiple nodes. However, it treats the data as though they were in multiple
gigantic arrays that span nodes. In most cases, this will result in fine-grained
communication. Although some systems have a system interconnection that can support
such a communication pattern with an acceptable level of performance, these
interconnections tend to be more expensive and, therefore, are not commonly found. As a
result, this programming paradigm is used less frequently than the third approach.

2. Replicating a significant portion of the data on each of the nodes is required for some
applications in chemistry, ray tracing, applications using databases, etc. Although this
allows one to achieve high levels of speedup through parallelization, it limits the maximum
problem size to what will fit in the memory on a single node. As such, this approach is
only used when it is not possible to use the third approach.

3. Domain decomposition allows one to break large grids into a large number of smaller grids
(normally called subdomains). Each of these subdomains is then worked on by a separate
processor. This allows one to efficiently work on very large problem sizes, since the
communication occurs primarily at the end of each time step (coarse-grained
communication) and the amount of data being transferred is proportional to the surface area
of each subdomain (12). For the remainder of this section, it will be assumed that this is
the programming paradigm being used.

Even with domain decomposition, it is desirable to minimize the amount of communication.
Ideally, the amount of communication should be kept to a size and structure that allow it to be
fully overlapped with computation. This implies that, as the delivered performance (on a per-
processor basis) increases, the amount of work assigned to each processor should also increase.
In particular, if using a GPU as an attached processor will improve the overall per-processor
performance of an application (ignoring communications costs) by a factor of 10 or more, then it
is reasonable to assume that the amount of work assigned to each processor will consume most
of the available memory. In fact, one might even want to increase the amount of memory each
node is equipped with. Currently, most clusters are equipped with at least 512 MB of main
memory per processor (1 GB on a dual-processor node).

As far back as 1995, the term “memory wall” was coined to describe the observation that the
speed of the CPU was increasing faster than the speed of main memory (13). As a result, the
delivered performance of today’s microprocessors is highly dependent upon an application’s

∗Additional information on these can be found at http://upc.gwu.edu, http://www.co-array.org,

http://www.emsl.gov/docs/nwchem /nwchem.html, and http://www.netlib.org/scalapack, respectively.

 7

ability to “live” out of cache. In other words, unless there is a significant amount of data reuse in
one or more levels of cache, there simply is an insufficient amount of memory bandwidth to keep
the processor busy. Even with a reasonable level of data reuse, the memory latency associated
with a cache miss missing all the way back to main memory would normally be considered
excessive (hundreds of possibly even a few thousand, CPU cycles). This problem is normally
addressed through some combination of stream buffers, nonblocking cache misses (allowing
multiple misses to overlap their latencies), and/or pre-fetching (14).

If the memory wall is a problem for the CPU, then one can imagine the potential for it to be an
even bigger problem when one is talking about any attached processor, with which one hopes to
significantly accelerate the performance of an application. The good news is that most GPUs,
and all high-end GPUs, are equipped with a significant amount of dedicated graphics memory
(also sometimes referred to as video memory or GRAM). Additionally, this graphics memory is
organized into multiple banks (4). As such, it supports multiple memory accesses per cycle,
while the tight coupling between the GPU and the graphics memory keeps the latency low. The
effective latency is reduced even further when the GPU streams data into and out of the graphics
memory. All of this is reminiscent of vector processors, except there are no vector registers.

Now for the bad news: high-end GPUs are routinely equipped with 128 or 256 MB of graphics
memory (older, less expensive, and/or GPUs meant for use in portable devices will usually have
significantly less graphics memory, e.g., 16–64 MB). The problem is that since this is
significantly smaller (by at least a factor of 2) than the size of per-processor main memory (when
one is using GPUs for nongraphics applications), one must anticipate the need to stream data
between main memory and the graphics memory. This data will move through the PCI-Express
bus or one of the older buses that are totally inadequate for this task (e.g., AGP, PCI, or PCI-X).
Although the PCI-Express bus provides significantly better bidirectional bandwidth and latency
than its predecessors, it is still in no way capable of supplying the voracious appetite of a state-
of-the-art GPU for data.

This demonstrates the importance of implementing the algorithm in a manner that supports a
high level of data reuse in terms of the graphics memory. If the algorithm uses functions such as
matrix multiply and fast Fourier transform (FFT), this should not be difficult. However, when
one is using level 1 BLAS functions such as dot product, there is little or no potential for data
reuse within a single call. In general, such a function would be considered poorly suited for use
on a GPU. However, it is sometimes possible to group successive or concurrent calls to such
functions in a manner that produces the necessary level of data reuse. Therefore, although this
does not preclude the use of GPUs and other attached processors, it can represent a significant
obstacle to the successful use of these devices for nongraphics applications. Clearly, one of the
simplest solutions is to buy the GPUs with the largest amount of graphics memory possible.
Some GPUs can be purchased with 512 MB of graphics memory, and at least one device
supports more than 1 GB of graphics memory (9, 10).

 8

Anticipating the Speedup

What kind of speedup might one reasonably expect to see when using GPUs in a cluster
computer? In this discussion, we make the following assumptions:

• A high end GPU is being used.

• The algorithm lends itself to the GPU and parallelization using MPI on the cluster.

• Implementing the GPU will maximize the amount of work allocated to each processor,
possibly requiring the cluster to be equipped with additional memory per processor.

• The system interconnect used by MPI (e.g., Myrinet, Infiniband, or Quadrix) cannot easily
be enhanced for clusters equipped with attached processors, such as a GPU.

• The CPU-only implementation and the GPU-augmented implementation represent best
efforts.

For a specified problem, this means that in order to keep the time spent on communication in
balance with the computation and therefore maintain the potential to fully overlap the two, one
will be restricted to using fewer GPU-equipped nodes than were used with the conventional
cluster solution. In other words, the predicted speedup would be SG/SC × NG/NC where:

• SG is the speed of the application on a per-processor basis when run on the GPU,

• SC is the speed of the application on a per-processor basis when run on the CPU,

• NG is the number of nodes used when using the GPU (for a fixed total problem size), and

• NC is the number of nodes used when using just the CPUs (for a fixed total problem size).

The subscripts G and C represent the GPU- and the CPU-only-based solutions, S is the speed per
processor in some appropriate unit (e.g., GFLOPS or time steps per hour), and N are the number
of GPUs or CPUs being used. As we have been explaining, NG < NC, and one might hope that SG
would be a factor of 10 or more times greater than SC. Therefore, it would be reasonable to
assume that the overall speedup will be at least a factor of 2 smaller than the per-node speedup.
In reality, for programs that are highly successful at taking advantage of an attached processor,
such as a GPU, one should investigate the options for improving the performance of the system
interconnect (e.g., using a newer interconnect from the same vendor, a faster interconnect from a
different vendor, or multiple rails of the same interconnect).

5. Software

According to Owens, “successful programming for any development platform requires at least
three basic components: a high-level language for code development, a debugging environment,

 9

and profiling tools” (3). Because high-level GPU programming languages are designed with
graphics as a central theme, the languages are often referred to as shading languages. As this
nomenclature suggests, these languages compile a shader program into a vertex shader and a
fragment shader to produce the image described by the shader program. Cg, HLSL, OpenGL are
all such shading languages that allow the programmer to write GPU programs in a more familiar
C-like programming environment. Sh is a shading language that offers a C++-like programming
environment. All of these languages remain close to the specialized nature of GPUs and contain
graphics-specific constructs, i.e., vertices, fragments, and textures. ASHLI operates one level
higher than the aforementioned shading languages and reads as input shaders written in HLSL or
OpenGL and “automatically compiles and partitions the input shaders to run on a programmable
GPU” (3).

Currently, the two major standards for the GPU interface are OpenGL and DirectX. These
standards were designed to program graphics operations; thus, it is not trivial to use them for
nongraphical applications. Because GPU programming requires a programmer to view their
GPGPU application in terms of geometric primitives, languages and libraries have been
developed to provide GPGPU functionality while relieving the programmer of the GPU-specific
details. BrookGPU is a programming language extension to the ANSI C standard that can use
the GPU as a compilation target. BrookGPU affords the programmer advantages such as code
reuse, as code can execute on the CPU or the GPU using the OpenGL or DirectX interfaces, and
an indirection layer relieves the user of having to know whether the code is executing on an
NVIDIA or an ATI chip (15). Scout is a GPU programming language designed for scientific
visualization that “allows runtime mapping of mathematical operations over data sets for
visualization” (16). Accelerator and Computer Graphics in Scientific programming (CGiS) have
similar aims at simplifying GPU programming through high-level data-parallel implementations.
The Glift template library simplifies GPU data structure design and separates GPU algorithms
from data structures so that interfacing with CPU-based parallel data structures is possible.
Several attributes of each of these programming tools are contained table 1. Significant efforts
have been made to ameliorate the demanding task of GPU programming so that GPGPU
developers can utilize the computational power of the GPU at a higher level of programming.
Appendices A–G highlight examples of nongraphical paradigms implemented in several of the
aforementioned programming languages.

A related issue is the limited amount of memory a GPU has for holding the shader program.
This limitation is similar to a program running on the microprocessor. If the inner loop fits into
the level 1 instruction cache, then it has a chance of running efficiently. However, with a GPU,
if the shader program does not fit into the GPU’s program memory, the shader program will not
run at all. It is important to remember that the size of this memory is driven by the needs of
graphics applications.

 10

Debugging on GPUs was fairly limited until the recent surge of tools, yet the need for effective
tools was much greater. The most commonly used debugging tool for programs running on a
CPU, the print statement/printf function, has no counterpart on the GPU. It was established that
because GPUs are now being used for general-purpose computing, a GPU debugger should be
similar in capabilities to a CPU debugger. Variable watches, program break points, and single-
step execution were deemed important features. Along with these standard features for CPU
debuggers, an effective GPU debugger should include some other features, because of the
interactive aspect of GPU programming. “The ideal GPGPU debugger would automate printf-
style (the values of interest are printed to the screen) debugging, including programmable scale
and bias for values outside the display, while also retaining the true data value at each point if it
is needed” (3). Several tools have been developed for GPU debugging; however, nearly all are
missing one or more of the aforementioned important features. gDEBugger and GLIntercept are
tools for debugging OpenGL programs, the Microsoft shader debugger provides the functionality
of runtime variable watches and breakpoints for shaders, and the Shadesmith fragment program
debugger was the first debugger to implement the printf-style paradigm. Although there is still
work to be done in the area of debugger development, the tools that currently exist have proven
sufficient to validate vertex and fragment programs. As the GPGPU field emerges, the
debugging tools will be challenged to become more robust.

11

Table 1. GPU programming tools.

Tool Cost Support Developer Platform(s) Advantages Applications
Accelerator

(17)
Free Open source Microsoft

Research
Platform-independent High-level data parallel

programming model in a
library accessible to most
programming languages

GPGPU programming;
translates data-parallel
operations on the fly to
GPU pixel shaders

ASHLI
(18)

Free Open source ATI Technologies HLSL, OpenGL shading
language code, or a subset
of Renderman as input and
compiles the shader to run
on GPU

Provides a framework for
mapping arbitrary
complex shaders onto
graphics shading hardware

Digital content creation;
bridging the gap between
low level shading
constructs and shading
description of programmer

Brahma
(19)

Free Open source Brahma NET 2.0 Eliminates the need for
learning a shading
language but gives same
speed and performance;
internally handles most of
GPU programming

High-level graphical and
general purpose GPU
programming

Brook GPU
(15)

Free Open source Stanford
University’s

graphics group

DirectX (requires newer
cards—ATI 9700 &
above, NVIDIA 5200 and
above); OpenGL
(Windows & Linux)—
better supports NVIDIA
cards

Useful tool for GPGPU
programmers; utilizes
stream programming
model for easy
parallelization

General-purpose GPU
programming; stream
programming

Cg
(20)

Free Open source NVIDIA Windows, Linux, Mac,
OpenGL and DirectX as
APIs

Cg compiler can optimize
code and do lower level
tasks; familiar C-like
programming language

Interactive effects into 3-D
applications; shader
programs

CGiS
(21)

Free Open source
(upon completion
of compiler frame

work)

Saarland
University

Compiler Design
Lab

Platform-independent Raises GPU abstraction
level

Scientific programming

CUDA
(22)

— Beta release NVIDIA OpenGL and Microsoft
DirectX drivers from
NVIDIA

Uses C to create programs
called threads; CUDA
technology processes
thousands of threads
simultaneously enabling a
higher capacity of
information flow

Data-intensive
applications; physics
computation (giving
gamers great performance
and visual effects)

12

Table 1. GPU programming tools (continued).

Tool Cost Support Developer Platform(s) Advantages Applications
Glift template
(23) library

Free Open source Scientists from
UC-Davis,
Stanford, and
University of
Utah

Integrates with C++, Cg,
and OpenGL development
environment

Simplifies algorithmic
development;
code reuse;
interchangeable
data structures

Defining complex,
random-access GPU data
structures

HLSL
(24)

Free Open source Microsoft Windows Very similar to Cg; can
use for vertex and
fragment shading

High-level GPU vertex
and fragment shader
programming

Open GL
shading
language

(25)

Free Open source 3Dlabs Platform-independent Enables direct compilation
of C-like programs to
graphics hardware
machine code

High-level shader
programming; real-time
cinematic quality graphics

Peak stream
(26)

License required
(limited time no-
cost evaluation

program)

Commercially
available

Peakstream Inc. OS: Linux 4.0
GPU: ATI R580-based
graphics card

Cuts development time by
up to 90% due to easy to
learn API; integrates with
existing developer tools
(i.e. GCC, GDB, and Intel
compilers)

Standard arithmetic and
geometry; 1-D and 2-D
stream arrays; matrix
solver; single and double
precision

Rapid mind
(27)

Free Beta release RapidMind Inc. RapidMind development
platform

Allows developer to use
standard C++
programming to easily
create high-performance
and massively parallel
applications that run on
the GPU

BLAS dense linear algebra
operations; Fast Fourier
Transform

Scout
(16)

Free Open source Los Alamos
National
Laboratory

Platform-independent Allows user to process
multivariate data, express
derived data, and define
mappings to final image in
a familiar environment

Scientific visualization;
hardware acceleration

Sh
(28)

Free Open source Michael
McCool-
University of
Waterloo
Computer
Graphics Lab

For hardware acceleration,
requires ATI Radeon
9600s and up

Portable; object-oriented
programming; familiar
syntax (built on top of
C++)

High-level GPU
programming

 13

6. GPU Programming Model

While programming on the CPU requires a sequential programming model, the GPU achieves its
superior performance through data parallelism, which employs the stream programming model.
The stream programming model structures programs in a manner that affords high efficiency in
computation and communication (29). It exploits the parallelism of the application by
structuring the data into streams and performing computation on the streams with kernels.
BrookGPU offers a stream programming system for GPUs (3). It implements stream
programming concepts with streams as variables and kernels and reductions as functions that
operate on streams; it automatically maps kernels and streams into fragment programs and
texture memory.

Because typical scenes have more fragments than vertices, the highest volume of arithmetic
computation is done in the fragment processing stage. A GPGPU program is structured as
follows (3):

1. Initially, the programmer defines the data-parallel portions of the application and segments
the application into independent parallel sections. Each of these sections can be considered
a kernel and is implemented as a fragment program. The input and output of each kernel
program is one or more data arrays, which are stored in textures in GPU memory. The data
in these textures are considered as streams, and a kernel is invoked in parallel on each
stream element.

2. By passing vertices to the GPU of geometric primitives (typically quadrilaterals) orientated
parallel to the image plane and sized to match the desired size of the output array, the range
of computation is defined, thus invoking a kernel.

3. The rasterizer generates a fragment for every pixel location in the primitive.

4. Each of the generated fragments is then processed by the active kernel fragment program.
The fragment program can read from arbitrary global memory locations but can only write
to memory locations corresponding to the fragment’s location in the frame buffer.

5. The output of the fragment program is a value (or vector of values) per fragment. This
output may be stored as a texture and used for the next pass through the pipeline or it may
be the final result of the application.

 14

7. GPGPU Applications

The performance advantages of GPUs have been explored within various applications, including
physical based simulations, signal and image processing, geometric computing, and databases
and data mining. The increased demand and deployment of GPUs in the last several years has
resulted in increasing experimental research with graphics hardware. Several groups have used
the GPU to successfully implement physically based simulations. The Center for High
Performance Computing at Stony Brook University developed a parallel flow simulation using
the Lattice-Boltzmann model (LBM) on a GPU cluster and simulated the dispersion of air-borne
contaminants in the Times Square area of New York City. The numerical method employed by
the LBM is highly parallelizable, which lends it well to computation on the GPU; moreover, the
specification of boundary shapes is not governed by strict conditions. In order to implement this
model, the LBM operations (e.g., streaming, collision, and boundary conditions) are formulated
into fragment programs to be executed by the fragment processor during the rendering process.
The fragment program fetches current state information from the appropriate textures (arrays),
computes the LBM equations to evaluate the new states, and then passes the results to a pixel
buffer. After the fragment pass is completed, the results are copied back to textures for use in the
next step. This group was able to produce results using 30 GPU nodes that were 4.6× faster than
the same implementation of a 480 × 400 × 80 LBM on a CPU cluster that contained 64 Pentium
Xeon 2.4-GHz processors and 2.5-GB memory (2). The demanding applications of signal and
image processing benefit from the high computational rates of the GPU. Image segmentation
has been a prominent research area within these applications and GPGPU segmentation
approaches have provided speedups of more than 10× by coupling the fast computation of the
GPU to an interactive volume renderer. Database and data mining algorithms are known to be
highly computation and memory intensive, which makes them attractive candidates for GPU
computation. The high memory bandwidth has accelerated the performance of many essential
database queries—Govindaraju et al. (30) compared the performance of SQL queries on an
NVIDIA GeForce 6800 against a 2.8-GHz Intel Xeon processor, and these comparisons indicate
as much as an order of magnitude improvement for the GPU over a SIMD-optimized CPU
implementation. As GPUs evolve and become better equipped for general-purpose computation,
the success of their use within applications continues to rely on the developer’s understanding of
the circumstances under which the GPU is likely to outperform the CPU. Goodnight notes that
“efficient GPGPU applications almost always take advantage of the vector processing and
memory access capabilities of the GPU” (8).

 15

8. Results

Table 2 summarizes the results discussed in section 7 of this report and several other examples of
code that were ported to GPUs. Unfortunately, there do not appear to be many examples of
applications being run on GPU-equipped clusters. In table 2, we have attempted to provide
opportunities to make the following types of comparisons:

• The same problem run on a CPU or cluster of CPUs vs. on a GPU or GPU-equipped
clusters

• Performance results obtained when using different languages

• Performance as a function of problem size

It is interesting to note that, frequently, the delivered performance on a GPU can be heavily
influenced by the problem size. In general, the larger the problem, the better the performance.
In many cases, for smaller problem sizes, using the GPU can actually result in a slower run.
Additionally, it should be pointed out that the optimal algorithm for the GPU is frequently not
the algorithm of choice for the CPU. One final note to point out is that we have made no attempt
to compare the performance of competing GPUs.

9. Conclusion

As general-purpose computation on graphics hardware continues to grow as a research area, the
research community is continually being challenged to think about non-graphics problems from a
graphics perspective and attempt to effectively design algorithms that are well suited for graphics
architecture. Simultaneously, GPU vendors are expected to increase programmability and
generality of future generations of GPUs without sacrificing the specialized architecture and
heightened performance that have compelled its surge into the non-graphics research arena. As
the field of GPGPU computing matures, researchers are hopeful that the GPU continues to be a
sturdy platform for enhanced computation and performance.

16

Table 2. Application performance CPU-based vs. GPU-accelerated implementations.

CPU Performance GPU Performance
Benchmark
/Application

Type

Clock
Rate

(GHz)

No. of
Processors

Measured
Performance

Type

Clock
Rate

(MHz)

No. of
Processors

Measured
Performance

Speedup

Reference

Language

SQL queries (multi-
attribute query 360-K
records)

Intel
Xeon 2.8 1 8 ms

NVIDIA
GeForce

6800
450 1 4 ms 2 (30) OpenGL

SQL queries (multi-
attribute query 1-M
records)

Intel
Xeon

2.8 1 18 ms NVIDIA
GeForce

6800
450

1 12 ms 1.5 (30) OpenGL

SQL queries (semi-
linear queries 360-K
records)

Intel
Xeon

2.8 1 15 ms NVIDIA
GeForce

6800
450

1 2 ms 7.5 (30) OpenGL

SQL queries (semi-
linear queries 1-M
records)

Intel
Xeon

2.8 1 40 ms NVIDIA
GeForce

6800
450

1 5 ms 8 (30) OpenGL

LBM

Pentium
Xeon

2.4 64 1.44 second
step

NVIDIA
GeForce
FX 5800

Ultra

500

30 0.312 second
/step

4.6 (2) Cg

SGEMM (single
precision matrix
multiply)

— — — — — — — 94
GFlops

— (31) Peak-
stream

SGEMM (single
precision matrix
multiply)

— — — — — — — 32
GFlops

— (31) Rapid-
mind

SGEMM (single
precision matrix
multiply)

— — — — — — — 15
GFlops

— (31) Brook

SGEMM (single
precision matrix
multiply)

— — — — — — — 7
GFlops — (31) Accelerator

16-bit data std: sort
(256 × 256 field size)

Pentium
4 3 1 82.5 full

sorts/s — — — — (29) —

16-bit data std: sort
(512 × 512 field size)

Pentium
4 3 1 20.6 full

sorts/s — — — — — (29) —

16-bit data std: sort
(1024 × 1024
field size)

Pentium
4 3 1 4.7 full

sorts/s — — — — — (29) —

17

Table 2. Application performance CPU-based vs. GPU-accelerated implementations (continued).

CPU Performance GPU Performance
Benchmark
/Application

Type

Clock
Rate

(GHz)

No. of
Processors

Measured
Performance

Type

Clock
Rate

(MHz)

No. of
Processors

Measured
Performance

Speedup

Reference

Language

Bitonic merge sort
(16-bit float data)
(256 × 256 field size)

— — — —
NVIDIA
GeForce

6800 Ultra
425 1 90.07 full

sorts/s 1.09 (29) GLSL

Bitonic merge sort
(16-bit float data)
(512 × 512 field size)

— — — —
NVIDIA
GeForce

6800 Ultra
425 1 18.3 full

sorts/s 0.89 (29) GLSL

Bitonic merge Sort
(16-bit float data)
(1024 × 1024 field
size)

— — — —
NVIDIA
GeForce

6800 Ultra
425 1 3.6 full sorts/s 0.77 (29) GLSL

2-D complex FFT
(256 × 256)

AMD
Opteron 2.6 1 2.8

GFLOPS
NVIDIA

7900 GTX — 1 1.5 GFLOPS 0.54 (32) Rapid
mind

2-D complex FFT
(1024 × 1024)

AMD
Opteron 2.6 1 2.5

 GFLOPS
NVIDIA

7900 GTX — 1 7 GFLOPS 2.8 (32) Rapid
mind

Option pricing
(Black-Scholes 64-K
options)

AMD
Opteron 2.6 1 9-m

options/s
NVIDIA

7900 GTX — 1 20-m
options/s 2.2 (32) Rapid

mind

Options pricing
(Black-Scholes 1-M
options)

AMD
Opteron 2.6 1 9-m

options/s
NVIDIA

7900 GTX — 1 200-m
options/s 22.2 (32) Rapid

mind

SAXPY Pentium
4 3 1 — NVIDIA

7800 GTX — 1 — 8.4 (33) Brook

Segment Pentium
4 3 1 — NVIDIA

7800 GTX — 1 — 4.0 (33) Brook

SGEMV Pentium
4 3 1 — NVIDIA

7800 GTX — 1 — 3.3 (33) Brook

FFT Pentium
4 3 1 — NVIDIA

7800 GTX — 1 — 2.0 (33) Brook

Ray Pentium
4 3 1 — NVIDIA

7800 GTX — 1 — 2.6 (33) Brook

 18

10. References

1. Stanford Folding at Home Website. http://folding.stanford.edu (accessed 30 March 2007).

2. Fan, Z.; Qiu, F.; Kaufman, A.; Yoakum-Stover, S. GPU Cluster for High Performance
Computing. ACM/IEEE Supercomputing Conference 2004, 47.

3. Owens, J.; Luebke, D.; Govindaraju, N.; Harris, M.; Kruger, J.; Lefohn, A.; Purcell, T. A.
Survey of General-Purpose Computation on Graphics Hardware. Computer Graphics
Forum 2007, 27, 80–113.

4. Luebke, D.; Humphreys, G. How GPUs Work. IEEE Computer 2007, 40, 96–100.

5. Bolstad, M. U.S. Army Research Laboratory, Aberdeen Proving Ground, MD. Private
communications, 2007.

6. Macedonia, M. The GPU Enters Computing’s Mainstream. Computer 2003, 36,
106–108.

7. General-Purpose Computation Using Graphics Hardware Home Page.
http://www.gpgpu.org (accessed 30 March 2007).

8. Goodnight, N.; Wang, R.; Humphreys, G. Computation on Programmable Graphics
Hardware. IEEE Computer Graphics and Applications 2005, 25 (5), 12–15.

9. NVIDIA Developer Home Page. http://developer.nvidia.com/page/home.html (accessed
30 March 2007).

10. ATI Technologies Inc. Home Page. http://www.ati.com (accessed 30 March 2007).

11. Trancoso, P.; Charalambous, M. Exploring Graphics Processor Performance for General
Purpose Applications. Proceedings of the 2005 8th Euromicro Conference on Digital
System Design, Porto, Portugal, 30 August–3 September 2005.

12. Culler, D. E.; Jaswinder P. S.; Anoop G. Parallel Computer Architecture: A Hardware
/Software Approach. Morgan Kaufmann Publishers, Inc.: San Francisco, CA, 1999;
131–135.

13. Wulf, W. A.; McKee, S. A. Hitting the Memory Wall: Implications of the Obvious.
Computer Architecture News, Association for Computing Machinery 1995, 23 (1), 20–24.

14. Pressel, D. M. Fundamental Limitations on the Use of Prefetching and Stream Buffers for
Scientific Applications. Proceedings of the 16th ACM Symposium on Applied Computing,
Association for Computing Machinery, Las Vegas, NV, 2001.

 19

15. BrookGPU Home Page. http://graphics.stanford.edu/projects/brookgpu/ (accessed
30 March 2007.

16. McCormick, P.; Inman, J.; Ahren, J.; Hansen, C.; Roth, G. Scout: A Hardware-Accelerated
System for Quantitatively Driven Visualization and Analysis. IEEE Visualization 2004,
171–178.

17. Tarditi, D.; Puri, S.; Oglesby, J. Accelerator: Using Data Parallelism to Program GPUs for
General-Purpose Uses. Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems, San Jose, CA, 21–25
October 2006.

18. ASHLI. http://ati.amd.com/developer/ashli.html (accessed 30 March 2007).

19. Brahma. http://brahma.ananthonline.net (accessed 30 March 2007).

20. Cg. http://developer.nvidia.com/page/cg_main.html (accessed 30 March 2007).

21. Lucas, P.; Fritz, N.; Wilhelm, R. The Development of the Data-Parallel GPU
Programming Language CGIS. Proceedings of ICCS 2006, 3994, 200–203.

22. CUDA. http://developer.nvidia.com/object/cuda.html (accessed 30 March 2007).

23. Glift Template Library. http://www.idav.ucdavis.edu/projects/glift (accessed 30 March
2007).

24. HLSL. http://ati.amd.com/developer/ShaderX2_IntroductionToHLSL.pdf (accessed
30 March 2007).

25. OpenGL Shading Language. http://www.opengl.org/documentation/glsl/ (accessed
30 March 2007).

26. Peakstream. http://www.peakstreaminc.com/reference/PeakStream_datasheet.pdf
(accessed 30 March 2007).

27. RapidMind. http://www.rapidmind.net/sc06_hp_rapidmind_cpugpu_summary.php
(accessed 30 March 2007).

28. Sh. http://libsh.org/ (accessed 30 March 2007).

29. Pharr, M., Ed.. GPU Gems 2: Programming Techniques for High-Performance Graphics
and General-Purpose Computation (NVIDIA); Addison-Wesley: Upper Saddle River, NJ,
2005; 457–470.

30. Govindaraju, N. K.; Lloyd, B.; Wang, W.; Lin, M.; Manocha, D. Fast Computation of
Database Operations Using Graphics Processors. Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data, Los Angeles, CA, 2004; 215–226.

 20

31. Papakipos, M. Stream Programming on the PeakStream Platform.
http://www.gpgpu.org/sc2006/workshop/presentations /PeakStream_SC06.pdf (accessed
30 March 2007).

32. McCool, M.; Wadleigh, K.; Henderson, B.; Lin, H.-Y. Performance Evaluation of GPUs
Using the RapidMind Development Platform. http://www.rapidmind.net/pdfs/RapidMind
GPU.pdf (accessed 30 March 2007).

33. Buck, I. High Level Languages for GPUs. Presented as part of the tutorial on GPGPUs at
VIS05. http://www.gpgpu.org/vis2005/PDFs/gpgpu/viscourse05 .pdf (slide 164)
(accessed 30 March 2007).

 21

Appendix A. Code Examples for BrookGPU

 22

kernel void mul (float a<>, float b<>,
 out float result<>) {
 result = a*b;
}

reduce void sum (float a<<>,
 reduce float result<>) {
 result += a;
}

float matrix <20,10>;
float vector <1, 10>;
float tempmv <20,20>;
float result <20, 1>;

mul (matrix,vector,tempmv);
sum (tempmv,result);

Figure A-1. Matrix vector multiply implemented in BrookGPU.1

kernel void k(float s<>, float3 f, float a[10][10], out float o<>);

 float a<100>;
 float b<100>;
 float c<10,10>;

 streamRead(a, data1);
 streamRead(b, data2);
 streamRead(c, data3);

 // Call kernel "k"
 k(a, 3.2f, c, b);

 streamWrite(b, result);

Figure A-2. BrookGPU kernel definition.2

1Buck, I. High Level Languages for GPUs. http://www.gpgpu.org/vis2005/PDFs/gpgpu/viscourse05.pdf (slides 158-–159)

(accessed 30 March 2007).
2BrookGPU. http://graphics.stanford.edu/projects/brookgpu/ (accessed 30 March 2007).

 23

Appendix B. Code Programming Example for Cg

24

for (int j = 1 ; j < height – 1 ; ++j)
{
 for (int i = 1; i < width – 1; ++i)
 {

 // get velocity at this cell
 Vec2f v = grid(x, y);

 // trace backwards along velocity field
 float x = (i – (v.x * timestep / dx));
 float y = (j – (v.y * timestep / dy));

 grid (x, y) = grid.bilerp (x, y);

void advect (float2 uv : WPOS,
 out float4 xNew : COLOR,

 uniform float dt, // timestep
 uniform float dx, // grid scale
 uniform samplerRECT u, // velocity
 uniform samplerRECT x, // state
{
 // trace backwards along velocity field
 Float2 pos = ub – dt * f2texRECT (u, uv) / dx;

 xNew = f4texRECTbilerp (x, pos);
}

 }
}

C++ Cg

Figure B-1. Transforming a section of code for performing an Advect from C++ to Cg.1

Note: For those who are not familiar with the Black-Scholes model, it is the most frequently used method for estimating what

the price of an option should be. To the extent that the actual price of an option varies from the estimated price, one
might want to either buy or sell the option.

1Luebke, D. Introduction to GPGPU Programming. http://www.gpgpu.org/sc2006/slides/01.luebke.Introduction.pdf (slide 35) (accessed 30 March 2007).

 25

float BlackScholesCall (float S, float X, float T, float r, float v) {
 float d1 = (log(S/X) + (r + V * V * .5f) * T) / (v * sqrt(T));
 float d2 = d1 – v * sqrt(T);
 return S * CND(d1) – X * exp(-r * T) * CND(d2);
}

Figure B-2. Implementing the Black-Scholes model in Cg.2

float CND(float X)
{
 float L= abs(X);
 // Set up float4 so that K.x = K, K.y = K^2, K.z = K^3, K.w = K^4
 float4 K;
 K.x = 1.0 / (.0 + 0.2316419 * L);
 K.y = K.x * K.x;
 K.zw = K.xy * K.yy;

 // compute K, K^2, K^3, and K^4 terms, reordered for efficient
 // vectorization. Above, we precomputed the K powers, here we’ll
 // multiply each one by its corresponding scale and sum up the
 // terms efficiently with the dot() routine.
 //
 // dot (float4(a, b, c, d), float4(e, f, g, h)) efficiently computes
 // the inner product a*e + b*f + c*g +d*h, making much better
 // use of the 4-way vector floating-point hardware than a
 // straightforward implementation would.
 float w = dot(float4 (0.31938153f, -0.356563782f,
 1.781477937f, -1.821255978f), K);
 // and add in the K^5 term on its own
 w += 1.330274429f * K.w * K.x;
 w *= rsqrt(2.f * PI) * exp(-L * L * .5f); // rsqrt() == 1/sqrt()

 if (X > 0)
 w = 1.0 – w;
 return w;
}

Figure B-3. Implementing the cumulative normal distribution function.

2Kolb, C.; Pharr, M. Options Pricing on the GPU. In GPU Gems 2; Pharr, M., Ed.; Addison-Wesley: Boston, MA, 2005;

722–724.

 26

INTENTIONALLY LEFT BLANK.

 27

Appendix C. Code Programming Example for GLSL

 28

uniform sampler2D PackedData;

// contents of the texcoord data
#define OwnPos gl_TexCoord[0].xy
#define SearchDir gl_TexCoord[0].z
#define CompOp gl_TexCoord[0].w
#define Distance gl_TexCoord[1].x
#define Stride gl_TexCoord[1].y
#define Height gl_TexCoord[1].z
#define HalfStrideMHalf gl_TexCoord[1].w

void main(void)
{
 // get self
 vec4 self = texture2D (PackedData, OwnPos);

 // restore sign of search direction and assemble vector to partner
 vec2 adr = vec2((SearchDir < 0.0) ? –Distance : Distance , 0.0);

 // get the partner
 vec4 partner = texture2D(PackedData, OwnPos + adr);

 // switch ascending/descending sort for every other row
 // by modifying comparison flag
 float compare = CompOp * -(mod(floor(gl_TexCoord[0].y * Height),
 Stride) – HalfStrideMHalf);

 // x and y are the keys of the two items
 // multiply with comparison flag
 vec4 keys = compare * vec4(self.x, self.y, partner.x, partner.y);

 // compare the keys and store accordingly
 // z and w are the indices
 // just copy them accordingly
 vec4 result;
 result.xz = (keys.x < keys.z) ? self.xz : partner.xz;
 result.yw = (keys.y < keys.w) ? self.yw : partner.yw;

 // do pass 0
 compare *= adr.x;
 gl_FragColor =
 (result.x * compare < result.y * compare) ? result : result.yxwz;
}

Figure C-1. GLSL Fragment program implementing the combined passes 1 and 0 for row-wise sorting of the
bitonic merge sort.1

1Kipfer, P.; Westermann, R. Improved GPU Sorting. In GPU Gems 2; Pharr, M., Ed.; Addison-Wesley: Boston, MA, 2005;
744.

 29

Appendix D. Code Programming Example for PeakStream

 30

#include <peakstream.h>

#define NSET 1000000 // number of monte carlo trials

Arrayf32 Pi = compute_pi(); // get the answer as a 1x1 array
float_pi = Pi.read_scalar(); // convert answer to a simple float
printf(“Value of Pi = %f\n”, pi);

Arrayf32
Compute_pi (void)
{
 RNGf32 G(SP_RNG_DEFAULT, 271828); // create an RNG
 Arrayf32 X = rng_uniform_make(G, NSET, 1, 0.0, 1.0);
 Arrayf32 Y = rng_uniform_make(G, NSET, 1, 0.0, 1.0);
 Arrayf32 distance_from_zero = sqrt (x * X + Y * Y);
 Arrayf32 inside_circle = (distance_from_zero <= 1.0f) ;
 Return 4.0f * sum(inside_circle) / NSET ;
}

Figure D-1. Computing PI with PeakStream.1

1Papakipos, M. Stream Programming on the PeakStream Platform. http://www.gpgpu.org/sc2006/workshop

/Presentations/PeakStream_SC06.pdf (slide 15) (accessed 30 March 2007).

 31

Appendix E. Code Programming Example for Scout

 32

float:shapeof(temp) new_temp: //time step result goes here …
// Data parallel computation of the diffusion…
compute with(shapeof(temp)) {
 // Don’t compute over boundary conditions …
 where (mask > 0) {
 float temp_x;
 temp_x =(alpha/(dx*dx))*(temp[i+1][j]-2*temp[i][j]+
 temp[i-1][j]);
 temp_y =(alpha/(dy*dy))*(temp[i][j+1]-2*temp[i][j]+
 temp[i][j-1];
 new_temp = dt * (temp_x + temp_y) + temp[i][j];
 } else {
 new_temp = temp; // boundary conditions stay constant…
 }
}
// New temperatures need to become our initial conditions for
// the next pass.
temp = new_temp;

Figure E-1. Heat diffusion implemented in Scout.1

1McCormick, P. Scout: Case Studies. http://www.gpgpu.org/vis2005/PDFs/gpgpu/viscourse05.pdf (slide 490)

(accessed 30 March 2007).

 33

Appendix F. Code Programming Example for CGiS

 34

PROGRAM viswave;
INTERFACE
extern inout float LAST<_,_> : texture (1) A; // _ is a size wildcard.
extern in float CURRENT<_,_> : texture (2) A; // Flipped on each step.
extern in float RINDEX, DAMP, WID, HEI; // Pass as program parameters.
intern float X<_,_> : texture (4) R; // These two streams shall reside
intern float Y<_,_> : texture (4) G; //
in the same texture (id=4).
extern in float3 TEXTURE<_,_>: texture (3) RGB; // Use RGB components
extern out float3 IMAGE<_,_> : texture (5) RGB; // for visualization.
CODE
... // Declare kernels called from this section and from CONTROL.
CONTROL
// Single step wave propagation:
forall (float last in LAST; float current in CURRENT){
propagate (last, current, indexX(last), indexY(last), DAMP, WID, HEI);
}
// Compute refractions in X- and Y-dimension:
forall (float x in X; float y in Y; float height in LAST){
refractionX (RINDEX, x, height, indexX(height), WID);
refractionY (RINDEX, y, height, indexY(height), HEI);
}
// Compute refracted image:
forall (float3 pixel in IMAGE; float height in LAST;
float x in X; float y in Y){
render (TEXTURE, pixel, height, x, y);
}
// Display image on screen:
show(IMAGE);

Figure F-1. Part of a CGiS program for calculating refractions.1

1Lucas, P.; Fritz, N.; Wilhelm, R. The Development of the Data-Parallel GPU Programming Language CGiS. Proceedings

of ICCS (2006), Reading, UK, 28–31 May 2006; 3994, 200–203.

 35

Appendix G. Code Programming Example for Accelerator

 36

using Microsoft.Research.DataParallelArrays;

static float[,] Blur(float[,] array, float[] kernel)
{
 float[,] result;
 DFPA parallelArray = new DFPA(array);

 FPA resultX = new FPA(Of, parallelArray.Shape);
 for (int i=0; i<kernel.Length; i++) {
 int[] shiftDir = new int[] {0,i};
 resultX += PA.Shift(parallelArray, shiftDir) * kernel[i];
 }

 FPA resultY = new FPA(Of, parallelArray.Shape);
 for (int i=0; i<kernel.Length; i+=) {
 int[] shiftDir = new int[] {i,0};
 resultY += PA.Shift(resultX, shiftDir) * kernel[i];
 }

 PA.ToArray(resultY, out result);
 parallelArray.Dispose();
 return result;
}

Figure G-1. A 2-D convolution implementation using C# version of Accelerator.1

1Tarditi, D.; Puri, S.; Oglesby, J. Accelerator: Using Data Parallelism to Program GPUs for General-Purpose Uses.

Proceedings of the 12th International Conference on Architectural Support for Programming Languages and Operating Systems,
San Jose, CA, 21–25 October 2006.

 37

Glossary

AGP A bus designed by Intel specifically for connecting graphics
processors to the CPU and main memory. Unfortunately, its
characteristics make it poorly suited for the needs of general-
purpose programming using GPUs.

ASHLI Advanced shading language – one of several languages designed to
facilitate the programming of GPUs.

ANSI C The C standard as adopted by the American National Standards
Institute. Supersedes the informal standard version of C known as
Kernighan and Ritchie C.

ATI The name of one of the two main companies that manufacture GPUs
(recently acquired by Advanced Micro Devices, AMD).

BLAS A commonly used library of linear algebra subroutines that run on a
single processor, although parallelized implementations have been
created under such names as PBLAS and SCALAPACK.

BrookGPU One of several languages designed to facilitate programming GPUs.

CAF Co-array Fortran – an example of a language that conforms to the
PGAS programming model.

CFD Computational fluid dynamics

CG C for graphics – one of several languages designed to facilitate
programming GPUs.

CGiS Computer Graphics in Scientific programming

CPU Central processing unit

FFT Fast Fourier transform

GPGPU General-purpose computation on GPUs

GPU Graphics processing unit

GRAM Graphics RAM – a high-speed memory optimized for the
requirements of processing graphical data.

 38

HLSL High-level shading language – one of several languages designed to
facilitate programming GPUs.

HPC High-performance computing

MADD Multiply-add instruction – allows a single instruction to specify two
floating-point operations. This is one of two commonly used
techniques to effectively double the theoretical peak speed of a
processor without increasing the maximum number of instructions
that can be started in a single cycle.

Moore’s Law The observation that the number of transistors on a chip was roughly
doubling every 12–24 months. This was taken to infer that the
performance of the chips was increasing at a similar rate.
Unfortunately, it became clear that it was desirable to use this
transistor budget in other ways. Originally, this meant moving units
such as the floating-point unit, memory management unit (especially
the TLB), and the L2 cache on chip. More recently, system
designers have opted to put multiple processors on a single chip
(in some cases at a lower clock rate).

MPI Message passing interface – the most commonly used message
passing library.

NWCHEM A computational chemistry program originally developed at the
Department of Energy’s Pacific Northwest Laboratories.

NVIDIA The name of one of the two main companies that manufacture
GPUs.

PCI/PCI-X/PCI-
Express

An evolving set of standards for connecting peripheral components
to the CPU and main memory.

Printf function A C function that implements formatted output in a manner similar
to that of the Print statement in Fortran.

PGAS Partitioned global address space – an emerging programming model
for writing parallel programs.

RGBA Red green blue alpha – texture data for the GPU.

SCALAPACK The name of a popular parallelized mathematics library for
manipulating dense matrices.

 39

Sh One of several languages designed to facilitate programming GPUs.

SIMD Single instruction, multiple data – a programming model in which
multiple functional units execute the identical instruction/group of
instructions on a set of data elements.

SQL Standard query language

UPC Unified parallel C – an example of a language which conforms to
the PGAS programming model.

Z-Buffers A buffer used to accumulate the color information for each pixel on
the screen. What makes this buffer special is that in addition to
color information, it also includes the depth of the frontmost item
visible in each pixel. Then, as the image is assembled and data is
written into the buffer, the depth of each item is compared to what is
already in the Z-Buffer to determine which item is frontmost and,
therefore, visible. Only the visible items will be kept.

NO. OF
COPIES ORGANIZATION

 40

 1 DEFENSE TECHNICAL
 (PDF INFORMATION CTR
 ONLY) DTIC OCA
 8725 JOHN J KINGMAN RD
 STE 0944
 FORT BELVOIR VA 22060-6218

 1 US ARMY RSRCH DEV &
 ENGRG CMD
 SYSTEMS OF SYSTEMS
 INTEGRATION
 AMSRD SS T
 6000 6TH ST STE 100
 FORT BELVOIR VA 22060-5608

 1 DIRECTOR
 US ARMY RESEARCH LAB
 IMNE ALC IMS
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CI OK TL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

 1 DIR USARL
 AMSRD ARL CI OK TP (BLDG 4600)

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 41

 1 C HENRY
 PRGM DIR
 1010 N GLEBE RD STE 510
 ARLINGTON VA 22201

 1 L DAVIS
 DPUTY PRGM DIR
 1010 N GLEBE RD STE 510
 ARLINGTON VA 22201

 1 B COMMES
 HPC CTRS PRJCT MGR
 1010 N GLEBE RD STE 510
 ARLINGTON VA 22201

 1 D POST
 CHF SCNTST
 1010 N GLEBE RD STE 510
 ARLINGTON VA 22201

 1 DIRECTOR USARL
 AMSRD ARL CI
 ADELPHI LAB CTR
 J W GOWENS II
 BLDG 205 RM 3A012C
 ADELPHI MD 20783-1197

 1 J OSBURN
 CODE 5594
 BLDG A49 RM 15
 4555 OVERLOOK RD
 WASHINGTON DC 20375-5340

 1 AIR FORCE RSRCH LAB
 MTRLS AND MFG DIRCTRT
 R PACHTER
 AFRL MLPJ 3005 HOBSON WAY
 BLDG 651 RM 189
 WRIGHT PATTERSON AFB OH
 45433-7702

 1 AIR FORCE RSRCH LAB
 K HILL
 AFRL SNS
 BLDG 254 2591 K ST
 WRIGHT PATTERSON AFB OH
 45433-7602

 1 AFRL IF
 R W LINDERMAN
 525 BROOKS RD
 ROME NY 13441-4505

1 US ARMY RSRCH DEV &
 ENGRG CMD
 AEROFLIGHT DYNAMICS DIRCTRT

 AMES RSRCH CNTR MS T27B 1
 R MEAKIN
 MOFFETT FIELD CA 94035-1000

 1 ARMY RSRCH OFC
 AMSRD ARL RO EN
 A M RAJENDRAN
 PO BOX 12211

RESEARCH TRIANGLE PARK NC
27709-2211

 1 NAVAL OCEANOGRAPHIC OFC

 OFC OF THE TECHNICAL
 DIRECTOR

 J M HARDING
 CODE OTT
 STENNIS SPACE CENTER MS 39529

 1 INFORMATION TECHNOLOGY
 LAB

 US ARMY ENGINEER RSRCH
 AND DEVELOPMENT CTR

 D R RICHARDS
 VICKSBURG MS 39810

 1 SPAWAR SYSTEMS CTR
 C B PETERS
 BLDG 606 RM 318
 53360 HULL ST
 SAN DIEGO CA 92152

 1 ARNOLD ENGRG DEV CTR
 C R VINING
 1099 SCHRIEVER AVE STE E205
 ARNOLD AIR FORCE BASE TN
 37389

 1 AIR FORCE RSRCH LAB
 SENSORS DIRCTRT
 T A WILSON
 2241 AVIONICS CIR
 WRIGHT PATTERSON AFB OH
 45433

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 42

 1 US ARMY RSRCH AND
 DEV CTR
 NVL CMND CNTRL AND OCEAN
 SURVEILLANCE CTR
 HPC COORDINATOR & DIRECTOR
 DOD DISTRIBUTED CENTER
 NCCOSC RDTE DIV D3603
 L PARNELL
 49590 LASSING ROAD
 SAN DIEGO CA 92152-6148

 1 ASSOCIATE DIR
 INNOVATIVE COMPUTING LAB
 COMPUTER SCIENCE DEPT
 UNIV OF TENNESSEE
 S MOORE
 1122 VOLUNTEER BLVD STE 203
 KNOXVILLE TN 37996-3450

 2 EXEC DIR LS SCAMP
 SOUTH CAROLINA STATE UNIV
 S ALLEY
 J GUYDON
 300 COLLEGE ST NE
 PO BOX 7212
 ORANGEBURG SC 29117

1 SHA’KIA D BOGGAN
1528 STAFFORD ST EXT
MONROE NC 28110

ABERDEEN PROVING GROUND

 18 DIR USARL
 AMSRD ARL CI H
 C NIETUBICZ
 AMSRD ARL CI CB
 M LEE
 D PRESSEL
 R NAMBURU
 R VALISETTY
 D SHIRES
 P CHUNG
 J CLARKE
 C ZOLTANI
 S J PARK
 AMSRD ARL CI HS
 BROWN
 K SMITH
 T KENDALL

 AMSRD ARL CI HM
 R PRABHAKARAN
 P MATTHEWS
 AMSRD ARL WM BC
 J SAHU
 K HEAVEY
 P WEINACHT

