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RESPONSE OF NONLINEAR ELASTIC 
SOLIDS TO OBLIQUE PLATE IMPACT 

Mike Scheidler 

U.S. Army Research Laboratory, APG, Maryland 21005-5066 

We give a theoretical analysis of the nonlinear elastic response in the interior of the target in an 
oblique plate impact test, prior to interactions with any reflected waves. Approximate relations are 
derived between the changes in stress, strain, particle velocity, and wave speeds across the shear wave 
by neglecting shear strain terms of order six in the internal energy function. The results are valid 
for any finite (elastic) longitudinal strain ahead of the shear wave. They apply to isotropic materials 
and to appropriately aligned transversely isotropic and orthotropic materials. 

INTRODUCTION 

In an oblique plate impact test a flyer plate, 
inclined relative to the axis of the projectile, im- 
pacts a parallel target plate, which we assume is 
at rest and stress free. Let (X, Y, 2) denote the 
Cartesian coordin .ates of a 
natural reference state, wi 

material point in this 
th the X-axis normal 

to the target face. The particle velocity vF im- 
parted to the face of the target has nonzero com- 
ponents both normal and parallel to the target 
face. The coordinate axes are oriented so that 
VF = (uF, u,, 0), with the normal (X) component 
U, > 0 and the transverse (Y) component V, > 0. 
The impact is assumed weak enough that the tar- 
get response is elastic. We assume the target is 
homogeneous, and restrict attention to points in 
the interior and times prior to the arrival of waves 
reflected from free surfaces or material interfaces. 
Then the motion is independent of the Y and 2 
coordinates. However, for a general anisotropic 
material, the motion may have nonzero compo- 
nents in the Z-direction at points not on the im- 
pact face. For isotropic materials as well as some 
anisotropic materials (appropriately aligned with 
the coordinate axes), there is no motion in the 
Z-direction. This is the case considered here. 

PRELIMINARIES 

If (z,y, x> is the position at time t of the 
material point initially at (X, Y, Z), then x = 
X + dl(X,t), y = Y + da(X,t), x = 2. The 
normal and transverse components of the par- 
ticle velocity are u = dx/dt and v = dyldt. 
Let P and T denote the 1st Piola-Kirchhoff and 
Cauchy stress tensors. Then 0 E -PXX = -7”~ 
and E G 1 - dx/aX are the normal or longitu- 
dinal components of stress and strain, taken pos- 
itive in compression; and r E -PYX = --2+x 
and y E -dyldX are the shear stress and shear 
strain. The signs have been chosen so that E, y, 
CT, r, as well as u and V, should be nonnegative 
for the impact problem considered here. Since E 
and y are the only nonzero strain components, 
the internal energy e per unit mass depends only 
on E, y, and the entropy per unit mass s. Then 

where p0 is the density in the natural state. Heat 
conduction is neglected in the analysis, so that 
response is isentropic except for entropy jumps 
across shocks. The equations of motion are 

du da dv dr -- -- Po~+~X-oY Po&-tdx-o- 0 
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The strain rate and velocity gradient satisfy 

d& dU @Y dV 
g+ax=O, zfax=O. (3) 

Smooth solutions are governed by (2) and (3), 
with 0 and r given by (1) and s constant; this is 
a quasilinear system in the four unknowns u, v, 
&, y. The (Lagrangian) characteristic wavespeeds 
are the roots &lJ and &V of 

where the fast wave speeds *U correspond to 
the + sign and the slow wave speeds &V to the 
- sign in (4). The constitutive inequalities 

da a7 da a7 dr 
2 

de> 
->o, --> z 
by d& dy ( > 

(5) 

guarantee that there are four real distinct charac- 
teristic wave speeds (i.e., U > V > 0), and that 
the fast waves are primarily longitudinal. Waves 
with negative speed would be generated by re- 
flections and hence are not considered here. The 
right inequality in (5) is equivalent to 

d2e d2e a2e 2 -- 
a&2 ay2 > ( > a&&y ’ 

which implies that e is a strictly convex function 
of & and y. 

The one-dimensional plane waves for this 
oblique impact problem are centered simple waves 
and/or centered shocks. For nonlinear isotropic 
elastic solids, some of the earlier papers on this 
problem are Bland (1)) Davison (2)) and Abou- 
Sayed & Clifton (3). Isotropy implies that e is an 
even function of y for fixed & and s, and that the 
fast wave is purely longitudinal, i.e., there are no 
changes in v, y, or r. The fast wave brings the 
material to an intermediate state of uniform uni- 
axial strain. The slow wave propagates into this 
uniaxially strained material. The slow wave\ is 
primarily a transverse or shear wave. However, 
nonlinear elastic effects cause 2nd order changes 
in u, E, and a across the shear wave. The case 
where both waves are simple waves is illustrated 
in Fig. 1. 
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FIGURE 1. Simple wave solutions for’ oblique plate impact. 
Quanties in th4-e intermediate state (ahead of the shear wave) 
and final state (behind the shear wave) were denoted by I and F 
subscriptes, respectively. 

For anisotropic materials there may be motion 
in the 2 direction. Even if there is no motion 
in the 2 direction, the fast wave need not be 
purely longitudinal. However, if the material is 
orthotropic relative to the X, Y, 2 axes, or trans- 
versely isotropic about the X or 2 axis, then it 
can be shown that there is no motion in the 2 di- 
rection, and that e is an even function of y. Fur- 
thermore, it can be shown that this last property 
implies all of the results discussed previously for 
the isotropic case. With these restrictions, most 
of the analysis for isotropic materials in references 
(l)-(3) can be extended to the anisotropic case. 
Since e is an even function of y for fixed E and s, 

e ii f^(~, s) + 3 jj(&, s) y2 + $ ii(E) s) y4. (7) . 

Here and below, a & b means a = b to within an 
error of order yn. Note that no approximations 
are made for the dependence of e on & or s. In par- 
ticular, the results in this paper are valid for ar- 
bitrary finite (elastic) longitudinal strains ahead 
of the shear wave. We study only the shear wave 
in this paper, and consider only the case where it 
isa simple wave (as opposed to a shock). s, and 
s, denote the entropy in the natural and interme- 
diate states . If the longitudinal wave is simple, 
% = s, ; if it is a shock, s, > s,. 



SIMPLE SHEAR WAVES 

Set f(~) = f^(~, sI), g(E) = a(&, sl), and h(E) = 
L(E) sI). Since the deformation in the simple shear 
wave is isentropic, (7), (1)) and (4) imply 

e 2 f(~) + f g(E) y2 + $ h(E) y4, . (8) 
0 de 4 - 

p, - d& 
- = f’(E) + + g’@) y2, 0 

where a prime denotes differentiation with respect 
to E. Note that 0 and V are even functions of y 
for fixed E, while r is an odd function of y. 

In the intermediate uniaxially strained state 
ahead of the shear wave, y = r = v = 0, and by 
(9)~(W, (4), ancl 01, 01 = Pof'(EI) and 

u,2 = f"(E,) > g@,) = v,". (12) 

The rate of change of the speed V, of the shear 
wave front (which is a transverse acceleration 
wave) with respect to the uniaxial strain ahead 
of the wave is 

V I- dV I iI’ 
I =  

-- - 

d& (13) 
I am’ 

In the centered simple shear wave, V = X/t; 
and E, 0, u, y, r & v are constant along the 
straight-line characteristics (i.e., functions of X/t 
only). The characteristic form of the quasilinear 
system yields the differential relations 

87 
du da dE -- 
------ d& - - - 
dv dr d7 (14) 

dv dr dr 
- = v, z = p,v, - = pov2. (15) 
d7 d7 

y, r & v are strictly increasing with passage ‘of 
the wave, and any two of these variables is an odd 
function of the other. E, CT, u & V are even func- 
tions of any one of the variables y, r or v; hence 
the total derivatives in (14) are 0 at the wavefront, 
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where y = r = v = 0. Indeed, &/d& - poV2 > 0 
by (5)i, while by (lo), dr/& = 0 at the wave- 
front. If dr/& # 0 for y # 0, then (15) holds 
with v&r replaced by U,E& 0, respectively. 
Inequality (5)s places no restriction on the sign of 
&/&; if it changes sign within the shear wave, 
then by (14), u, c & E do not vary monotonically 
through the wave. 

Next, we quantify the above statements by de- 
riving approximate relations which hold through- 
out the shear wave. On using (9)-(13) in (14)s 
and noting that E = E, when y = 0, we obtain 

On substituting (16) into (11) and using (12)) 
(13), (17), and V = VI when y = 0, we obtain 

V2 4 2 w V R(&I > 
I - R(&,)y2, V ii K - -r”, (18) 

I 

2 R(G) = f” _ g 3 (E ) - h(E,) I 

(19) 
- - 

U 
FKi2 (v’)2 - h(E,). 
I- I 

From (15)i, (18)2, and v = 0 when y = 0, we get 

5 
V B VY 

R(%) 3 
I - 6v,” 

which may be inverted to give 

Similar arguments yield the relations 
4 

&%&,- $ QW (vPZ2, 
4 

0%01- + QW ,w2, 
4 

u=u,- + Q(q) v2/v,- 



Dropping the u3 terms in (21) and (23) and elim- 
inating &@I> from (24)-(26) yields 

3 
y=V IV I 7 & - &I A (u - %>/vI 7 (27) 

3 
r~polqv, 0-q & P,v,(u - UI> l  (28) 

More accurate material-independent approxima- 
tions for y and r can be obtained by solving (22) 
for R(E,) and substituting into (21) and (23): 

Since V must decrease with passage of the 
wave, (18) implies that R(E,) > 0 is necessary 
for the centered shear wave to be simple (as op- 
posed to a shock) for sufficiently weak impacts, 
while R(q) > 0 is sufficient. It can be shown that 
R(q) < 0 is sufficient for a shear shock. There 
are no restrictions on Q(E,>, however. By (17) 
and (12), we see that Q(EJ and VI’ have the same 
sign. Hence, (24)-(26) imply that if Q(E,) or VI’ 
is negative [resp. positive], then E, CT, u increase 
[resp. decrease] across the shear wave for suffi- 
ciently weak impacts; if &@I> or VI’ is zero, then 
E, 0, u are constant to within an error of order 7:. 

Solving (18)s for y in terms of V shows that y 
has a square root singularity at V = VI, i.e., at the 
wavefront; likewise so do r and v. Since V = X/t, 
the strain rate, stress rate, and particle acceler- 
ation are infinite at the wavefront, as noted by 
Abou-Sayed & Clifton (3) for isotropic materials. 

At the rear of the shear wave (i.e., at the final 
state), (29) and (30) reduce to 

where A, G VI/VF - 1 = VI t,(X)/X, and 
t,(X) = X/V, -X/V, is the rise time of the shear 
wave at X. By (22), 

tFt w 
X 

The top formula in (33) includes dependence 
of the rise time on the uniaxial strain E, ahead of 
the shear wave. The bottom formula neglects this 
dependence; it is obtained by setting ~~ = 0 and 
using (19), and contains errors of order yF4 and 
&I  ^/F2 l  

Here U, and V, are the longitudinal and 
shear wave speeds in the natural state, and V,’ 
denotes the value of V,’ at Ed = 0. Thus U,&V,, 
V,‘, and h(0) are 2nd, 3rd, and 4th order elastic 
constants, respectively. An analogous formula in 
Abou-Sayed & Clifton (3), eqn. (46), is off by a 
factor of 3/2 (the result of neglecting changes in E 
across the shear wave), and missing the h(0) term 
(the result of neglecting 4th order strain terms in 
the internal energy). 

From (22) and (19) we obtain an approxima- 
tion for the 4th order coefficient h in (8) evaluated 
at the uniaxial strain E1 ahead of the shear wave: 

hd&I > 2 
73 u;2K;2 (lq)2 - 4K39. (34) 

I- I F 

V,’ can be estimated by differentiating the T/I(E~) 
curve obtained from a series of 
pact tests, or by solving (26) and 

oblique 
(17) . . 

V I 2 UF - UI 
I 

m- - 

( > V2 (u 
2 

I - 
F 

When this is substituted into (34) , we obtain 

plate im- 

2 -V> I l  (35) 

( > 2 

h(& > I &12 v (u,2-v2)&2 
VF 

-4v;"q. 
VF 

The right-hand sides of (35) and (36) involve par- 
ticle velocities and wave speeds only. These could 
be measured in a single test, at least if the longi- 
tudinal wave is simple. If the longitudinal wave 
is a shock with speed LJ, then U12 can be approx- 
imated by U12 z 2 UJ2 - Uo2 to within an error of 
order ~~~~ or calculated from (12)r if f is known. 

REFERENCES 
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UNIVERSAL RELATIONS FOR PRESSURE-SHEAR 
WAVES IN NONLINEAR ELASTIC SOLIDS 

Mike Scheidler 

U.S. Army Research Laboratory, APG, Maryland 21005-5069 

The centered shock waves or simple waves generated by oblique plate impact of nonlinear elastic 
solids are studied. Attention is restricted to materials for which the fast wave is purely longi- 
tudinal. This includes isotropic materials and appropriately aligned orthotropic or transversely 
isotropic materials. The emphasis is on the derivation of exact or approximate relations between 
stress, strain, particle velocities, and wave speeds which are universal in the sense that they do 
not involve material constants or material functions. For isotropic materials, universal relations 
for the difference between the longitudinal and lateral stresses are derived. 

INTRODUCTION 

Consider a homogeneous target plate initially 
at rest and stress-free. (X, Y, 2) are the Carte- 
sian coordinates of a typical point in this natural 
reference state, with the X-axis normal to the 
target face. In an oblique plate impact test, the 
particle velocity (u,, v,, 0) imparted to the face 
of the target by the flyer plate has a normal (X) 
component u, > 0 and a transverse (Y) compo- 
nent V, > 0. The impact is assumed weak enough 
that the response of the flyer and target is elas- 
tic. We restrict attention to points in the target 
interior and to times prior to the arrival of waves 
reflected from free surfaces or material interfaces. 
Then the motion consists of plane pressure-shear 
waves propagating in the X direction. For nonlin- 
ear isotropic elastic solids, this problem has been 
studied by Bland (l), Davison (2), and Abou- 
Sayed & Clifton (3). As noted by Scheidler (4), 
many of their results remain valid if the material 
is orthotropic relative to the X, Y, 2 axes, or if it 
is transversely isotropic about either the X axis 
or the 2 axis. 

Assuming one of the above material symmetry 
conditions, the motion has the general form 

x=X+d(X,t), y=Y+d^(X,t), z=z, (1) 

where (x, y, x) is the position at time t of the ma- 
terial point initially at (X, Y, 2). Let P and T 
denote the 1st Piola-Kirchhoff and Cauchy stress 
tensors. Then the normal or longitudinal com- 
ponents of stress and strain, taken positive in 
compression, are 

dX a, =-Txx =-Pxx, ~=l--. 
bX (2) 

The lateral stress, taken positive in compression, 

CT, E -Tyy = 
I--& = (3) 

The shear stress and shear strain are 

T x Y E-T,, =-Tyx =-Py,? dY YE+=. (4) 

The signs have been chosen so that E’, y, a,, oy, 
and 7xu, as well as the normal and transverse 
components of the particle velocity, u = ax/& 
and v = dy/&, should be nonnegative for the 
impact problem considered here. 

Since E and y are the only nonzero strain com- 
ponents, e = C(E, y, s), where e and s are the in- 
ternal energy and entropy per unit mass. Heat 
conduction is neglected in the analysis, so the 
response is isentropic except for entropy jumps 
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across shocks. p0 denotes the density in the nat- 
ural state. The material symmetry restrictions 
imply that e and a;, =pO ae/& are even functions 
of y for fixed E and s, whereas rXY = p,de/dy is 
an odd function of y. These even/odd properties 
result in qualitative differences in the behavior of 
longitudinal and shear waves. 

Two centered waves are generated on impact. 
The material symmetry restrictions imply that 
the fast wave is purely longitudinal, and so brings 
the material to an intermediate state of uniform 
uniaxial strain into which the slower shear wave 
propagates. The shear wave brings the mate- 
rial to a final state of uniform compression and 
shear. Q uan i ies t t in the natural, intermediate, 
and final states are denoted by 0, I, and F sub- 
scripts, respectively. To simplify the notation, 
we let u = a, and r = 7-Xv. In particular, 
YI = Tl = v, = 0. The shear wave is often 
called a quasi-transverse wave since it also in- 
duces changes in the longitudinal quantities E‘, 
0, and u. For the classes of materials considered 
here, these changes are 2nd order in ye, whereas 
TV and 21, are 1st order in ye. 

For sufficiently small strains, the centered 
waves are either shocks or simple waves, depend- 
ing on the nonlinear elastic properties of the ma- 
terial. The case where both waves are simple is 
illustrated in Fig. 1. 

/ Simde 

FIGURE I. Simple waves generated by oblique plate 
impact. Q uan 1 ies in the intermediate state (ahead of t’t 
the shear wave) and final state (behind the shear wave) 
are denoted by I and F subscripts, respectively. 

The Lagrangian acoustic (or characteristic or 
acceleration) longitudinal and shear wave speeds 
are denoted by U and V, respectively. They are 
even functions of y for fixed E and s. For the 
case of a simple shear wave, this implies that the 
time histories of y, r, and v have square root 
singularities at the shear wave front; cf. Abou- 
Sayed & Clifton (3) for the isotropic case and 
Scheidler (4) for the more general case consid- 
ered here. On the other hand, for a simple lon- 
gitudinal wave the time histories of E, 0, and 
u are smooth (and hence approximately linear) 
throughout the wave, and such waves are often 
referred to as ramp waves. Since the analysis of 
the longitudinal wave is standard, the remainder 
of this paper focuses on the shear wave. The 
results are valid for arbitrary finite (elastic) lon- 
gitudinal strains E, ahead of the shear wave. Due 
to limitations of space some proofs are omitted. 
For the case of a simple shear wave, derivations of 
some of the results can be found in Scheidler (4). 

SHEAR SHOCKS 

In this section we consider the case where the 
shear wave is a shock. The jump conditions are 

(5) 

TF = POVV, 7 OF - 0, = Pow-+ - UI> 7 (6) 

where V is the Lagrangian shear shock speed. 
These relations imply 

7F = PJ2TF Y CT, - 0, = P$J2 (E, - E,)- (7) 

V, VF, and VI all differ by terms of order yap. Sta- 
bility arguments imply that VF > V > VI, i.e., the 
shock wave speed is bounded below by the acous- 
tic wave speed ahead of the shock and above by 
the acoustic wave speed behind the shock. V may 
be approximated by the average of these acoustic 
wave speeds: V = 3 VI + f VF + O(Y,~). Such an 
approximation will be abbreviated by 

where, in general, a g 
within an error of order 

b means that a = b to 
Y? 
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An interesting result, which has no analog for 
longitudinal shocks, is that the approximation (8) 
may be improved simply by changing the weight- 
ing 

V 2 $& + +vF. (9) 
This is a consequence of the fact that T is an odd 
function of y. (9) is equivalent to either of the 
relations 

Bland(1965, p.764) obtained (10) for the special 
case of isotropic materials with infinitesimal uni- 
axial strain ahead of the shear wave. Using the 
fact the sum of the weighting factors in (9) is 1, 
it may be shown that (9)-( 11) are equivalent to 
analogous formulas for the squares of the wave 
speeds: ‘ 

V2 & fV12 + $VF2, 
1 

V2 - v,” 2 + (VF2 - V12), (13) 
1 

VL F - v2 ii g (v,” - y2). (14 

SIMPLE SHEAR WAVES 

Although E, y, etc. vary continuously through- 
out a centered simple wave, it is well-known 
that the net changes across such a wave may be 
approximated by the jump conditions across a 
shock, with the shock speed replaced by the speed 
of the simple wave. In particular, for a centered 
simple shear wave we have the following approx- 
imate analogs of the jump conditions (5)-(7): 

4 u, - u, 
&F - E, = - 

vi ’ 
(15) 

In the above approximations the speed K of the 
simple wave front may be replaced by the speed 
VF of rear of the wave. More accurate approxi- 
mations can be obtained by replacing K in (15)- 
(17) by appropriate weighted averages of v and 
VF. For the transverse variables we have 

5 
TF = 

21, 

fvl + iv, ’ 
(18) 

For the longitudinal variables we have 
6 u, - u, &, - &I = iv1 + iv, ’ (20) 

APPROXIMATIONS FOR av, /a&, 

Since V = t$yy,s), in the intermediate uni- 
axially strained state where y = T~I = 0 it follows 
that the acoustic shear wave speed V depends 
only on the uniaxial strain E = ~~ and entropy 
S = s,: VI = ?(E,, 0, sl). Then WJ&, is the rate 
of change of the acoustic shear wave speed with 
respect to uniaxial strain, evaluated at the inter- 
mediate uniaxially strained state. If the oblique 
plate impact generates a shear shock, then 

‘F - ‘1 

3;” 

2 -v av, 

= U12 -42 dE,’ 

(22) 

where the top formulas follow immediately from 
(5)-(6), and the bottom formula can be obtained 
by expanding the stress quotient in powers of yF. 
Similarly, if the shear wave is a simple wave, then 

&F -&, 2 --CT, 

7F2 

e p&” + 
2 &52L 

F V2 F 

2 25 -VI av, 

u I 
2 -VI2 aEf’ 

(23) 

where the top formulas follow from (15)-(16). In 
(23) the speed y of the simple wave front may 
be replaced 
If we set 

by the speed VF of rear of the wave. 

VY for shear shock 
V - 

= VI or VF , for simple shear wave (24 

and solve (22) or (23) for aVI /&, we obtain 
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& -pov (U12 - v”>(o, - a,)/$ . 

Simultaneous measurement of longitudinal 
and transverse particle velocities and wave speeds 
in oblique plate impact tests have been per- 
formed by Gupta and coworkers using in-material 
electromagnetic particle velocity gauges; cf. (5). 
Such measurements could be used to estimate 
ay/&, by means of the relation (25)l. 

ISOTROPIC ELASTIC SOLIDS 
We return to the original notation of a, and 

rxu for the normal and shear stresses. Since the 
lateral stress CT, does not appear in the momen- 
tum balance equations, the wave analysis yields 
no information on gY, at least for the anisotropic 
solids considered up to this point. However, isot- 
ropy places restrictions on CT,, as we now show. 

F = dz/dX is the deformation gradient. For 
an isotropic elastic solid, the Cauchy stress ten- 
sor T commutes with B = R’BT TB = BY’. 
For the pressure-shear motion (1), the only non- 
trivial restriction that follows from this result is 
TXY @xx -B,,)=.l?x,(T,, -Tyy). Fory=O 
(i.e., uniaxial strain) this reduces to 0 = 0, but 
for y # 0 it implies the universal relations 

a, - oy = 
2E - E2 + y2 

1-E 
T XY 

Y 

2& - E2 Txy - -- - + TX, 

1-E y 1-E:’ 

(26) 

If the oblique plate impact generates a shear 
shock, then evaluating (26) in the final state and 
using the jump conditions (5) I-( 7) 1 gives 

2EF - EF2 - - 
1 -&F PoV2 + POVF2 

WI 
l-t-, l 

In the weak shock limit “/F & v, + 0, E, --+ E,, and 
V + VI, yielding a universal relation for the dif- 

ference between the normal and lateral stresses in 
the intermediate uniaxially strained state ahead 
of the shear shock: 

2E - E2 
a, -tTy = ~p*V2 = LO 1 $ 2- 1 pi& 

For a simple shear wave, a similar analysis using 
(15)1-(17)1 also yields (28). Here and below, we 
drop the I subscript since all quantities are eval- 
uated in the intermediate state. (28)~ was first 
derived by Scheidler (6) by a different method; 
V=(l-E)Visth e E 1 u erian acoustic shear wave 
speed and p the density. (28) also yields formulas 
for the pressure p and maximum shear stress 7;nax 
in the uniaxially strained state, since 

27max=0;, -gy, p=a, -$7m,,. (29) 

From (28)-(29) and pOU2 = da, /&, we obtain 

dT 
max = pov2 + d(&) Tmax , 

dk 

dP 
-- 

2 2 
4 

- - -- d& (P u 0 $Po v> 3 4 E > Tmax 7 (31) 

4 > 1 2 dV E= -+ -- 
l-& v d& l 

(32) 

Since approximations for tW/& are given by 
(25)) for isotropic solids a single oblique plate im- 
pact test with in-material particle velocity gauges 
can yield estimates for cry, Tmax, and p in the uni- 
axially strained state ahead of the shear wave, as 
well as for their derivatives w.r.t. uniaxial strain. 

5. 

6. 
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APPROXIMATE UNIVERSAL RELATIONS BETWEEN SHOCK AND
ACCELERATION WAVE SPEEDS FOR OBLIQUE PLATE IMPACT

OF INELASTIC SOLIDS

Mike Scheidler

U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005-5069

Abstract. We derive some approximate relations between shear wave speeds in inelastic solids subject to
oblique plate impact. Attention is restricted to materials for which the fast wave is purely longitudinal. This
includes isotropic solids as well as appropriately aligned orthotropic solids. For the case where the slower
wave is a shear shock, we obtain approximate relations between this shock speed and the shear sound speeds
(i.e., acceleration wave speeds) immediately ahead of and behind the shock. These relations are universally
valid for isotropic or orthotropic elastic solids as well as inelastic solids with instantaneous elastic response.
Keywords: Transverse Waves, Shear Shocks, Acceleration Waves, Oblique Plate Impact
PACS: 4640.Cd, 62.50.+p, 81.70.Bt

INTRODUCTION

The waves studied in this paper are of the type gen-
erated in an oblique plate impact test. A flyer plate
impacts a parallel target plate, with both plates in-
clined to the direction of motion of the flyer. The
particle velocity imparted to the target plate has com-
ponents normal and parallel to the impact surface.
We choose a Cartesian coordinate system with the X1
and X2 axes in these two directions, respectively, and
restrict attention to points in the target interior and
to times prior to the arrival of reflected waves from
free surfaces or material interfaces. If the material
is homogeneous the impact generates plane waves
propagating in the X1 direction: a quasi-longitudinal
wave propagates into undeformed material at rest,
followed by a slower moving quasi-transverse (i.e.,
shear) wave. Here quasi refers to the fact that the lon-
gitudinal and transverse waves are generally accom-
panied by relatively smaller changes in transverse
and longitudinal quantities, respectively. If the mate-
rial is isotropic, however, the fast wave will be purely
longitudinal. In this case the shear wave propagates
into uniaxially strained material, a condition essen-

tial for our main results. But even for isotropic solids
this shear wave will still be quasi-transverse due to
nonlinearities in the material response; cf. Bland [1],
Davison [2], Abou-Sayed & Clifton [3], and Gupta
[4] for some of the earlier theoretical and experimen-
tal work on this problem.

Depending on the materials and the strength of the
impact, the waves generated could be shock or ramp
(i.e., continuous) waves. We consider only the case
where the shear wave is a shock; whether the uniaxi-
ally strained state ahead of this shear shock is gener-
ated by a shock or ramp wave is inconsequential.

Bland (p. 764 of [1]) showed that to within an er-
ror of fourth order in the jump in shear strain across
a shear shock, the shock speed exceeds the sound
speed ahead of it by one third the excess of the sound
speed behind it over the sound speed ahead of it. Of
course, the sound speeds refer to shear waves as well.
Bland derived this result for homogeneous nonlin-
ear isotropic hyperelastic solids, assuming the shear
shock is “propagating into an unstrained medium
at rest.” But even purely transverse loadings on the
boundary would generate a longitudinal precursor, so
his restriction is not experimentally achievable.
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In [5] I noted that Bland’s approximate relation
holds with no restriction on the uniaxial strain ahead
of the shear shock, and that “isotropic” could be
weakened to “orthotropic relative to the coordinate
axes.” The proof (which was omitted) utilized results
in an earlier paper [6], making substantial use of the
hyperelasticity assumption (i.e., the internal energy
is a potential for the stress) and also of the method of
characteristics for calculating the sound speeds.

Here I show that Bland’s approximate relation also
holds for a large class of inelastic solids with prop-
erties that may vary smoothly in the X1 direction.
The proof makes no use of a potential relation for
the stress tensor.1 The method of characteristics for
calculating sound speeds must be abandoned since
at this level of generality the equations of motion are
not quasi-linear hyperbolic PDEs. Instead, we use the
theory of singular surfaces since the sound speeds
may be identified with acceleration wave speeds.2

INSTANTANEOUS ELASTIC RESPONSE

The results in this section are stated for an arbitrary
motion x = x̂(X, t) relative to an arbitrary Carte-
sian coordinate system: x = (x1,x2,x3) is the posi-
tion at time t of the material point initially at X =
(X1,X2,X3).The deformation gradient F has compo-
nents Fi j = ∂xi/∂Xj. Let T and S = (detF)TF−T de-
note the Cauchy and first Piola-Kirchhoff stress ten-
sors. The value of the stress at time t can depend not
only on F(t), as for an elastic material, but also on
the entire past history of the deformation gradient:

S(t) = Ŝ(F(t);F t) . (1)

Here F t is the history of F up to time t, the (tensor-
valued) function defined on the positive reals by

1 For the materials considered here such a relation would follow
from the usual form of the 2nd law of thermodynamics; cf.[7] for
materials with fading memory and [8] for viscoplastic materials.
For simplicity, thermodynamic effects are neglected.
2 Acceleration waves are propagating singular surfaces across
which the stress, strain and particle velocity are continuous but
suffer jump discontinuities in their spatial gradients and time
derivatives; they can be the fronts of ramp waves. Similarly, we
use the term shock wave only for propagating singular surfaces
across which the stress, strain and particle velocity suffer jump
discontinuities. The jump in a quantity Ψ across a singular surface
is denoted by [[Ψ]] = Ψ− −Ψ+, where Ψ− and Ψ+ denote limits
of Ψ from behind and ahead of the wave front, respectively.

F t(s)≡F(t−s) for s > 0. Thus Ŝ is a function of F(t)
and a functional of Ft .3 For any orthogonal tensor Q
and any tensor H in the material symmetry group,4

Ŝ(QF(t)H;QF tH) = QŜ(F(t);F t)H . (2)

We assume that S is continuous at any instant t at
which F is continuous. Across a shock at time t, we
assume that

S− = Ŝ(F−;F t) , S+ = Ŝ(F+;F t) , (3)

which requires a continuous dependence on the past
history across the shock front. At any instant t when
F and its material time derivative

�
F are continuous,

we assume that
�
S is continuous as well and given by

�
S(t) = ∂1Ŝ(F(t);F t)

�
F(t)+ Ĝ(F(t);F t) . (4)

The 4th-order tensor ∂1Ŝ is the derivative of Ŝ with
respect to its first argument F(t), holding Ft fixed.
The functions t �→ ∂1Ŝ(F(t);F t) and t �→ Ĝ(F(t);F t)
are assumed to be continuous at any instant at which
F is continuous, so that across an acceleration wave

[[
�
S]] = ∂1Ŝ(F(t);F t)[[

�
F]] , (5)

analogous to the case for an elastic material (where
the dependence on Ft would be absent). Materials
with the properties described above will be said to
have instantaneous elastic response.5

Let a =
��
x denote the particle acceleration. Across

an acceleration wave, balance of momentum and
kinematic compatibility yield the relations

[[
�
S]]n = −ρ0c[[a]] , c[[

�
F]] = −[[a]]⊗n , (6)

where n is the unit normal to the referential wave
front, c the referential (or Lagrangean) wave speed,
and ρ0 the initial density. On applying (5) to n and
using (6), we obtain the propagation condition

ρ0c2[[a]] = A(n)[[a]] . (7)

For a given direction of propagation n, the 2nd-order

3 The results in this section are unaltered if we also allow the
material properties to depend smoothly on the position X.
4 Indeed, T is unchanged and S changes to SH when F is re-
placed by FH for all times. And frame-indifference implies that
T changes to QTQT and S to QS when F is replaced by QF for
all times. On combining these results, we obtain (2).
5 These properties are possessed by materials with fading memory
[7] and also by many internal state variable models and models for
viscoplastic response [8].
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tensor A(n), called the acoustic tensor, is defined by

A(n)b =
(

∂1Ŝ(F(t);F t)
[
b⊗n

])
n (8)

for any vector b. Thus (7) states that [[a]] must be an
eigenvector of the acoustic tensor and that ρ0c2 is its
eigenvalue. The i j component of A(n) is given by
∑3

k, l=1(∂Sik/∂Fjl)nknl , holding F t fixed. When n is
the unit vector e1 along the X1 axis, this reduces to

A(e1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂S11

∂F11

∂S11

∂F21

∂S11

∂F31

∂S21

∂F11

∂S21

∂F21

∂S21

∂F31

∂S31

∂F11

∂S31

∂F21

∂S31

∂F31

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

PLANE WAVES

Assume the displacements depend on X1 and t only:

xi −Xi = x̃i(X1, t) , i = 1,2,3 . (10)

Then the same holds for F, which reduces to

F(X1, t) =

⎡⎣F11 0 0
F21 1 0
F31 0 1

⎤⎦ . (11)

For the constitutive relation (1), S also depends only
on X1 and t. For fixed X1 we may write this as

Si j(t) = Ŝi j(F11(t),F21(t),F31(t); F t
11,F

t
21,F

t
31).

(12)
Momentum balance reduces to

∂Si1

∂X1
= ρ0ai , i = 1,2,3 , (13)

which involves only the stress components S11, S21
and S31. This continues to hold if the material prop-
erties vary smoothly with X1. The motion is a plane
wave propagating in the X1 direction.

Now assume the symmetry group contains a 180◦
rotation about the X3 axis; its matrix is given by
diag(−1,−1,1). On choosing this for Q and H in
(2), we obtain the following restrictions on (12):

Ŝi j(F11,F21,−F31; F t
11,F

t
21,−F t

31)

= ±Ŝi j(F11,F21,F31; F t
11,F

t
21,F

t
31) ,

(14)

where the + case holds for i j = 11,22,33,12,21, and
the − case for i j = 13,23,32,31. For the latter case

we see that Si j =−Si j when F31 ≡ 0. Thus S reduces
to

S(X1, t) =

⎡⎣S11 S12 0
S21 S22 0
0 0 S33

⎤⎦ (15)

when F31 ≡ 0. In this case we also have

∂S31

∂F11

∣∣∣∣
F31≡0

=
∂S31

∂F21

∣∣∣∣
F31≡0

= 0 . (16)

Now assume that x3 ≡ X3, which is consistent with
the boundary conditions discussed in the Introduc-
tion. Then F31 ≡ 0 and a3 ≡ 0, so the 3rd component
of the momentum balance equation (13) is satisfied
since S31 ≡ 0. By (14) we see that S11 and S21 are
even functions of F31 when F t

31 = 0. Thus we also
have

∂S11

∂F31

∣∣∣∣
F31≡0

=
∂S21

∂F31

∣∣∣∣
F31≡0

= 0 . (17)

Define the longitudinal stress and strain, σ and ε , and
the shear stress and strain, τ and γ , by

σ = −S11 = −T11, τ = −S21 = −T21,
(18)

ε = 1− ∂x1

∂X1
= 1−F11, γ = − ∂x2

∂X1
= −F21.

These variables should be nonnegative for the impact
problem considered here, and we may now write{

σ(t)
τ(t)

}
=

{
σ̂
τ̂

}(
ε(t),γ(t); ε t,γ t) . (19)

By (16)–(18), the acoustic tensor (9) for waves
propagating in the X1 direction reduces to

A(e1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂σ
∂ε

∂σ
∂γ

0

∂τ
∂ε

∂τ
∂γ

0

0 0
∂S31

∂F31

∣∣∣∣
F31≡0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (20)

Since, by (7), ρ0c2 is an eigenvalue of A(e1), two of
the Lagrangean sound (acceleration wave) speeds are
obtained by equating 2ρ0c2 with

∂σ
∂ε

+
∂τ
∂γ

±
√(

∂σ
∂ε

− ∂τ
∂γ

)2

+4
∂σ
∂γ

∂τ
∂ε

. (21)

The faster (quasi-longitudinal) sound speed is de-
noted by U , and the slower (quasi-transverse) sound
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speed by V .6

Now assume the symmetry group also contains a
180◦ rotation about the X1 axis, so that the material
is orthotropic. On taking Q = H = diag(1,−1,−1)
in (2), we obtain restrictions on Ŝi j in (12) which,
in view of F31 ≡ 0 and (18)–(19), imply that for any
strain values ε∗ and γ ∗ and strain histories ε t and γ t,

σ̂(ε∗,−γ ∗;ε t,−γ t) = σ̂(ε∗,γ ∗;ε t,γ t) ,

τ̂ (ε∗,−γ ∗;ε t,−γ t) = −τ̂ (ε∗,γ ∗;ε t,γ t) .
(22)

It follows that if γ = 0 up to and including time t,
then so are τ , ∂τ/∂ε and ∂σ/∂γ .7

SHEAR SHOCKS

Consider a shear shock propagating into uniaxially
strained material behind the longitudinal wave in
an oblique plate impact test. Let V denote the La-
grangean shear shock speed. The jump conditions are

[[τ ]] = ρ0V
2 [[γ ]] , [[σ ]] = ρ0V

2 [[ε]] ; (23)

hence
[[τ ]][[ε]] = [[σ ]][[γ ]] . (24)

Since γ and τ are zero ahead of the shock, we have
γ + = τ + = 0. Thus [[γ ]] = γ −, and by (22) the longi-
tudinal and shear stress behind the shock are

σ−= σ̂(ε−, [[γ ]] ;ε t ,0) ,

[[τ ]] = τ −= τ̂ (ε−, [[γ ]] ;ε t ,0) ,
(25)

these being even and odd functions, respectively, of
[[γ ]] for fixed ε− and ε t . But ε− and [[γ ]] are coupled
through (24)–(25), which can be used to show that
[[ε]] is of order [[γ ]]2. Then (23)1 and the sound speed
relations imply V ≈ V+ ≈ V− to within an error of
order [[γ ]]2, where V− and V+ are the limiting values
of the shear sound speeds from behind and ahead of

6 Note that these sound speeds are well-defined at each point and
time, regardless of whether or not the corresponding acceleration
wave is actually generated in the impact test. The third speed,
given by ρ0 c2 = (∂S31/∂F31)|F31≡0, corresponds to a shear wave
polarized along the X3 axis and is not relevant here.
7 Since S21 = −τ , the fact that τ = 0 for a pure uniaxial strain
history suffices for the fast wave in an oblique plate impact test
to be purely longitudinal. The zero derivatives imply that the
relations for the longitudinal and shear sound speeds in uniaxially
strained material reduce to ρ0U

2 = ∂σ/∂ε and ρ0V
2 = ∂τ/∂γ ,

evaluated at γ ≡ 0; since (20) is diagonal, these are pure modes.

the shear shock. It follows that V ≈ αV+ +β V− for
any α and β satisfying α + β = 1, also to within an
error of order [[γ ]]2.

It turns out there is an optimal choice for α and β
above. From (21) and the results in this section, it is
not hard to show that to an within error of order [[γ ]]4,

ρ0V
2
− ≈ ∂τ

∂γ
− ∂σ

∂γ
∂τ
∂ε

/(
∂σ
∂ε

− ∂τ
∂γ

)
, (26)

where the right side is evaluated behind the shock,
at (ε−, [[γ ]];ε t ,0). Some lengthy calculations reveal
that this equals ρ0(3V

2 −2V 2
+) to within an error of

order [[γ ]]4. Hence, we obtain the equivalent relations
below, all valid to within an error of order [[γ ]]4:

V
2 ≈ 2

3V 2
+ + 1

3V 2
− V

2 −V 2
+ ≈ 1

3 (V 2
−−V 2

+)
(27)

V 2
− ≈ 3V

2 −2V 2
+ V 2

−−V
2 ≈ 2(V2 −V 2

+).

These yield analogous approximations for the speeds
themselves to within an error of order [[γ ]]4:

V ≈ 2
3V+ + 1

3V− V−V+ ≈ 1
3 (V−−V+)

(28)
V− ≈ 3V−2V+ V−−V ≈ 2(V−V+)

These results depend in an essential way on the
condition of uniaxial strain ahead of the shear shock.
Although we have neglected thermodynamic effects,
it can be shown that their inclusion does not alter the
above results if we make the typical assumption that
the heat flux does not jump across a shock.
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