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1. Introduction 

The first preparation step for crystalline cross-sectional transmission electron microscope (TEM) 
samples requires sectioning and assembling a sample “sandwich”.  A prior technical report (1) 
describes this step along with the entire sample preparation procedure.  The visibility of lattice 
planes and defects directly relates to the crystallographic direction of the electron beam with 
respect to the sample.  The range of specimen tilt in the TEM is limited; therefore, how we 
initially cleave the wafer restricts which crystallographic directions are examinable. 

Both TEMs at the U.S. Army Research Laboratory (ARL) have side-entry goniometer stages.  
The 2010 and 2010F TEMs currently have the high resolution and the analytical pole-piece 
installed, respectively.  The pole-piece is a cylindrically symmetrical core of soft magnetic 
material with a hole drilled through it.  The objective lens has a split pole-piece, meaning that 
there are two separate pole-pieces, each surrounded by a coil of copper wire.  We insert the tip of 
the specimen rod into a very narrow gap located between the upper and lower pole-piece.  This 
gap is especially small between the high-resolution pole pieces in the 2010 TEM.  We are 
therefore limited in the extent that we can tilt the sample without touching the pole-piece.  The 
allowed tilt range is ±12° in the x and y directions on the 2010 and ±27˚ in the x direction and 
±15˚ in the y direction on the 2010F.  

Regardless of the mechanical tilt limits, it is desirable to minimize the amount of tilting needed 
to examine a sample.  Since the sample is approximately flat, positioning the sample so that the 
incident beam is normal to its surface minimizes the distance the beam must travel to penetrate 
the sample.  As we tilt the sample, we gradually decrease the size of the electron transparent area 
(as the distance between a fixed point and the ion milled ‘hole’, as measured normal to the 
electron beam, decreases) and increase the specimen thickness along the beam direction.  The 
extent of multiple diffraction increases with the distance the electron beam must travel to 
penetrate the sample.  This leads to the appearance of diffraction spots that violate visibility 
conditions and makes interpreting the diffraction patterns difficult.  Furthermore, the amount of 
averaged information in the final image increases with the sample thickness, leading to image 
artifacts that can be misleading or difficult to understand.  

The lattice fringes seen in a high-resolution TEM image are dependent on the zone axis (2), 
which refers to the normal plane of the diffraction spot pattern.  The zone axis is a common 
direction to all of the crystal planes corresponding to the spots in the diffraction pattern.  Relative 
to the microscope itself, the sample’s zone axis points in the direction of the electron gun.  We 
choose our zone axis based on the details of the sample and the goals of the experiment. 

For phase-contrast images, the best zone axis is usually the one that allows resolution of lattice 
fringes corresponding to more than one family of crystal planes.  The [1 1 0]  zone axis is 
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preferred for most high-resolution lattice imaging of the cubic semiconductor materials because 
imaging the {1 1 0}crystal face results in relatively easily resolvable {002} and {111} lattice 
fringes.  In the case where the wafer has a (001) growth direction, the [1 1 0]  zone axis is 
obtained by cleaving the sample parallel to the (110)   plane.  We scribe the sample 
perpendicular to the major flat with a diamond scribe and lightly tap the wafer until the small 
piece breaks free.  Figure 1(b) shows the cleaved piece with its corresponding orientations.  For 
the [1 1 0]  zone axis, the sample is oriented in the TEM with the (110)  face perpendicular to the 
electron beam.  Figure 1(c) is a schematic of the diffraction pattern obtained, and figure 1(d) is a 
high-resolution image of GaSb examined along the [1 10]  zone axis. 

 

Figure 1. (a) Wafer with [001] growth direction.  After scribing and cleaving the wafer along the dashed line 
the sample appears as shown in (b).  The diffraction pattern (c) and high-resolution lattice image 
(d) resulting from a specimen examined as oriented in (b). 

Occasionally the optimal image is not of the most easily resolved crystal planes and does not 
come from the sample most easily prepared.  For example, AlGaAs/GaAs superlattices examined 
along the [1 1 0]  zone axis show ‘washed out’ contrast between the very thin AlGaAs and GaAs 
layers washed out at high magnifications (3).  The contrast improved when observed along the 
[100] zone axis, in agreement with experiments by Petroff (4) and Suzuki (5), et al.  We obtain 
the [100] zone axis for a [001]-growth direction wafer by cleaving it 45˚ from the major flat, as 
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shown in figures 2a and 2b. The diffraction pattern obtained from examining a III-V cubic 
material along the [100] zone axis is shown schematically in figure 2(c).  

  

Figure 2. (a) Wafer with [001] growth direction.  After scribing and cleaving the wafer along the dashed line 
the sample appears as shown in (b).  The diffraction pattern (c) resulting from a specimen examined 
as oriented in (b). 

When investigating the morphology of defects such as dislocations and stacking faults, we need 
to consider the visibility rules before selecting an appropriate zone axis.  For instance, the 
invisibility criterion dictates that a dislocation will not be visible for , 0g b⋅ =  where g  is the 
reciprocal lattice vector and b  is the Burger’s vector.  As previously stated, each zone axis has a 
diffraction pattern containing spots that correspond to the reflecting planes in the specimen.  We 
define the reciprocal lattice vectors g  as those lying normal to the planes represented by the 
spots.  When characterizing defects we often set up a two-beam condition, which involves 
slightly tilting the specimen away from the zone axis until only one diffracted beam is strong.  
We place an objective aperture around the excited beam and obtain a dark field image.  The 
bright areas in the image meet the Bragg condition.  By examining the same area under multiple 
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two-beam conditions, we can track the visibility of specific defects and determine their type.  We 
prepare the sample with a zone axis that includes the diffraction spots that will allow the desired 
two-beam conditions. 

Table 1 lists the strongest lattice fringes and lowest index diffraction spots corresponding to the 
most common zone axes in the cubic system.  Using this information, we select the best zone 
axes for our sample based on the goals of the experiment.  For instance, if x-ray data suggested 
that a film has defects of a certain type, we would select a zone axes that allow us to set up 
different two-beam conditions where the defect would be both visible and invisible.  

Table 1.  Zone axes and corresponding lattice fringes and diffraction spots. 

Zone Axis Strongest Lattice Fringes Observed 
(for most materials) 

Lowest Index Diffraction 
Spots 

[1 1 0]  (111), (002), (220) 002, 111, 220, 113 

[010] (002), (200), (202) 002, 200, 202, 204 
[1 11]  (220), (202) , (022)  [220] , (202) , (022) , 422  

[112]  (111), [220]  111, [220] , 311 , 402 

[113]  (220) 220, 301, 242 , 422  

[021]  (200) 200, 024 , , 424  

[031]  (200) 200, 113, 026, 313  

[332]  [220]  220 , 1 13 , 133 , 353  

 

The current ‘state-of-the-art’ procedure for the scribing process is to position a glass slide in a 
direction perpendicular to the zone axis and lightly scribe the wafer.  When the desired zone axis 
is not parallel or perpendicular to the major flat, then one must determine the orientation of the 
preferred imaging plan relative to the flat, and then reposition the glass slide with the help of a 
protractor.  Sample preparation is commonly delegated to graduate students or technicians who 
do not necessarily understand crystallography or reciprocal space.  Browsing through technical 
publications with TEM images makes it clear that many samples have been prepared with the 
‘easiest’ rather than the most appropriate zone axis.  

Rather than using protractors and glass slides to scribe samples and to lift the burden of 
calculating angles between different crystallographic planes and directions, I have designed a set 
of TEM Sample Scribing Templates.  The preferred embodiment of this set of tools allows the 
user to quickly and easily determine where the sample must be scribed in order to obtain the 
desired zone axis.  This saves time, reduces mistakes, and improves sample quality and therefore 
encourages the user to prepare the most appropriate sample for their particular experiment. 



2. Design of the TEM Sample Scribing Templates 

The system consists of five templates and one T-square.  The tools can be made of any material 
that is resilient to the solvents (acetone and methanol) typically present in a TEM sample 
preparation lab.  We constructed our tools with aluminum.  The crystal structure of the films 
examined by our division is usually cubic and occasionally hexagonal.  The III-V cubic materials 
(such as the GaAs based structures) are usually grown on [001] growth-oriented substrates and 
occasionally grown on [111]-oriented substrates.  The II-VI cubic materials (such as CdTe) are 
grown on [001], [111], [211], and [311] growth-oriented substrates with [211] Si being the most 
common choice.  The hexagonal films (usually GaN-based structures) have the [0001] growth 
direction.  We designed 5 templates that are used for cubic wafers having the [001], [111], [211], 
and [311] growth directions and hexagonal wafers having the [0001] growth direction. These 
five templates allow us to cleave samples with the most common zone axes for all of our current 
projects. It is possible to add templates that are appropriate for other crystal structures (such as 
rhombohedral or orthorhombic.) and/or growth directions if the need arises. 

Figure 3 is a schematic of the Scribing Template for cubic films with a [001] growth direction. 
The tool consists of a regular hexagonal prism cut from an aluminum rectangular prism having 
dimensions of 5 cm x 5 cm x 0.4 cm.  Figure 3 consists of the (a) top and (b-c) two side views 
labeled with the dimensions that correspond to our prototype tools.  The dimensions best 
accommodate the size of the wafers typically studied at ARL, however, there are no strict size 
requirements so long as the tool is easy to handle.  Figure 3(d) shows the top view labeled with 
the zone axes obtained by lining the T-square along each edge of the hexagon. 
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Figure 3. Sematics of Scribing Template for cubic materials with the [001] growth direction. Top (a) and 
side (b) and (c) views with labeled dimensions. Top (d) view with labeled orientations. 

Figure 4(a) shows an uncleaved wafer, film side up, having a [001] growth direction and a (110) 
major flat.  Ordinarily we receive a small portion of the wafer, usually a semicircle, square, or 
rectangle having dimensions on the order or 0.5 cm – 1.5 cm (as shown schematically by the 
region outlined by the crosshatched line in figure 4a).  Figures 4(b)-(c) show the crystallographic 
orientations of the film side up and film side down wafer pieces.  The sample is mounted film-
side down onto the center of the template in the area marked with the hatched square (figure 4d).  
Ideally, the tool would be constructed so that the area represented by the hatched square was 
slightly recessed, so that the sample would not slip.  In our current embodiment, the center 
square area is drawn on and used simply as a guide for positioning the sample.  We align the 
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major flat with the bottom edge of the hatched square.  We position the short edge of the T-
square along the hexagon edge labeled with the desired zone axis.  Figure 4(e) shows the T-
square edge positioned against the [110]  labeled hexagon edge.  We place the T-square over the 
substrate side of the specimen so that its long edge is parallel to and located approximately 1.5 
mm away from the (110)  plane of the sample.  A diamond scriber is drawn over the substrate 
side of the sample along the long edge of the T-square.  The scribed line is parallel to the [110] 
direction in the film, and perpendicular to the [110]  direction.  We then cleave the sample by 
compressing the wafer with two glass slides and lightly tapping on the cleaved edge with the 
blunt side of a pair of tweezers.  Since our sample sandwich requires rectangular pieces we 
scribe the cleaved piece perpendicular to the initial scribed line to obtain the desired size 
(approximate size is 1.5 x 4 mm).  Figure 4f shows the cleaved piece labeled with its 
corresponding crystallographic directions.  
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Figure 4. Scribing process for a film having a (001) growth direction and a (110) major flat.  (a) The 
initial wafer, (b) a piece as typically received by the grower (also denoted by the hatched square 
in (a)), (c) the crystallographic directions of the piece after it is rotated so that the film side faces 
downward. (d)  The scribing template for III-V films having a (001) growth direction.  (e) The 
T-square is placed so that a sample having a [110] zone axis is obtained. (f)  The cleaved piece 
and its corresponding crystallographic orientations.  (g) T-square arranged to scribe a sample 
with a [110] zone axis.  (h) The cleaved piece and its corresponding crystallographic 
orientations and (i) the crystallographic relationship of the two cleaved pieces.  (j) The sample 
after the two pieces are ‘sandwiched’ together with epoxy, (k) the thinned sample mounted on a 
5 mm copper grid. 

We need a second small piece to complete our sandwich structure, and we typically scribe and 
cleave it at a 90˚ orientation relative to the first piece.  The T-square is oriented as shown in 
figure 4g and the resulting cleaved piece is oriented as shown in figure 4h.  Figure 4i shows the 
arrangement of the two pieces before they are sandwiched together as shown in figure 4j.  The 
sample is thinned, mounted onto a copper grid, and ion milled to electron transparency (figure 
4k).  The ion-milled hole crosses both pieces of the sandwich.  Therefore, the upper piece of the 
sandwich can be examined along the [110]  zone axis and the lower piece can be examined along 
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the [110] zone axis.  This allows a more thorough characterization of the specimen, especially in 
the cases of certain orientation-dependent structures such as quantum wires (1). 

In the case of certain superlattices, as discussed previously in this report for AlGaAs/GaAs 
structures, it is desirable to examine the sample along the [100] zone axis.  In these situations, we 
arrange the T-square as shown in figure 5a and scribe two parallel lines oriented 45˚ from the 
major flat.  The resulting piece (figure 5b) is usually sandwiched with a second piece having a 
[010] zone axis or a [110]-type zone axis. 

 

Figure 5. (a) T-square oriented to obtain a sample with a [100] zone 
axis and [001] growth direction.  (b) The crystallographic 
orientations of the cleaved piece. 

Figures 6 through 8 are schematics of the scribing templates for cubic materials with the [111], 
[211], and [311] growth directions, respectively.  As in figure 3, each schematic has top and two 
side views with the dimensions of our prototype tools and a top view labeled with the most 
frequently desired zone axes. Figure 9 is a similar schematic of a template designed for use with 
hexagonal materials having a [0001] growth direction.  Figure 10 shows the (a) top and (b-c) side 
views of the T-square.  Figure 11 shows a photograph of the scribing template for the [211] 
growth direction and the T-square. 
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Figure 6. Schematics of Scribing Template for cubic materials with the [111] growth direction.  Top (a) 
and side (b) and (c) views with labeled dimensions.  Top (d) view with labeled orientations. 
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Figure 7. Schematics of Scribing Template for cubic materials with the [211] growth direction. 
Top (a) and side (b) and (c) views with labeled dimensions.  Top (d) view with labeled 
orientations. 
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Figure 8. Schematics of Scribing Template for cubic materials with the [311] growth direction.  Top (a) 
and side (b) and (c) views with labeled dimensions.  Top (d) view with labeled orientations. 
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Figure 9. Schematics of Scribing Template for hexagonal materials with the [0001] growth direction. 
Top (a) and side (b) and (c) views with labeled dimensions.  Top (d) view with labeled 
orientations. 
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Figure 10. Top (a) and side (b) and (c) schematics of the T-square for the Scribing 

Template. 
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Figure 11.  Photograph of the Scribing Template for the [211] growth direction and the T-square. 

Some samples, such as GaN films grown onto SiC, are too hard to cleave with a diamond scriber.  
In this case, we use the tool with the diamond scriber to scribe a line with the desired orientation, 
and then move the sample to a diamond saw.  Some commercially available diamond wire saws 
use a square graphite mount for positioning the samples.  Adjusting the dimensions of the 
scribing template would allow the design of a tool that would fit directly into the wire saw. 

Most of the films grown at ARL have the same in and out-of-plane orientations as the substrates 
onto which they are grown.  In cases where the film and substrate do not have the same 
orientation, one must remember that using the tool as described in this report results in a sample 
having the zone axis selected by the T-square placement for the substrate only.  For known in-
plane misorientations (such as the 30˚ in-plane rotation between GaN and SiC), the sample can 
be rotated before placement onto the tool in a manner that allows us to select the zone axis for 
the film.  In another example, we have studied ZnTe films with [111] growth direction grown 
onto Si substrates with a [311] growth direction.  Since quality of the film image is usually more 
important than the substrate image, we choose the tool that corresponds to the growth direction 
of the film. In the ZnTe[111]/Si[311] system the [110]  in-plane direction in the substrate does 
correspond to the [110]  direction in the film, we can align the major flat of the wafer onto the 
template in the normal manner. 



3. Conclusion 

We use the sample scriber templates in the first step towards preparing TEM samples with the 
most appropriate zone axis for the experiment.  The template’s design allows fast selection 
amongst the most common zone axes for high- and low-resolution imaging.  The system of 
templates is easily expandable to accommodate other crystal geometries.  
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