The Cohesive Element Approach to Dynamic Fragmentation: The Question of Energy Convergence

Report No. ARL-RP-162
Authors: J. F. Molinari; G. Gazonas; R. Raghupathy; A. Rusinek; F. Zhou
Date/Pages: February 2007; 32 pages
Abstract: The cohesive element approach is getting increasingly popular for simulations in which a large amount of cracking occurs. Naturally, a robust representation of fragmentation mechanics is contingent to an accurate description of dissipative mechanisms in form of cracking and branching. A number of cohesive law models have been proposed over the years and these can be divided into two categories: cohesive laws that are initially rigid and cohesive laws that have an initial elastic slope. This report focuses on the initially rigid cohesive law, which is shown to successfully capture crack branching mechanisms in simulations. The report addresses the issue of energy convergence of the finite-element solution for high-loading rate fragmentation problems, within the context of small strain linear elasticity. These results are obtained in an idealized onedimensional setting, and they provide new insight for determining proper cohesive zone spacing as function of loading rate. The findings provide a useful roadmap for choosing mesh sizes and mesh size distributions in two and three-dimensional fragmentation problems. Remarkably, introducing a slight degree of mesh randomness is shown to improve by up to two orders of magnitude the convergence of the fragmentation problem.
Distribution: Approved for public release
  Download Report ( 0.621 MBytes )
If you are visually impaired or need a physical copy of this report, please visit and contact DTIC.

Last Update / Reviewed: February 1, 2007