
 

 
On the Swerve Response of Projectiles to Control Input 

 
by Douglas Ollerenshaw and Mark Costello 

 
 

ARL-CR-0604 April 2008 
 
 
 
 
 
 

prepared by 
 

Oregon State University 
Corvallis, Oregon 

 
and 

 
Georgia Institute of Technology 

Atlanta, Georgia 
 

under contract 
 

W911QX-06-C-0113 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited. 



 

 

 
 
 
 
 
 
 
 
 
 
 
 

NOTICES 
 

Disclaimers 
 
The findings in this report are not to be construed as an official Department of the Army position 
unless so designated by other authorized documents. 
 
Citation of manufacturer’s or trade names does not constitute an official endorsement or 
approval of the use thereof. 
 
DESTRUCTION NOTICE⎯Destroy this report when it is no longer needed. Do not return it to 
the originator. 
 



 

 

Army Research Laboratory 
Aberdeen Proving Ground, MD 21005-5069 
 

ARL-CR-0604 April 2008 
 
 
 
 

On the Swerve Response of Projectiles to Control Input 
 

Douglas Ollerenshaw 
Department of Mechanical Engineering, Oregon State University 

 
Mark Costello 

School of Aerospace Engineering, Georgia Institute of Technology 
 
 
 

prepared by 
 

Oregon State University 
Corvallis, Oregon 

 
and 

 
Georgia Institute of Technology 

Atlanta, Georgia 
 

under contract 
 

W911QX-06-C-0113 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited. 



 

ii 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No.  0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection information.  Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and 
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no 
person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1.  REPORT DATE (DD-MM-YYYY) 

    April 2008 
2.  REPORT TYPE 

    Final 
3.  DATES COVERED (From - To) 

   October 2006 to September 2007 
5a.  CONTRACT NUMBER 

    W911QX-06-C-0113 
5b.  GRANT NUMBER 

4.  TITLE AND SUBTITLE 

 
   On the Swerve Response of Projectiles to Control Input 
  5c.  PROGRAM ELEMENT NUMBER

   
5d.  PROJECT NUMBER 

     AH80 
5e.  TASK NUMBER 
 

6.  AUTHOR(S) 
 
   Douglas Ollerenshaw (OSU); Mark Costello (GIT) 

5f.  WORK UNIT NUMBER 
 

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

    Oregon State University          Georgia Institute of Technology 
    Corvallis, Oregon                    Atlanta, Georgia 

8.  PERFORMING ORGANIZATION 
    REPORT NUMBER 

    ARL-CR-0604 

10.  SPONSOR/MONITOR'S ACRONYM(S) 
 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

   U.S.  Army Research Laboratory 
   Weapons and Materials Research Directorate 
   Aberdeen Proving Ground, MD  21005-5069 

11.  SPONSOR/MONITOR'S REPORT
      NUMBER(S) 

12.  DISTRIBUTION/AVAILABILITY STATEMENT 

   Approved for public release; distribution is unlimited. 

13.  SUPPLEMENTARY NOTES 

The contracting officer’s representative (COR) is Peter Plostins, U.S. Army Research Laboratory, ATTN:  AMSRD-ARL-WM-
BC, Aberdeen Proving Ground, MD  21005-5069, telephone number (410) 306-0800. 
14.  ABSTRACT 

 
The swerve response of fin- and spin-stabilized projectiles to control mechanism input is sometimes not intuitive and often 
surprises smart weapon designers.  This report seeks to explain the basic parameters that govern swerve of projectiles excited 
by control input.  By modeling the overall effect of any control mechanism as a non-rolling reference frame force or moment 
applied to the projectile, we obtain general expressions for swerve in terms of basic vehicle parameters.  These compact 
expressions are used to show that maximum swerve response for a fin-stabilized projectile is achieved when the force is 
applied near the nose of the projectile, while maximum swerve response for a spin-stabilized projectile is achieved when the 
force is applied near the base of the projectile. 

15.  SUBJECT TERMS 

    guidance navigation and control;  swerve response 

16.  SECURITY CLASSIFICATION OF:   
19a.  NAME OF RESPONSIBLE PERSON 
      Peter Plostins 

a.  REPORT 
 UNCLASSIFIED 

b.  ABSTRACT 
UNCLASSIFIED 

c.  THIS PAGE 
UNCLASSIFIED 

17.  LIMITATION 
OF ABSTRACT 

 
SAR 

18.  NUMBER 
OF PAGES 

 
30 

19b.  TELEPHONE NUMBER (Include area code) 
      410-306-0800 

 Standard Form 298 (Rev.  8/98) 
 Prescribed by ANSI Std.  Z39.18



 

iii 

Contents 

List of Figures iv 

List of Tables iv 

1. Introduction 1 

2. Simplified Analytical Swerve Solution 1 

3. Correlation to Full Six-Degree-of-Freedom Model 9 

4. Effects of Individual Parameters 15 

5. Conclusions 19 

6. References 20 

Distribution List 22 
 



 

iv 

List of Figures 

Figure 1.  Vertical plane swerve response of the M829A2 fin-stabilized projectile to 1-lbf  
control input applied  in the +y, +z, -y, and -z directions, with 6-DOF correlation data...... 11 

Figure 2.  Magnitude of the swerve response of the M829A2 fin-stabilized  projectile to a  
1-lbf control input as a function of the distance from  the projectile c.g. to the point of 
application of the force, with 6-DOF  correlation data. ........................................................ 12 

Figure 3.  Phase shift of the swerve response of the M829A2 fin-stabilized  projectile to a  
1-lbf control input as a function of the distance from  the projectile c.g. to the point of 
application of the force, with 6-DOF correlation data. ......................................................... 12 

Figure 4.  Vertical plane swerve response of the M549 spin-stabilized projectile to 1-lbf  
control input applied in the +y, +z, -y, and -z directions, with 6-DOF correlation data....... 13 

Figure 5.  Magnitude of the swerve response of the M549 spin-stabilized  projectile to a  
1-lbf control input as a function of the distance from  the projectile c.g. to the point of 
application of the force, with  6-DOF correlation data. ........................................................ 14 

Figure 6.  Phase shift of the swerve response of the M549 spin-stabilized  projectile to a  
1-lbf control input as a function of the distance from  the projectile c.g. to the point of 
application of the force, with  6-DOF correlation data. ........................................................ 14 

Figure 7.  Summary of projectile response to a control input in the positive y-direction in  
both a fin-stabilized and a spin-stabilized projectile............................................................. 17 

Figure 8.  Magnitude of the swerve response of the M549 spin-stabilized projectile to a  
1-lbf control input as a function of the distance from the projectile c.g. to the point of 
application of the control force, Magnus force coefficient varied from its value to zero..... 18 

Figure 9.  Phase shift of the swerve response of the M549 spin-stabilized projectile to a  
1-lbf control input as a function of the distance from the projectile c.g. to the point of 
application of the control force, Magnus force coefficient varied from its value to zero..... 18 

 

List of Tables 

Table 1.  Summary of projectile initial conditions,  physical parameters, and aerodynamic  
coefficients. ........................................................................................................................... 10 

 
 



 

1 

1. Introduction 

The continuing development of micro-electromechanical systems (MEMS) is pointing to the 
possibility of mounting complete sensor systems on medium and small caliber projectiles as part 
of an actively controlled smart munition.  Two important technical challenges in achieving this 
goal are the development of small, rugged sensor suites and control mechanisms.  There is 
currently a flurry of activity to create innovative physical control mechanisms.  Concepts include 
pulse jets, squibs, synthetic jets (1, 2, 3), drag brakes (4, 5), deployable pins (6, 7), movable nose 
(8), movable canards (9), dual-spin projectiles (10, 11), ram air deflection (12), and internal 
translating mass (13), to name a few. 

Although the physical control mechanisms mentioned are very diverse, there is a common theme 
among all these physical control mechanisms.  All concepts exert a force and/or moment on the 
projectile.  Moreover, since trajectories are shaped relative to ground coordinates, the forces and 
moments are effectively applied in a non-rolling reference frame.  Although the uncontrolled 
dynamics of projectiles (both fin stabilized and spin stabilized) have been extensively studied in 
the ballistics community (14), issues with regard to control response have received considerably 
less attention because of the lack of practical application of control technology to spinning 
projectiles.  With the use of projectile linear theory, this report analytically investigates several 
aspects of the response of a spinning projectile to a control force and/or moment in the non-rolling 
reference frame.  Simple expressions result for the swerve response magnitude and phase angle in 
terms of basic physical mass properties, aerodynamic characteristics, and the state of the air 
vehicle.  These expressions provide a means toward deeper understanding of the underlying 
factors driving control response of projectiles, helping smart weapon designers to create more 
capable weapon systems. 
 

2. Simplified Analytical Swerve Solution 

The six-degree-of-freedom (6-DOF) rigid body dynamic model used to simulate the trajectory of 
a projectile in atmospheric flight has been well developed.  The model consists of the three 
inertial components of the position vector from an inertial frame to the projectile mass center and 
the three standard Euler orientation angles.  The resulting equations of motion are shown as 
equations 1 through 4 (15). 
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In equations 1 and 2, the standard shorthand notation for trigonometric functions is used:  sin (α) ≡ 
sα, cos (α) ≡ cα, and tan (α) ≡ tα.  The forces and moments appearing in equations 3 and 4 contain 
contributions from weight, body aerodynamics, and control forces and are discussed in detail in the 
literature (16). 

Since no analytical solution can be found for the differential equations shown, they must be solved 
with numerical integration techniques.  Over time, however, a series of simplifications of the 
dynamic equations has been identified, which results in an analytically solvable set of quasi-linear 
differential equations and reasonably accurate trajectories.  These equations are referred to collec-
tively as projectile linear theory (17).  The dynamic equations that constitute projectile linear 
theory are given as equations 5 through 13. 
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The projectile linear theory dynamic equations use dimensionless arc length, s, as the independent 
variable.  Arc length is related to time as shown in equation 14: 

 
0

1 t

s Vdt
D

= ∫  (14) 

Additionally, the linear theory equations employ a reference frame that is aligned with the pro-
jectile axis of symmetry but does not roll.  Variables in this reference frame, referred to as the no-
roll frame or the fixed plane frame, are denoted with a ~ superscript.  The no-roll frame is related 
to the body fixed frame used in the traditional 6-DOF equations by a single axis rotation about the 
projectile axis of symmetry.  For example, the no-roll frame velocity components are related to the 
body frame velocity components as shown in equation 15: 
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For the purpose of examining basic swerve response attributable to control input, gravity and 
atmospheric winds are neglected.  The constant terms in the set of four coupled equations shown 
as equation 5, referred to as the epicyclic equations, can then be described as 
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Both the velocity (V) and the roll rate (p) are considered to be constant wherever they appear in 
equations 9 through 13 and equations 16 through 22.  The terms D and m refer to the projectile 
reference diameter and the total projectile mass, respectively.  The projectile inertia terms, PI  and 

RI , are respectively the roll and pitch inertias.  The term ρ  is the atmospheric air density.  The 
term NAC  is the normal force coefficient.  The normal force acts in a direction perpendicular to the 
projectile axis of symmetry and results from non-axial wind forces caused by yawing and pitching 
of the projectile.  The normal force acts not at the projectile center of gravity (c.g.) but at a point 
called the normal force center of pressure (COP).  The SLPΔ  term represents the distance between 
the c.g. and the center of pressure as follows: 

 SLP COP CGSL SLΔ = −  (23) 

in which both the c.g. and the center of pressure are measured from the projectile base along the 
projectile stationline.  YPAC  is the Magnus force coefficient.  The Magnus force is caused by 
unequal pressures on opposite sides of a spinning body resulting from the viscous interaction 
between the spinning surface and the surrounding atmosphere.  The Magnus force itself is 
generally considered to be small enough to be neglected.  However, the resulting moment must  
be considered.  SLMΔ  represents the distance between the c.g. and the point of application of the 
Magnus force (MAG): 

 SLM MAG CGSL SLΔ = −  (24) 

in which both the c.g. and the MAG application point are measured from the projectile base along 
the projectile stationline.  The MAG is proportional to both spin rate and transverse angular 
velocity.  Therefore, in projectiles with very low spin rates, the Magnus moment approaches zero.  
The term CMQ represents the pitch-damping moment coefficient.  The pitch-damping moment is 
proportional to the transverse angular velocity of the projectile.  CMQ will always be negative for a 
stable projectile.  Thus, it has the stabilizing effect of decreasing the total transverse angular 
velocity of the projectile.  
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Finally, the terms CY  and CZ  represent applied control forces applied along the y and z axes of the 
projectile no-roll frame.  Both forces are assumed to act at the same point (CF) on the projectile 
with a moment arm, SLCΔ , defined as 

 SLC CF CGSL SLΔ = −  (25) 

in which both the center of mass and the point of application of the control forces are measured 
from the rear of the projectile along the projectile axis of symmetry. 

Determining the solution of the coupled epicyclic equations is necessary before solving both the 
attitude ( ,θ ψ ) and the swerve ( ,y z ) equations.  To obtain the solution, the epicyclic equations 
are first transformed into the Laplace domain. 
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It is important to note that the variable s as expressed in equation 24 is the Laplace operator, not 
arc length as described in equation 14.  Equation 26 can be expanded so that each of the four 
expressions, represented by the dummy variable ζ, is in the following form 

 ( )
4 3 2

4 3 2 1 0
5 4 3 2

4 3 2 1 0

s s s s
s

s s s s s
ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ

η η η η η
ζ

δ δ δ δ δ
+ + + +

=
+ + + + +

 (27) 

in which 4 3 2 1 0 4 3 2 1 0, , , , , , , , ,ζ ζ ζ ζ ζ ζ ζ ζ ζ ζη η η η η δ δ δ δ δ  are all known constants expressed in terms of 

the epicyclic initial conditions and the constants A, B, C, F, H, VF, WF, QF, RF.  The non-zero 
eigenvalues of the system are broken into two pairs of complex conjugates known as the fast and 
slow modes of the system.  They are described as 

 ( ) 2 2 21 1 4 4 2 2 2
2 2F A H iF A iB C iAF F AH iFH Hλ = − + ± + ± + ± − + ± +  (28) 

 ( ) 2 2 21 1 4 4 2 2 2
2 2S A H iF A iB C iAF F AH iFH Hλ = − + ± − ± + ± − + ± +  (29) 

Thus, each term can also be written in partial fractions form as 

 ( ) 0 1 0 1 0
2 2 2 22 2F F F S S S

C F s F S s S
s

s s s s s
ζ ζ ζ ζ ζζ

ζ ω ω ζ ω ω
+ +

= + +
+ + + +

 (30) 
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in which the fast and slow mode natural frequencies and damping rates are described as 

 1 2F F Fω λ λ=  (31) 

 
( )1 2

1 22
F F
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Equations 27 and 30 can be equated to one another, with the resulting expression used to solve 
for the unknown coefficients in the numerator of equation 30.  The generalized Laplace domain 
solution for each of the four epicyclic differential equations can also be expressed as shown in 
equation 35.  
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 (35) 

in which λFR and λFI are the real and imaginary parts of the fast mode eigenvalues, and λSR and λSI 
are the real and imaginary parts of the slow mode eigenvalues.  Note that equation 35 is arranged 
to match standard forms found in inverse Laplace transform tables, thus allowing easy transforma-
tion of the epicyclic solutions back to the arc length domain.  

With the epicyclic solutions thus obtained, the attitude solutions can be expressed in the Laplace 
domain as 

 ( ) ( ) ( )1 0Ds r s
Vs s

ψ ψ= +%  (36) 

 ( ) ( ) ( )1 0Ds q s
Vs s

θ θ= +%  (37) 

Similarly, the swerve solutions can be expressed in the Laplace domain as 

 ( ) ( ) ( ) ( )1 0D Dy s v s s y
Vs s s

ψ= + +%  (38) 
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 ( ) ( ) ( ) ( )1 0D Dz s w s s z
Vs s s

θ= − +%  (39) 

The attitude expressions shown in equations 36 and 37, along with the expressions for ( )v s% , 

( )w s% , ( )q s% , and ( )r s% , as expressed in equation 35, can be substituted into the swerve expressions 

in equations 38 and 39.  Taking the inverse Laplace transform of the resulting expressions yields 
arc length domain swerve solutions of the form 
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Additionally, the down-range position of the projectile, x, expressed as a function of arc length is 
simply 
 0( )x s x Ds= +  (42) 

One must be careful to note that the s term appearing in equations 40 through 41 represents arc 
length, as defined in equation 14. 

To obtain a sense of the generalized swerve response of a projectile because of applied control 
forces, we examine the case in which the projectile is fired down range with no initial pitch or yaw 
angle and with no initial perturbations of the transverse lateral and angular velocities.  Assuming 
that the firing position is at the origin of the inertial reference frame, this allows us to set the initial 
conditions of all terms to zero, except for velocity and roll rate.  The velocity and roll rate initial 
conditions are denoted V0 and p0.  Additionally, as stated earlier, the effects of gravity and atmos-
pheric winds are neglected here.  These assumptions provide a case in which a projectile with no 
control forces applied displays no swerving motion.  Subsequently, the swerve response created by 
the application of control forces will be clear. 

When we examine the swerve expressions in equations 40 and 41, a few simplifications can be 
made.  First of all, note that in a stable projectile, the real parts of the fast and slow mode eigen-
values, λFR and λSR , are always negative.  Therefore, the oscillatory terms in the swerve response 
decays as the projectile flies down range and can be neglected for long-term swerve response.  The 
pitch-damping moment is primarily associated with the oscillatory epicyclic terms and can also be 
neglected, allowing CMQ in equation 20 to be set to zero.  Additionally, as the arc length value 
becomes large, the terms containing the square of the arc length begin to dominate the swerve 
response expressions and the terms 0yC , 1yC , 0zC , and 1zC  can be neglected.  Finally, equation 42 

can be solved for arc length, s, and substituted into equations 40 and 41. 

The resulting simplified swerve expressions can then be expressed as a function of range solely 
in terms of projectile parameters, initial velocity, and spin rate, and control force input applied in 
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the no-roll frame.  They can be further simplified if we express the swerve response in terms of 
its magnitude relative to the magnitude of the control input, and the phase shift relative to the 
angle of the applied control vector.  A compact and informative expression for the response 
magnitude, R, results: 

 ( )
( )

22 2 2 2 2 22
0 0

22 2 2 2 2 2
0 0 0

4
2 2 4

YPA SLM NA SLC SLPC

R NA YPA SLM NA SLP

D p C V CF xR
V p I C mDC m V C

Δ + Δ −Δ
=

+ Δ + Δ
 (43) 

in which CF  is the magnitude of the control force, defined as 

 2 2
C y zF F F= +  (44) 

The expression for the phase shift of the swerve response, RΦ , is 

 
( )( )

( ) ( )
0 01

2 2 2
0 0

2 2
tan

2 4
NA R NA SLC SLP YPA SLM SLC

R
YPA SLM R NA YPA SLM NA SLP SLC SLP

V p C I C mDC
Dp C I C mDC mV C

−
⎛ ⎞Δ −Δ + Δ Δ

Φ = ⎜ ⎟⎜ ⎟Δ + Δ − Δ Δ −Δ⎝ ⎠
 (45) 

The phase angle of the swerve response, TΦ , in the y-z plane can be found if we add the phase 
angle of the control input to the phase shift of the swerve response, RΦ , as follows: 

 1tan z
T R

y

F
F

−
⎛ ⎞

Φ = +Φ⎜ ⎟⎜ ⎟
⎝ ⎠

 (46) 

Since the inverse tangent function will only result in values between -π/2 and π/2, careful 
consideration must be paid to the signs of the numerator and denominator of the arguments in 
equations 46 and 47 to ensure that the result is in the proper quadrant of the y-z plane.  It is 
advisable to use the atan2 function instead to avoid confusion. 

Equations 43 and 45 can be further simplified if the control mechanism being investigated imparts 
only a pure moment upon the projectile body.  The expression for the swerve response magnitude, 
R, becomes 

 
( )

2

22 2 2 2 2
0 0 0

1
2 4

C NA

R NA YPA SLM NA SLP

M x CR
V p I C mDC m V C

=
+ Δ + Δ

 (47) 

in which CM  is the magnitude of the applied control moment, defined as 

 2 2
C y zM M M= +  (48) 

The phase shift of the swerve response, RΦ , becomes 

 
( )

1 0

0

2tan
2

NA SLP
R

R NA YPA SLM

mV C
p I C mDC

− ⎛ ⎞Δ
Φ = ⎜ ⎟⎜ ⎟+ Δ⎝ ⎠

 (49) 
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As before, the phase angle of the swerve response, TΦ , in the y-z plane can be found if we add 
the phase angle of the control input to the phase shift of the swerve response, RΦ . 

 1tan z
T R

y

M
M

−
⎛ ⎞

Φ = +Φ⎜ ⎟⎜ ⎟
⎝ ⎠

 (50) 

These equations provide relatively compact expressions for the swerve magnitude (equations 43 
and 47) and swerve phase angle (equations 45 and 49) because of a control force applied to a point 
on the projectile (equations 43 and 45) and a pure moment applied to the projectile (equations 47 
and 49).  These expressions highlight the key parameters that drive control response of projectiles 
excited by control force and moment input.  However, when one is applying these formulas, it is 
important to recall that stability of the projectile is inherent in the assumptions used to achieve 
these expressions.  When parameters are varied in these expressions to investigate the effects on 
swerve response, care must be taken to ensure that the stability assumption is not violated.  It also 
needs to be emphasized that these equations calculate the magnitude and phase shift of the swerve 
response under the assumption that the velocity and spin rate remain constant at their initial values, 
and in turn, all Mach number dependent quantities remain constant as well.  Of course, this 
assumption becomes increasingly inaccurate as the projectile proceeds down range and must be 
periodically updated for long-range trajectories. 
 

3. Correlation to Full Six-Degree-of-Freedom Model 

To demonstrate the accuracy of the simplified swerve equations obtained previously, two exemplar 
projectiles were chosen for which complete body aerodynamic properties are already known.  The 
two projectiles chosen were the M829A2 fin-stabilized projectile and M549 spin-stabilized projec-
tile.  For both projectiles, the results obtained with equations 43 and 45 were compared to results 
from a fixed step, fourth order Runge-Kutta numerical integration of the full 6-DOF equations of 
motion given as equations 1 through 4.  For both projectiles, the swerve response was evaluated at 
a range of 5,280 feet in the absence of gravity and atmospheric winds and with no initial yaw or 
pitch angle.  In both cases, four input force scenarios were examined:  Fy = 1 lbf & Fz = 0 lbf,  
Fy = 0 lbf & Fz = 1 lbf, Fy = -1 lbf & Fz = 0 lbf, and Fy = 0 lbf & Fz = -1 lbf.  The control force 
moment arm, SLCΔ , in equations 43 and 45 was varied from 1 foot behind the projectile center of 
mass to 1 foot in front of the projectile center of mass.  The 6-DOF swerve response was calcula-
ted for each input force scenario with control force moment arms of SLCΔ  = -1.0 ft, SLCΔ  = -0.5 ft, 

SLCΔ  = 0.0 ft, SLCΔ  = 0.5 ft, and SLCΔ  = 1.0 ft.  The 6-DOF expressions calculate all forces and 
moments in the projectile body frame, as opposed to the projectile no-roll frame used to achieve 
the swerve expressions presented here.  Therefore, the control forces and moments must be 
transformed from the no-roll frame to the body frame for use in the 6-DOF expressions. 
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Table 1 summarizes the initial conditions and the resultant aerodynamic coefficients, along with 
the relevant physical parameters, for both projectiles as used in equations 43 and 45. 

Table 1.  Summary of projectile initial conditions,  
physical parameters, and aerodynamic  
coefficients. 

 M829A2 M549 
V0 (ft/s) 5479.0 2710.0 

p 0 (rad/s) 8.7000 1674.1 
ρ (slug/ft3) 2.3785x10-3 2.3785x10-3 

l R (slug*ft2) 2.3870x10-4 0.10857 
l P (slug*ft2) 0.17718 1.3964 

m (slug) 0.34461 2.9465 
D (ft) 0.08790 0.50853 
CNA 13.350 2.6314 
CYPA 0.0000 -0.9600 
CMQ -5215.8 -27.700 

ΔSLM (ft) -1.3833 -0.52920 
ΔSLP (ft) -0.50079 -0.71373 

 
Figure 1 shows the swerve response of the M829A2 fin-stabilized projectile in the vertical target 
plane at a down-range location of x = 5280 ft, with five 6-DOF data points included to demonstrate 
correlation.  Note that the positive z-direction points downward in the negative altitude direction.  
Figures 2 and 3 show the magnitude and phase shift of the response, along with 6-DOF correlation 
data for the M829A2.  Note that the magnitude of the response depends only upon the magnitude 
of the control input, not its direction.  The phase shift of the response, however, does not vary with 
the magnitude of the input and also depends on the direction of the input force.  As positive y is 
rightward and positive z is downward in the vertical target plane plots, a positive phase shift is in 
the clockwise direction. 

Figure 4 shows the swerve response of the M529 spin-stabilized projectile in the vertical target 
plane at a down-range location of x = 5280 ft, with five 6-DOF data points included to demonstrate 
correlation.  Figures 5 and 6 show the magnitude and phase shift of the response, along with 6-DOF 
correlation data for the M549. 

For both the fin-stabilized and spin-stabilized projectiles studied here, the response as predicted 
by the simplified swerve equations is shown to correlate very well with that predicted by the full 
6-DOF simulation at this relatively short range.  Though only a very small fraction of the total 
terms comprising the full linear theory swerve expressions are preserved in the simplified 
version presented, it is obvious that those terms providing the dominant effect on the swerve 
response have been retained. 
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Figure 1.  Vertical plane swerve response of the M829A2 fin-stabilized projectile to 1-lbf control input applied  
in the +y, +z, -y, and -z directions, with 6-DOF correlation data. 
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Figure 2.  Magnitude of the swerve response of the M829A2 fin-stabilized  

projectile to a 1-lbf control input as a function of the distance from  
the projectile c.g. to the point of application of the force, with 6-DOF  
correlation data. 

 
Figure 3.  Phase shift of the swerve response of the M829A2 fin-stabilized  

projectile to a 1-lbf control input as a function of the distance from  
the projectile c.g. to the point of application of the force, with 6-DOF 
correlation data. 
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Figure 4.  Vertical plane swerve response of the M549 spin-stabilized projectile to 1-lbf control input applied in the 
+y, +z, -y, and -z directions, with 6-DOF correlation data.  
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Figure 5.  Magnitude of the swerve response of the M549 spin-stabilized  

projectile to a 1-lbf control input as a function of the distance from  
the projectile c.g. to the point of application of the force, with  
6-DOF correlation data. 

 
Figure 6.  Phase shift of the swerve response of the M549 spin-stabilized  

projectile to a 1-lbf control input as a function of the distance from  
the projectile c.g. to the point of application of the force, with  
6-DOF correlation data. 
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4. Effects of Individual Parameters 

Figures 1 through 6 clearly show that the point of application of the control force has a very large 
effect on both the direction and the magnitude of the swerve response.  Further, they demonstrate 
that the effects are drastically different for fin- and spin-stabilized projectiles.  The simplified 
swerve expressions provide insight into the physical reasons for this behavior.  In the swerve 
response magnitude and phase expressions given as equations 43 and 45, the term expressing the 
distance from the center of pressure location to the point of application of the control force,  
(ΔSLC - ΔSLP), appears repeatedly.  The practical result is that if control force is applied at the center 
of pressure, (ΔSLC - ΔSLP) becomes zero and the response magnitude is at a minimum.  In the case 
of a fin-stabilized projectile, which has very low spin rates and negligibly small Magnus effects as 
a result, the magnitude of the response goes to zero when the control force is applied at the center 
of pressure. 

The direction of the response is also driven by the center of pressure.  A typical fin-stabilized 
projectile will have a center of pressure behind the projectile center of mass, resulting in a negative 
ΔSLP.  A control force applied in front of the center of pressure leads to (ΔSLC - ΔSLP) becoming 
positive.  This will result in a positive numerator and a much larger positive denominator, indi-
cating a very small positive phase shift.  Conversely, when the control force is applied behind the 
center pressure, (ΔSLC - ΔSLP) becomes negative and so do the numerator and denominator of 
equation 45.  This indicates a phase shift of nearly -180 degrees. 

A spin-stabilized projectile displays the opposite behavior, resulting from the center of pressure 
being typically located ahead of the center of mass.  With a positive ΔSLP, a control force applied in 
front of the center of pressure will result in a positive numerator and a negative denominator in 
equation 45, indicating a phase shift approaching 180 degrees out of phase with the direction of the 
applied force.  When the control force is applied behind the center of mass, the response will be 
approximately in phase with the direction of the applied force.  The Magnus moment causes a 
comparably smaller response which is 90 degrees out of phase with the direction of the applied 
control force. 

Equations 47 and 49, the expressions for swerve response magnitude and phase shift in terms of 
pure applied moments, can be analyzed similarly.  For a fin-stabilized projectile, a positive moment 
will lead to a response -90 degrees out of phase with the direction of the applied moment.  For 
instance, a positive moment in projectile no-roll z-direction will lead to a response in the positive y-
direction.  A spin-stabilized projectile will respond in the opposite direction to the same applied 
moment.  Again, this effect can be tied directly to the sign of ΔSLP in equation 49. 

The physical explanation for this behavior is relatively simple.  Application of a control force 
away from the c.g., or application of a pure control moment, creates a non-zero angle of attack in 
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the projectile.  The normal force results directly from the angle of attack and, in a stable projectile, 
will create a moment equal and opposite to the moment caused by the control input.  The direction 
of the response will be driven primarily by the sum of these two forces.  If the sum of the control 
force and the normal force are positive, the response will be in the positive direction.  When the 
control force is applied at the center of pressure, the normal force will be equal and opposite to the 
control force and the response will be driven solely by the Magnus effect, which only persists in 
spin-stabilized projectiles.  If the sum of the two forces is negative, the response will be in the 
negative direction.  When a pure moment is applied to a projectile without an applied control 
force, the normal force alone determines the direction of the response.  In the case of a fin-stabi-
lized projectile, with a center of pressure behind the center of mass, a positive normal force is 
necessary to counteract a positive applied control moment, leading to a response in the positive 
direction.  The opposite occurs in a spin-stabilized projectile.  Figure 7 graphically summarizes the 
effects of a control force in the positive y-direction applied at varying points on the projectile body. 

To demonstrate the relatively small contribution of the Magnus moment in a spin-stabilized 
projectile, figures 8 and 9 show the predicted swerve magnitude and phase shift, respectively, of 
the M549 projectile when the Magnus force coefficient is equal to -0.96, -0.48, and 0. 

The magnitude of the response is largely unaffected if the Magnus moment reduced or removed, 
except when the control force is applied near the projectile center of pressure.  When that is the 
case, the normal force is near zero and the Magnus moment becomes the dominant factor in the 
response magnitude.  When the Magnus moment is neglected entirely, the magnitude of response 
of the M549 becomes zero when the control force is applied at the center of pressure, as is the 
case in a fin-stabilized projectile. 

The effect of the Magnus moment becomes more apparent when we examine the phase response  
of the M549 with varied Magnus force coefficients.  The Magnus moment acts 90 degrees out of 
phase with the angle of attack of the projectile.  As the Magnus force coefficient is reduced, the 
portion of the response that is orthogonal to the control input diminishes.  With no Magnus moment 
present, the response is almost completely in phase with a force applied behind the center of pres-
sure and is nearly 180 degrees out of phase for a force applied in front of the center of pressure. 
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Figure 7.  Summary of projectile response to a control input in the positive y-direction in both a fin-stabilized 
and a spin-stabilized projectile.  (Magnus moments, which act 90 degrees out of phase with the angle 
of attack in spin-stabilized projectiles, are not shown.) 
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Figure 8.  Magnitude of the swerve response of the M549 spin-stabilized 
projectile to a 1-lbf control input as a function of the distance 
from the projectile c.g. to the point of application of the control 
force, Magnus force coefficient varied from -0.96 to 0. 

 

Figure 9.  Phase shift of the swerve response of the M549 spin-stabilized 
projectile to a 1-lbf control input as a function of the distance 
from the projectile c.g. to the point of application of the control 
force, Magnus force coefficient varied from -0.96 to 0. 
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5. Conclusions 

Relatively simple, closed form formulas for the magnitude and phase angle of a projectile excited 
by control forces or moments in terms of fundamental projectile flight mechanic parameters have 
been created.  The swerve response formulas are remarkably accurate, given the litany of simpli-
fications and the resulting compact form of the results.  These formulas explain in a clear manner 
the control response differences between fin- and spin-stabilized projectiles, including the key role 
that the center of pressure plays in control force response.  It is shown that fin-stabilized projec-
tiles, respond in phase to control force input forward of the center of pressure and control moments, 
while spin-stabilized projectiles respond out of phase to control force input forward of the center of 
pressure and control moments.  The simple formulas reported here are expected to be useful to 
smart weapon designers in bringing to light basic parameters that drive swerve response from 
different control mechanisms.  
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