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ABSTRACT 

 
Polycrystalline aluminum oxide (Al2O3) based 

materials have both personnel and ground vehicle armor 
applications. However, their ballistic performance can 
vary significantly. At the root of this problem is the 
identification of the fundamental macro and micro 
mechanisms of deformation and failure in the ballistic 
event which has proven very elusive over the years. 
Using a newly developed soft recovery plate impact 
experiment, a multi-disciplinary, multi-national 
collaboration has, for the first time, determined micro 
and macro deformation and damage mechanism maps 
relating the experimentally measured global mechanical 
response of a material through matured shock wave 
diagnostics to the nature of concurrent deformation and 
damage generated at varying length scales under shock 
wave loading. 

 
 

1. INTRODUCTION 
 

Current operations in Iraq and Afghanistan 
unambiguously demonstrate the need for threat specific, 
reduced weight, transparent and opaque armor in many 
army systems, including personnel protection. As the 
threats have escalated and become more varied, the 
challenges for rapidly developing optimized threat 
specific armor packages have grown complex. Certain 
high performance structural ceramics, Al2O3, B4C, SiC, 
TiB2, AlN, AlON, spinel, glass, etc. have proven to be 
effective armor materials at much lower weights in many 
systems. A critical key to further accelerating 
optimization of these materials is development of 
validated predictive performance computer models. This 
approach is based on the determination and 
quantification of the various ballistic energy absorption 
mechanisms, including the various deformation modes, 
damage nucleation and accumulation processes, and the 
resulting eventual failure of armor ceramics at high rates 
under very high impact stress (shock wave), comparable 
to the ballistic event.  

 

Polycrystalline aluminum oxide (Al2O3 - alumina), 
known as sapphire in single crystal form, has been used 
for many years in both personnel and ground vehicle 
armor applications. Yet the ballistic performance of 
alumina based armor ceramic materials can vary 
significantly, a major challenge for systematic material 
optimization, valid simulation, prediction, and design of 
armor systems. We seek to address this problem through 
identification of the fundamental mechanisms of 
deformation and failure of alumina in the ballistic event.  

 
Past efforts have used instrumented laboratory high 

strain rate/high pressure mechanical tests including Split 
Hopkinson Pressure Bar (SHPB/ Kolsky Bar) and plate 
impact (shock wave) to mimic, in a controlled 
environment, the response of armor materials under 
ballistic high strain rate – high stress conditions. But 
there are two major problems associated with this 
approach: (A) recovery of samples from the test suitable 
for detailed characterization, and (B) identification of the 
deformation and failure mechanisms that cut across 
length scales from centimeters to nanometers. This has 
been a major challenge over the years.  

 
Using a newly developed soft recovery technique 

(Bourne et. al. 2006), an international team drawn from 
the Army Research Laboratory (ARL), Royal Military 
College of Science (RMCS), Shrivenham, UK, the 
University of Manchester, Manchester, UK, Johns 
Hopkins University and Tohoku University, Sendai, 
Japan, focused on AD995 (CoorsTek, Co.), a very well 
known commercial high purity alumina. This 
collaboration has, for the first time, determined micro 
and macro deformation and damage mechanism maps 
that relate the experimentally measured global 
mechanical response of a material through matured 
shock wave diagnostics to the nature of concurrent 
deformation and damage generated at varying scales 
under shock wave loading. These results can provide a 
critical missing link in the development of better 
physical material models and materials.  

 
 

2. MATERIAL 
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AD995 is composed of polycrystalline aluminum 

oxide (Al2O3) and aluminosilicate glass. It contains 
99.5% aluminum oxide. The measured density of AD995 
is 3.880 ± 0.003 Mg/m3. Theoretical density of such a 
material should be 3.96 Mg/m3. The difference is 
attributed to the presence of a glassy phase and 
pores/voids in the material [Figure 1]. Ultrasonic 
longitudinal and shear wave velocities are 10.56 ± 0.03, 
and 6.25 ± 0.08 km/s, respectively (Dandekar and 
Bartkowski 1994). 

 

 
 
Figure 1. SEM of AD995 (M. Motyka, ARL).  
 
 

3. EXPERIMENTAL METHODS 
 

Three independent sets of experiments were 
performed to determine: (i) the shock wave response of 
AD995 under compression (to 18 GPa), and subsequent 
release, and tension to determine global compressibility, 
shear and spall (tensile) strengths using piezo-resistive 
gages and velocity interferometer (VISAR) under a 
single shock, (ii) the response of AD995 under repeated 
shock wave compression and subsequent releases to 10.5 
GPa, and (iii) the nature of deformation on meso to nm 
scale from shock recovered AD995.  

Shock wave experiments were performed on 10 and 
5 cm diameter single stage light gas guns at ARL and 
RMCS, respectively to determine compression, shear and 
tensile/spall strengths of AD995. Experiments under two 
successive shocks were done at ARL to determine the 
change in compressibility and shear strength of AD995 
due to propagation of the first shock wave. Shock 
recovery experiments were performed at RMCS. Readers 
are referred to Dandekar and Bartkowski (1994), 
Dandekar (2001), Cooper et al. (2006), and Bourne et al. 
(2006) for the design, configuration, and diagnostic 
details of these experiments1. 

These experiments were carried out in the stress 
regimes where AD995 deformed globally in elastic  
1 Page limitation does not permit us to give details of 
these experiments. 

manner and the regime where AD995 deformed 
inelastically. The boundary between these two regimes is 
nominally called the Hugoniot Elastic Limit (HEL) 
[Figure 2]. The HEL of AD995 is 6.7 GPa. Shock 
recovery experiments on AD995 were performed at 4, 6, 
and 7.8 GPa, i.e., the stress regime where AD995 
deforms globally as an elastic solid and an elastic-plastic 
solid. Shock recovered specimens of AD995 were 
examined under optical microscopy (OM), X-ray 
computed tomography (XCT), Field Emission Scanning 
Electron Microscopy (SEM) and, Transmission Electron 
Microscopy (TEM) to determine details of shock wave 
induced deformation in the material i.e., the nature of 
deformation of AD995 at different length scales. 
Resolutions of OM, and XCT vary from microns to mm, 
while the resolution of SEM and TEM vary between few 
nm to a few microns. The results of these shock wave 
experiments permit us to link the observed global 
deformation of AD995 to deformation at various length 
scales below and above the HEL 

 
 

 
Figure 2. Idealized shock wave profile in elastic-

inelastic material. Final stress corresponds to the 
inelastic stress in the material. 
 

OM and XCT characterizations of shock recovered 
specimens were done at ARL. SEM and TEM 
characterizations of the recovered AD995 were done at 
Johns Hopkins University, Maryland and Tohoku 
University, Japan. 

 
 

4. SHOCK RESPONSE OF AD995 
 
Shock wave experiments, when appropriately 

designed, yield values of mechanical properties i.e., 
compressibility, shear and the tensile/spall strengths as a 
function of stress. The stress (σ)- volume ratio (V/V0), 
where V0 is the initial volume, defines the Hugoniot of a 
material (Fig. 3). The compression from Equation of 
State is hydrodynamic or mean stress compression of the 
material. The magnitude of shear strength may be 
calculated in two ways: either from the difference 
between the shock hugoniot stress, σ (V/V0), and the  
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Figure 3. A schematic of shock Hugoniot and 
hydrodynamic compression of a solid material. 

 
hydrodynamic pressure, P(V/V0), at given compression 
(V/V0) or from the concurrent measurements of the 
Hugoniot stress and lateral stress at a given compression. 
A schematic of the compressive behavior of a material 
under hydrodynamic compression and plane shock wave 
compression is shown in Fig. 3. The value of the shear 
strength [τ (V/V0)] at a given compression is given by: 

 
τ= 0.75[σ(V/V0)−P(V/V0)]  (1)  
 
And from lateral stress (σy) measurements, the value 

of shear strength is obtained from  
 
τ= 0.5[ σ(V/V0)− σy ]    (2) 
 
Thus the shear strength determined is independent of 

any assumption about the nature of the inelastic 
deformation of the material. Fig. 3 shows trends in the 
magnitudes of shear strength as a function of 
impact/Hugoniot stress for materials which do not suffer 
a loss of shear strength (τ > 0) and those which do 
(τ → 0). 

 
Spall strength of material is obtained from the 

difference in the magnitude of stress between Final stress 
and Spall strength shown in Fig. 2. 

 
Figures 4 and 5 show a few representative shock 

wave profiles recorded in compression-spall and lateral 
stress experiments performed on AD995, respectively. 
Fig. 4 shows that plastic wave is not fully developed 
when AD995 is shocked to 11.1 GPa although the HEL, 
as indicated by the break in the slope of the wave 
profiles, is clearly seen recorded at 8.4 and 11.1 GPa. 
The Hugoniot Elastic Limit (HEL) of AD995 is found to 
be 6.71±0.08 GPa. The tensile/spall strength of AD995 
declines with an increase in the magnitude of shock  
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Figure 4. Shock wave profiles in AD995. 
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Figure 5. Lateral stress profiles in AD995 

 
induced stress ultimately vanishing between 8.4 and 11.1 
GPa.  

 
Elastic Compression 

 
Dandekar and Bartkowski (1994) reported the 

Hugoniot Elastic Limit (HEL) of AD995 to be 6.67 ± 
0.24 GPa. Grady (Personal communication) reported a 
value of 6.5 GPa for the HEL of AD995. Dandekar 
(2001) performed double shock experiments on AD995 
to probe the nature of deformation of AD995 at 6.8 and 
10.4 GPa. Dandekar found that both the amplitudes and 
widths of the stress wave profiles in AD995 due to first 
and second shock with their respective releases are 
identical when shocked to 6.78 ± 0.17 GPa. Ewart and 
Dandekar (1994) showed that with the currently used 
diagnostic in shock wave experiments it is not possible to 
detect a small volume change, i.e. compressibility of a 
material under shock wave propagation due to pore 
closure or generation and growth of small number of 
cracks and their lengths. The compression duration of the 
first and second shock wave was 0.37 µs. The second 
shock propagated in AD995 after the stress generated by 
the first shock was totally released. This result implied 
that global and dominant deformation of AD995 at 6.78 
GPa was elastic and reversible i.e., the stress and strain 
states were attained through elastic deformation. The 
associated values of density and particle velocity at the 
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HEL are 3.940 ± 0.004 Mg/m3 and 0.162 ± 0.005 km/s, 
respectively. Reinhart and Chabbildas (2003) report 
values of HEL varying from 6.7 to 7.89 GPa.  

 
Inelastic Compression 
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Figure 6. Shear stress sustained in AD995 with shock 
induced stress. solid and hollow symbols; RED: Grady 
(Personal communication) and, Reinhart and Chhabildas 
(2003), Blue: Cooper et al. (2006), Black Dandekar and 
Bartkowski (1994). 
 

Fig. 6 shows the variation in the value of shear stress 
sustained in AD995 as function of shock induced stress. 
Results obtained by Dandekar and Bartkowski (1994) 
and by Grady (Personal communication) from the offset 
between the shock Hugoniot and hydrodynamic 
compression suggest that deformation of AD995 above 
its HEL is elastic-plastic to around 12 GPa. Above 12 
GPa, AD995 begins to possess a decreasing magnitude 
of shear strength with an increase in shock stress. 
However, the results of lateral stress measurements 
indicate AD995 continues to maintain increasing shear 
strength to 18.5 GPa. Shock data of Grady show that 
AD995 suffers a total loss of shear strength around 31 
GPa. Reinhart and Chabbildas (2003) found that AD995 
has no shear strength at and above 39 GPa. The 
discrepancy in the shear strength values of AD995 
obtained from the offset between the shock Hugoniot and 
hydrodynamic compression and lateral stress 
measurement remains to be resolved. However, the 
discrepancy does not impact the results of the current 
work dealing with the determination of nature of 
deformation from the existing shock wave data and 
features observed in the of shock recovered AD995 by 
means of optical microphotography (OM), X-ray 
computed tomography (XCT) and, transmission electron 
microscopy (TEM). 

 
Spall Strength 

 
Spall strength of AD995 is impulse dependent 

(Table 1). For instance, at the HEL, 6.7 GPa, of AD995, 
the values of spall strengths are 0.31, 0.37, and 0.45 GPa 
for compressive pulse durations/pulse width of 

approximately 0.70, 0.35, and 0.16 µs respectively. The 
dependence of spall strength on the pulse width is 
evident even when AD995 is shocked to as low as 1.7 
GPa or as high as 9.27 GPa. In general, spall strength of 
AD995 decreases with an increase in both the 
magnitudes of shock compressive stress and their 
durations. For example, spall strength declines from a 
value of 0.46 GPa to 0.295 GPa at shock induced stress 
of 1.7 GPa and 8.2 GPa for a pulse width of around 0.7 
µs. Spall strength vanishes at 8.8 GPa for a pulse width 
of 0.7 µs. The decrease in the value of spall strength at 
and below the HEL irrespective of the pulse widths 
between 0.16 and 0.7 µs suggests an increase in the 
population of micro-cracks in AD995 under shock 
compression and release even when shocked to as low as 
1.7 GPa prior to generation of tensile stress as a result of 
release wave interaction in AD995. Diminution of the 
spall strength of AD995 is attributed to dominant brittle 
character of AD995.  

 
TABLE 1. AD995 Spall Strength . 

Shot # Impact 
Velocity 
(km/s) 

Pulse 
Width 
(µs) 

Impact 
Stress 
(GPa) 

Spall 
Strength 
(GPa) 

213 0.0829 0.743 1.70 0.458 
307 0.0780 0.369 1.67 0.612 
240 0.175 0.720 3.79 0.387 
303 0.182 0.354 3.91 0.568 
234 0.251 0.687 5.36 0.421 
329 0.295 0.783 5.69 0.357 
224 0.349 0.699 6.94 0.306 
313 0.323 0.349 6.93 0.367 
314 0.320 0.165 6.71 0.456 
331 0.313 0.165 6.49 0.476 
229 0.433 0.694 8.35 0.295 
304 0.465 0.671 8.82 - 
309 0.418 0.342 8.63 0.331 
236 0.512 0.709 9.53 - 
310 0.450 0.338 9.27 0.247 
301 0.597 0.702 10.84 - 
239 0.604 0.697 11.04 - 

 
 

5. SHOCK RECOVERED AD995 
 

Design of shock recovery experiments ensured that 
AD995 specimen was subjected to a single shock wave 
compressive stress of a predetermined magnitude 
followed by release of the compressive stress before the 
effects of lateral stress release distorted the compressive 
and release histories especially in the central region of 
the AD995 specimen. Further, the design ensured that no 
tension developed in AD995 due to wave interactions. 
Thus the observed features in the recovered AD995 
could be unambiguously associated with the shock 
induced planer shock compression and release.  
 
Optically Observed Features: scale 1mm – 1 cm 
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 Photographs of the three sets of samples in their 
brass holders are shown in Figure 7. Figure 8 shows the 
macro-crack pattern of damage observed in the 
recovered, centrally sectioned and dye penetrated 
alumina discs. The sectioned surface of the disc that was 
subjected to the 4 GPa shock was coated with a 
transparent resin, which alters its fractographs. Broadly, 
the network of macrocracks consists of horizontal and 
vertical fissures, resulting in numerous fractured material 
blocks populating the specimen volume. The specimens 
subjected to the higher shock stresses show marked 
evidence of a higher macrocrack density in the central 
region. Fracture planes that traverse the entire specimen 
width are also seen in Figure 8, and notably, a fracture 
cavity is present on the impact surface of the specimen 
subjected to a shock compression of 7.8 GPa. However, 
it is difficult to asses the volume occupied by the cracks 
at these stresses. The population and size of macro-
cracks does help to understand the observed decrement 
of spall strength of AD995 with increase in the 
magnitude of shock induced stress and its duration.  

 

   
Figure 7. Recovered samples in brass holders. 
  

4 GPa

6 GPa – below HEL 7.8 GPa - above HEL
SEM/TEM 
Samples  
 

Figure 8. Optical Microscopy of Stained fracture patterns 
in cross section and top view (6 GPa)  

 
X-ray Computed Tomography: scale 0.1 mm – 1 cm: 

 
X-ray computed tomography (XCT) may be applied 

to any material through which a beam of penetrating 
radiation may be passed and detected, including metals, 
plastics, ceramics, metallic/non-metallic composite 
material, and assemblies. The principal advantage of 
XCT is that it provides densitometric images of thin 
cross sections through an object. Because of the absence 
of structural superimposition, images are easier to 
interpret than conventional radiological images. Further, 

because XCT images are digital, the images may be 
enhanced, analyzed, compressed, archived, input as data 
to performance calculations, compared with digital data 
from non-destructive evaluation modalities, or 
transmitted to other locations for remote viewing, or a 
combination thereof. 

 

 
 

Figure 9. Three-Dimensional (3-D) virtual solid images 
of 6 GPa sample with sections cut away 

 
A sectioned half-disk from each recovered sample 

was inspected using a customized XCT system (scanner) 
at the U.S. Army Research Laboratory (ARL). It has a 
420 keV X-ray tube with two focal spot sizes and a 225 
keV microfocus X-ray tube with a variable focal spot 
size down to 5 μm. A dedicated embedded industrial 
computer system controls object scanning (i.e. data 
collection) and image reconstruction, viewing, and 
processing.  

 
The sample was scanned parallel to its faces, making 

the cross-sectional image plane perpendicular to the 
through thickness direction. Each sample was scanned 
from its impact side (in contact with the cover plate) to 
its rear face. Each slice was reconstructed to a 1024 by 
1024 image matrix collecting 3600 views (i.e. 
projections) during the full rotation and with about 60 
slices required to completely scan each sample. The tube 
energy and current used were 160 keV and 0.035 mA, 
respectively, and the focal spot was 20 μm. 

 
Bourne et al. (2006) describe, and present in detail, 

results of XCT scans done on the recovered specimen of 
shocked AD995 to 6 GPa. The excellent dimensional 
accuracy and the digital nature of XCT images allow the 
accurate volume reconstruction of multiple adjacent 
slices. Figure 9 shows a series of three –dimensional 
solid images of the 6 GPa sample with various sections 
virtually removed. The top three images are looking 
down at the sectioned side of the sample with it tilted 250 
to the impact side: top left is just inside the actual 
surface, the next two are 1 and 2 mm from the actual 



 6

surface; the next four images have been rotated 50º about 
the z axis with the distances on the right from the corner 
being 2.3, 3.3, 4.4, 5.4 mm respectively; the last three 
images are similar to the previous four, but sectioned at 
closer to the edge of the sample, at 2.3, 4.4, and 6.4 mm 
form the actual sample corner. 

 
 A three-dimensional, reconstructed solid of the 

virtual damage distribution within the sample, in which 
the undamaged material is made partially transparent to 
view the damaged areas indicated in white, is shown in 
Fig.10. The impact side of the original sample in this 
view is below the sectioned face as indicated by the large 
white area on the bottom.  

 

 
 

Figure 10. 3-D virtual solid of damage distribution 
 

SEM and TEM Features: scale = 10 µm – 1 nm: 
 
The deformation and failure mechanisms operating 

in shock-loaded AD995 alumina were systematically 
investigated by employing scanning electron microscopy 
(SEM) and transmission electron microscopy (TEM) 
[Chen et. al. 2006]. Two samples subjected to shock-
induced stresses of 6.0 GPa and 7.8 GPa (below and 
above its HEL of 6.7 GPa) were separately sectioned and 
imaged (Fig. 8). 
 

SEM observations suggest a transition in fracture 
behavior from intergranular-dominated fracture (at a 
stress of 6 GPa below the HEL) to cleavage-dominated 
(at 7.8 GPa above the HEL). Fig. 11 (a). shows a SEM 
micrograph taken from the 6 GPa sample. The fracture 
surface corresponds to individual grains with smooth 
facets, suggesting failure along grain boundaries (GBs). 
SEM micrographs of the fragment surfaces (see Fig. 12 
(a) and (b) show failure of the 7.8 GPa specimen is 
dominated by transgranular fracture. Typical cleavage 
features including river patterns and cleavage steps along 
specific crystal directions, can be identified in Fig. 12(b). 
 

A majority of grains in AD995, subjected to 6 GPa, 
did not exhibit plastic deformation on the facetted 
surfaces. Occasionally, dislocations can be found in the 
vicinity of grain boundaries as seen the bright-field TEM 
micrograph in Fig.11 (c). The dislocations and 
dislocation arrays most likely emitted from a grain 
boundary are characterized as normal dislocations.  

Both SEM and TEM observations indicate that the 
6.0 GPa specimen experienced mainly elastic 
deformation during shock loading. The limited plastic 
deformation in the vicinity of GBs found by systematic 
TEM characterization may be produced by localized 
stress concentrations arising from the propagation of GB 
cracks, defects at grain boundaries, or grain-to-grain 
elasticity mismatch, which promote the nucleation of the 
observed dislocation. Because concentrated stresses 
always degrade quickly from GBs, the generated 
dislocations may not be able to move too far from their 
sources at GBs, only resulting in local plastic 
deformation. Apparently, this localized plasticity cannot 
significantly affect the overall elastic response of the 
material to the applied shock loading. 

 
 
Dramatic changes in the deformation mode behavior 

were found in the AD995 alumina specimen 
experiencing an impact pressure of 7.8 GPa. TEM 
characterization suggests that numerous deformation 
twins appear in a large number of grains as illustrated in 
Fig.13 (a) and (b). The twin bands in each grain parallel 
each other along a common crystallographic orientation, 
suggesting only one slip system was activated in each 

  

(a) (b)  (c)
Figure 11. SEM and TEMs of 6 GPa sample: a.) SEM 
in uncracked area; b.) TEM in uncracked area and c.) 
TEM in cracked area

(a)   (b)
Figure 12. SEMs of 7.8 GPa sample  

(a)   (b)
Figure 13. TEMs of 7.8 GPa sample 

 

 (a)  (b)  (c) 
Figure 11. SEM and TEMs of 6 GPa sample: a.) SEM 
in uncracked area; b.) TEM in uncracked area and c.) 
TEM in cracked area

(a)    (b) 
Figure 12. SEMs of 7.8 GPa sample  

(a)    (b) 
Figure 13. TEMs of 7.8 GPa sample 
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grain during shock loading. In the dark-field TEM 
micrograph, twin dislocations can be identified within 
the twin bands. They were determined to be 1/3[1010] 
partial dislocations. High-resolution electron microscope 
(HREM) characterization shows that the width of the 
twin bands ranges from several to tens of nanometers 
(Fig.13 (a)) and the twin interfaces contain a large 
number of twinning dislocations [Figure 13(b)]. HREM 
image simulations suggest that the twinning is along the 
basal plane (0001) of the hexagonal unit cell. Thus, these 
deformation twins are determined to be the basal twins. 
The critical shear stress ( cτ ) for the formation of 
deformation twins in perfect alumina crystals can be 
roughly estimated according to a simple equation (Hirth 
and Lothe, 1982). 

 

 
Pbc
γ

τ =     (3) 

 
where Pb  is the magnitude of the Burgers vector of the 
twin dislocations and γ is the stacking fault energy. The 
estimated critical shear stress ranges from 5-8 GPa, 
which is in the same magnitude of the HEL of alumina 
(4~16 GPa) reported so far and very close to the one half 
of the HEL values of the polycrystalline alumina with 
high purity and density. This suggests that the twinning 
driven by the shear component of the uniaxial shock 
compression stress appears to be responsible for the 
elastic-to-inelastic transition at the  

 

 
 
It is interesting to note (Fig.14) that the edges of the 

7.8 GPa fragments are frequently facetted on (0001) 

twinning planes, indicating an intrinsic correlation 
between deformation twins and the cleavage failure. The 
HREM image taken from a recovered specimen exhibits 
a facetted edge that appears along an interface of the 
twin band shown in the lattice image. The edge is mainly 
along (0001) basal planes with steps parallel to (1-102) 
plane of either the matrix or the twin band, as indicated 
by the dashed line. The apparent cleavage along (0001) 
twin planes and the appearance of (1-102) planes of both 
twin and matrix as the cleavage steps, suggest that the 
fracture is along the interface of the twin bands during 
shock loading or unloading. It appears that the generation 
of deformation twins in the shock-loaded alumina 
provides a shortcut, or energetically more favorable path, 
for cleavage cracking and thereby a change in the 
fracture mode from intergranular behavior to 
transgranular cleavage. 
 

It has been well known that shock, i.e. high rates of 
load application and release, favors twin formation in a 
number of materials, probably due to rate sensitive 
inertial effects. The process of twinning can form in time 
periods as short as a few microseconds, while for slip 
accomplished by normal dislocation gliding there is a 
delay time of several milliseconds before a slip band is 
produced. The slip process by dislocation gliding seems 
to be resistant to shock loading, that is, the movement of 
dislocations for appreciable distance requires that the 
stress is applied for a considerable time period. In 
crystals with high plastic slip resistance, such as 
ceramics, under uniform levels of stress, twins can 
propagate with near sonic velocity. Recent molecular 
dynamics simulations also suggest that dislocation 
motion at high strain rates become jagged, resulting in 
spontaneous self-pinning. Then, at still higher strain 
rates, the dislocation stops abruptly and emits a twin 
plate that immediately takes over as the dominant mode 
of plastic deformation. Twinning requires a high 
concentration of strain energy and this should be readily 
available during shock loading. The elastic strain energy 
stored during ramp up to the HEL will drive the twinning 
movements even after the passage of the shock wave 
when the time periods of shock loading is shorter than 
the twinning process. Cracking along twinning interfaces 
has been observed in a number of brittle materials and 
various explanations have been proposed. For the case of 
shock-loaded AD995 alumina, it is most likely that the 
cleavage along the twin boundaries is caused by the 
deviatoric stresses applied to the twin bands during 
unloading and the relative weak chemical bonding at the 
non-relaxed twinning interfaces. 

 
 

6. DISCUSSION 
 

(0001) 

(1102)T

(0001) 

(1102) 

Figure 14. . Lattice image of a thin fragment. 
The facetted edge is mainly parallel to (0001) basal 
plane. The cleavage steps marked in the figure are 
either parallel to the matrix (1-102) plane or to the (1-
102) plane of the twin band. 
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The observations in this study provide compelling 
experimental evidence for the micromechanism 
responsible for shock induced global plastic deformation  

 

 
 

in AD995 alumina. The HEL appears to be associated 
with the onset of deformation twinning, which drives the 
primary fracture mode from an intergranular one (below 
the HEL) to transgranular cleavage above HEL. The 
correlation of HEL with micro-plasticity and fracture can 
be represented in the schematic shown in Figure 15. 

 
When the impact velocity is such that the induced 

stress is below HEL, deformation twins are not activated. 
However, it may be high enough to cause intergranular 
fracture and the formation of dislocations in the vicinity 
of GBs, seemingly produced by stress concentrations 
caused by GB crack propagation, existing GB flaws or 
grain-to-grain elasticity mismatch. Since they are 
localized and discontinuous, the cracking and dislocation 
gliding are not expected to significantly affect the overall 
primarily elastic response of the material as shown to be 
the case under compression and release. However, under 
shock generated tension, the deleterious effect of 
cracking is significant even at as low a stress as 1.7 GPa 
as evident from the pulse width dependence of the spall 
strength of AD995. At stresses greater than the HEL, the 
applied stresses are higher than the critical stresses for 
twinning. Thus, deformation twins can be activated in a 
large number of grains prior to the GB cracking. This 
global plastic deformation causes the inelastic response 
and the twining planes provide an easy means for 
cleavage fracture, giving rise to a change in the fracture 
morphology. Finally, the OM, XCT, SEM and TEM 
characterizations of the shock recovered AD995 provides 

an opportunity for modeling of the material at varying 
length scales to reproduce the shock response of AD995 
obtained from shock wave experiments at the continuum 
scale. 
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Figure 15. Schematics of the correlation of HEL with 
micro-plasticity and cracking, in which σ is shock 
stress, σgb is the cohesion of grain boundaries, and 
σtwin is the critical stress for twinning. 
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