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1. Introduction 

The U.S. Army has recently invested substantial time and effort in developing a condition based 
maintenance (CBM) system for its helicopter fleet.  This system detects nascent equipment faults 
before they can progress to catastrophic malfunctions that seriously increase aircraft downtime 
and reduce fleet readiness (1–3).  Clearly, a completely effective CBM system could realize both 
time and cost savings and increase operator safety by indicating components that require 
replacement.  This is especially true if a periodic inspection of the faulty component is not 
scheduled in the near future.  

Part of the CBM system development consists of determining suitable condition indicators (CIs) 
capable of detecting incipient faults.  These CIs then serve as input features to statistical 
analysis/detection algorithms that, in turn, decide if the feature level exceeds an alarm threshold.  
If the alarm threshold is exceeded, then the diagnosed fault is reported, and it can be repaired at 
the earliest opportunity. 

The CI definitions are often formulated with the goal of detecting specific faults frequently 
encountered during an aircraft’s maintenance cycle.  Experimental investigations have also been 
conducted to better understand the physical phenomena and manifestations of various failure 
modes (4).  The results have enabled investigators to better understand the underlying problem 
and define new CIs as the need arises.  Hence, there is a need for continued formulation of 
additional CIs as new faults are discovered and new maintenance data becomes available—CIs 
that are uncorrelated with the existing ones.  

The U.S. Army Research Laboratory (ARL) has also addressed the diagnostics problem, 
exploiting archived maintenance records collected by the Health and Usage Monitoring System 
(HUMS) installed on specific Apache helicopters.  We have obtained failure dates and failure 
modes for these aircraft and examined the relevant sensor data.  Based on this analysis, we have 
been able to formulate new definitions for CIs to detect the onset of the described failure modes.  
These definitionsare similar to the classical constant false alarm rate (CFAR) and change 
detection test statistic definitions so familiar to the radar community.  This report describes our 
approach and presents experimental results obtained using HUMS data from several aircraft, the 
vast majority of which did not experience the failure mode targeted by the new CI.  
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2. Technical Approach 

As mentioned in section 1, we had access to certain maintenance records from two specific 
Apache helicopters together with the failure modes that were discovered as a result of 
maintenance inspections.  (This information was provided by Dr. Jonathan Keller, U.S. Army 
Aviation and Missile Research Development and Engineering Command (AMRDEC).)  The 
available HUMS data comprised a set of preprocessed spectra collected at variably, sometimes 
widely, spaced intervals around the indicated failure dates.  It included only a single example of 
a specific failure mode with a small amount of maintenance history available for each example.  
This sparseness of the data set exhibiting the failure mode of interest, together with the small 
number of available samples (both failed and non-failed) suggest that this investigation be 
considered as preliminary.  Additional data examples (both failed and non-failed) are required to 
place it on a sound statistical footing.  Still, the samples separated in time from those closest to 
the time of failure appear relatively consistent to one another in a sense that we quantify below.  
In addition, we observed certain unique qualities of the spectra collected closest to the failure 
date, and we developed CI definitions intended to detect these qualities if present. 

2.1 Failure Mode and Description of Available Data 

The failure mode that we initially investigated was due to the failure of the primary hydraulic 
pump on the left-hand side of the main transmission.  To our knowledge, this particular failure 
mode instance was not detected by the current set of CIs, and it was identified during a manual 
inspection.  In what follows, we will denote this as “fault 1”.  Spectral data records from the 
HUMS system were available for the aircraft as described in table 1; these data provided the 
basis for our development of a new CI definition.  

Table 1.  Data available for fault diagnosis for Aircraft Tail  
number 5180. 

Date Time Condition 
Dec. 2, 2005  13:01 Before fault, Fault 1  
Dec. 2, 2005  15:45 Before fault, Fault 1  
Dec. 2, 2005  22:58 Before fault, Fault 1  
Dec. 3, 2005  01:35 Before fault, Fault 1  
Dec. 3, 2005  02:37 Before fault, Fault 1  
Dec. 3, 2005  02:50 Before fault, Fault 1  
Dec. 3, 2005  03:06 Before fault, Fault 1  
Dec. 3, 2005  03:17 Before fault, Fault 1  
Dec. 3, 2005 12:13 Before fault, Fault 1  
Dec. 4, 2005 00:28 Before fault, Fault 1  
Dec. 4, 2005 22:10 Before fault, Fault 1  
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Table 1.  Data available for fault diagnosis for Aircraft Tail  
number 5180 (continued). 

Date Time Condition 
Dec. 5,  2005           02:31   Before fault , Fault 1  
Dec. 5 , 2005           13:06 Before fault , Fault 1  
Dec. 5, 2005   21:58 Before fault , Fault 1 
Dec. 6, 2005  22:14 Before fault , Fault 1  
Dec. 17, 2005  23:11 After fault , Fault 1  
Dec. 17, 2005  23:27 After fault , Fault 1  
Dec. 18 , 2005  13:01 After fault , Fault 1  
Dec. 18 , 2005  15:40 After fault , Fault 1  

NOTES: 
Failure date:  Dec. 9, 2005 
Table for fault 1 data 

Since we were interested in components in the vicinity of the main transmission (hydraulic 
pumps), we selected (out of the data collected by 15 different sensors) the outputs from sensors 
“#1 Main GB” and “#3 Main GB”.  Stored spectra were available for all dates listed in the table, 
and sample spectra from the #1 Main GB obtained on Dec. 5, Dec. 6, and Dec. 18, 2005 (all 
from Fault 1 data) are shown in figure 1.  We note that data for Dec. 6, the date closest to the 
failure, is qualitatively different than the other two.  (We assume that the defect was corrected 
before the Dec. 18 measurement.) In particular, we notice the spectral bands indicated in the 
figure by the red box.  A similar plot for #3 Main GB yields another spectral band of interest as 
indicated by the red box and oval in the plots of figure 2.  In each case, the x-axis denotes Fast 
Fourier Transform (FFT) bin number. 
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                     (a) Spectra from “#1 MainGB”                                         (b) Spectra from “#3 Main GB”  

Figure 1.  Indication of spectral bands of interest in the stored spectral HUMS data for the fault of interest. 
Notes: 
1. Dec. 6 is the date closest to component failure. 
2. Units on the x-axis are FFT bin number. 

2.2 CFAR-based CI Definition 

Researchers have proposed several different CI (feature) definitions that capture anomalous 
behavior similar to that observed in figure 1.  Some approach the problem using statistical 
techniques (5), others combine statistical approaches and physics-based data observations (1), 
while still others create physical models of the system in an effort to understand various faults 
(6).  The CFAR-based approach that we propose is closest in spirit to the data-based methods 
because it relies on a set of training data to decide what is normal and abnormal system behavior.  
That is, a training set is used to set various algorithm parameters, in particular the detection 
threshold.  

Like many of the CIs developed to date, the resulting definition is highly tailored to the specific 
failure mode of interest.  Our goal is to develop a feature that will detect a specific, newly 
identified defect while maintaining an acceptably low probability of false alarm (Pfa); it is this 
philosophy that leads us to refer to the CI definition as CFAR-based. 

We propose the following CI definitions based on empirical observations of data from 
#1 Main GB: 

CI1 (for fault 1): 
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where Ftest(·) is the HUMS spectrum for the test data, n0 indicates the FFT bin number 
manifesting the fault, B is a small bandwidth allowing for frequency drift, n1 indicates the 
starting FFT bin number for background region 1, n2 indicates the starting FFT bin for 
background region 2, and M1 and M2 indicate the length of the spectral band (in bins) for 
background region 1 and background region 2, respectively.  We base the selection of these 
frequencies of interest on the data sets enumerated in table 1 and illustrated to some extent in 
figure 1.  The actual parameter values are determined empirically, utilizing a classical radar-
based CFAR paradigm (7).  Under these guidelines, n1 and n2 are selected to be “close” to n0 
while still allowing a “guard band” to provide some degree of separation.  Thus, the quantity in 
the denominator of equation 1 represents a background average that also serves as a 
normalization factor, and the size of spectral peaks are measured relative to the local spectral 
background.  This also enables our selected threshold value to be independent, to some extent, of 
differences in scale between different data sets.  As a result, an empirically determined threshold 
value should suffice to achieve relatively low false alarm rates. 

Based on initial experiments, we have determined that the values of M1=150, M2=150, n0=3080, 
n1=2800, n2=3150, and B=20 (corresponding to approximately 60 Hz) provide acceptable results.  
It must be stressed, however, that these numbers are based on an FFT length of 8192 points, and 
a total available spectrum of approximately 24 kHz.  If the total spectrum bandwidth and FFT 
length were to change, then the corresponding bin numbers and frequency band lengths 
(expressed in units of FFT bin) would also have to change.  In addition, it should also be stressed 
that data collected in the Survey mode and FPG101 state were used for this analysis.  It would be 
necessary to verify that the same phenomenology is evident before the same algorithm is applied 
to data collected in different data collection states (i.e., different from FPG101).  

As a final note on the algorithm parameter definition and selection, we consider the motivation 
for including both the bandwidth, B, and the guard band around the test frequency bin.  This 
decision is best understood by considering figure 2 below.  The plots in figure 2 show that 
certain frequency bands may drift slightly from one data collection to the next; hence the 
maximum required by the numerator of equation 1 may not appear in the same bin from one data 
collection to the next.  Hence, we need to include several bins around the frequency bin of 
interest to ensure that we capture the spike if it is present.  Similarly, we include a guard band to 
ensure that we do not include sidebands due to the fault in our calculation of the spectral 
background. 
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Figure 2.  FFT output from different test runs for fault 1.  Red plot  
indicates faulted data.  

We have calculated feature values using all of the data from the faulted aircraft as well as un-
faulted data from several other aircraft.  These statistics are plotted and discussed in section 3. 

3. Results 

Figure 3 shows the feature values calculated for the faulted aircraft together with those calculated 
for a collection of non-faulted aircraft.  The different aircraft are depicted by different line styles 
and colors, and for each of the aircraft the sample number increases with the date.  That is, in 
figure 3(b), for example, sample 0 corresponds to Dec. 2, 2005, while sample 18 corresponds to 
Dec. 18, 2005.  Note that there is no relationship between the data collection dates for the various 
aircraft, and the number of samples varies considerably from one aircraft to the next.  

We can see from the plots that a threshold could be chosen such that none of the non-faulted 
aircraft would produce false alarms while the “faulted” aircraft would still be flagged before the 
failure date.  In addition, there are several early measurements (taken before those closest to 
failure) that indicate a potential problem.  This indicates that the weight of evidence could be 
brought to bear to increase confidence in the final decision.  

We must note here that all of this analysis is based on a single failure example and utilizes field 
data collected as part of a specified operational testing procedure.  By definition the amount of 
data available from such a collection protocol will be sparse.  Hence, all of these results must be 
considered preliminary and doubtful until a statistically significant number of failure exemplars 
become available.  
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   (a)  Plot of all CI1 values for 11 aircraft (including the faulted aircraft).  The solid black lines indicate CI values 
from the faulted aircraft, while the different colors and line styles indicate other aircraft.  

 
(b) Plot of CI1 values for faulted aircraft.  The dashed red line indicates the mean of all CIs from other aircraft,  
and the blue line indicates the maximum CI1 from all other aircraft.  

Figure 3.  Plots of CI1 for all aircraft (faulted and non-faulted).   
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4. Summary 

We have presented a method for calculating condition indicators based on CFAR automatic 
target detection (ATD) concepts.  This development yields a ratio test that—since it is a ratio of a 
test cell magnitude to a RMS background average—allows the user to set a threshold limiting the 
number of false alarms.  We have exercised the algorithm using several fault-free data sets and 
observed that we could, indeed, set a threshold that detected the fault while avoiding false 
alarms.  Since we only had access to a single example of the failure mode, these results must be 
viewed as preliminary. 
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