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1. Objective 

The recent availability of accurately geo-located, multisensor data (collected as part of the Wide 
Area Airborne Mine Detection program) has created unprecedented opportunities for the 
exploration of multisensor, target detection algorithms.  Even with this high-fidelity data set, the 
sensor fusion task still presents many daunting challenges.  The objective of this Director’s 
Research Initiative (DRI) investigation is to develop a nonlinear joint fusion and detection 
technique for mine detection applications using two different types of sensor data—synthetic 
aperture radar SAR data and hyperspectral sensor (HS) data.  A well-known anomaly detector, 
called the RX algorithm,1 is extended to perform fusion and detection simultaneously at the pixel 
level by appropriately concatenating the information from the two sensors.  This approach is then 
extended to its nonlinear version.  The nonlinear fusion-detection approach is based on the 
statistical kernel learning theory which explicitly exploits the higher-order dependencies 
(nonlinear relationships) between the two types of sensor data through an appropriate kernel. 

2. Approach 

The main purpose of this DRI project is to nonlinearly fuse the information contents in HS and 
SAR imagery to effectively detect targets of interests (buried and surface mines).  Because of the 
significant differences in basic physical properties and signal dimensionality between these two 
sensors, fusion of the raw or processed data from these sensors might mitigate the false alarm 
rate significantly for anomaly detection purposes.  In the previous DRI project (FY05), the main 
focus was on co-registration of the SAR and HS image data.  Individually linear and nonlinear 
signal detection tools for HS and SAR imagery were developed.2  In this DRI report, the 
nonlinear joint fusion and detection technique is summarized and its detection performance on 
several mine imageries is reported.  The proposed approach is to extend the well-known RX 
anomaly detector and its nonlinear version (the kernel RX algorithm3) to an integrated multiple- 
sensor data. 

                                                 
1 Reed, S.; Yu, X.  Adaptive Multiple-Band CFAR Detection of an Optical Pattern With Unknown Spectral Distribution. 

IEEE Trans. on Acoustics, Speech Signal Process 1994, 38 (10), 1760–1770.   
2 Ranney, K.; Rosario, D.; Nasrabadi, N. M.  Fusion of Synthetic Aperture Radar and Hyperspectral Imagery; DRI proposal 

FY05-SED-35 and the final report FY06; U.S. Army Research Laboratory:  Adelphi, MD, December 1996.  
3
 Kwon, H.; Nasrabadi, N.  Kernel Orthogonal Subspace Projection for Hyperspectral Signal Classification.  IEEE 

Transactions on Geoscience and Remote Sensing 2005, 43 (12), 2952–2962. 
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2.1 Joint Fusion and Detection Using SAR and HS at the Pixel Level 

In the proposed approach, detection and fusion is done at the pixel level by concatenating each 
HS spectral pixel with its corresponding high-resolution SAR pixels and then processing the 
concatenated data by the RX anomaly detector.  This approach jointly exploits the linear 
correlation or dependencies between the two sensors in order to simultaneously fuse and detect 
the objects of interest.  In Reed and Yu,1 a spectral anomaly detection algorithm was developed 
for detecting targets of unknown spectral distribution against a background with unknown 
spectral covariance.  This algorithm is now commonly referred to as the RX anomaly detector, 
which has been successfully applied to many hyperspectral target detection applications.  It is 
now considered as the benchmark anomaly detection algorithm for multispectral/hyperspectral 
data.  The RX algorithm is a constant false alarm rate (CFAR) adaptive anomaly detector which 
is derived from the Generalized Likelihood Ratio Test.  The RX algorithm is based on exploiting 
the difference between the spectral signatures of an input pixel with its surrounding neighbors.  
This distance comparison is very similar to the Mahalanobis distance measure calculated by 
comparing the corresponding wavelengths (spectral bands) of two measurements.  The RX 
algorithm assumes that the covariance of the background clutter is unknown or calculated from 
the data.  In the conventional RX algorithm, a nonstationary local mean is subtracted from each 
spectral pixel.  The local mean bμ  is obtained by sliding a double concentric window (a small 
inner window region [IWR] centered within a larger outer window region [OWR]; see figure 1) 
over every spectral pixel in the image and calculating the mean of the spectral pixels falling 
within the outer window.  The size of the inner window is assumed to be the size of the typical 
target of interest in the image.  The residual signal after mean subtraction is assumed to 
approximate a zero-mean pixel-to-pixel independent Gaussian random process.  Let each input 
spectral signal consisting of J  spectral bands be denoted by T

J21 (n))x,(n),x(n),(x(n) …  x = .  Define 
bX  to be a J   M×  matrix of M  centered (mean-removed) reference background clutter pixels 

(or pixels in the outer window).  Each observation spectral pixel is represented as a column in the 
sample matrix (M)],(2),(1),[b xxx X …= . 

 OWR 

IWR

r 

b
μ  

 

Figure 1.  A sliding dual window:  an IWR 
and an OWR. 
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Consider a test pixel ijr  at pixel location ij.  The RX algorithm output at each pixel is given by 
the following: 

 T -1
rx

ˆˆ ˆ(r ) (r μ ) C (r μ )ij ij ijb b bδ = − − ,  (1) 

 

where rij  represents the pixel under consideration located at the center of the IWR, μ̂b represents 

the estimated mean of the pixels within the OWR, and Ĉ  is the estimated covariance matrix of 
the pixels within the OWR given by T1ˆ

bbX X/N)(  C = . 

The size of the dual window is set such that the IWR encloses a target-sized region and the OWR 
includes its surrounding region.  If the dual window is placed within a spatially homogeneous 
region consisting of similar types of materials, such as natural backgrounds, the statistical 
characteristics of the IWR and OWR will be similar to each other.  The IWR and OWR will 
contain significantly different statistical features if the dual window is centered on a region 
where the target is surrounded by the local background.  Use of appropriate thresholding on the 
RX output (equation 1) allows most targets to be detected as anomalies. 

The dual window RX algorithm (equation 1) is easily applied to each HS pixel since these pixels 
are already in vector form.  However, in the case of high resolution SAR each co-registered HS 
pixel corresponds to a block of pixels in the SAR image due to the difference in spatial 
resolution between the SAR and HS.  For SAR imagery we group all the pixels that physically 
correspond to a single HS pixel and represent them as a SAR vector pixel.  This process is done 
for each corresponding HS pixel in order to form a SAR cube image of the same spatial 
resolution as HS image.  It should be noted that the number of corresponding SAR pixels to each 
HS pixel will obviously be different from the number of spectral bands in HS.  Now the RX-
algorithm can be applied separately to the HS and SAR cubes of the same resolution to obtain 
the anomalies from each sensor data. 

To develop an RX-like joint fusion and anomaly detection algorithm, let each pixel located at  
(i, j) in the HS image be represented by a vector xh (i ,j) consisting of J spectral bands and the 
corresponding block of pixels centered at (i, j) be represented by xs (i, j) consisting of P pixels 
since for practical platforms, the SAR image has much higher resolution than the HS sensor.  
Furthermore, let the concatenated vectors from the two sensors corresponding to the same  
HS pixel location (i, j) after normalization be represented by a partition vector xhs (i, j) =  

h

s

x ( ,  )
x ( , )

i j
i j

⎡ ⎤
⎢ ⎥
⎣ ⎦

, where xh (i, j) and xs (i, j) are the pixels under consideration at the center of the dual 

window in the HS and SAR images, respectively.  Applying the RX algorithm on the 
concatenated data hx ( ,   )i j is given by the following: 
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where hμ̂  and sμ̂ are the estimated means of all the pixels ( hX  and sX ) in the corresponding 

outer windows and hhĈ  and ssĈ  are the estimated covariance matrices of the HS and SAR data, 
respectively.  In equation 2, the linear correlation between the HS and SAR data is exploited 
through the inverse covariance matrix of the concatenated data.  If the SAR data is not linearly 
correlated to the HS data hs ss

ˆ ˆC C 0= =  in equation 2, then the joint fusion/detection algorithm is 
the same as performing the RX on each sensor data separately and adding the results.  

2.2 Nonlinear Joint Fusion and Detection Using SAR and HS at the Pixel Level 

One way to exploit the higher-order correlation between the two data is to explicitly map each 
sensor data into a higher dimension by a nonlinear mapping.  For example, assume the input 
hyperspectral data is represented by the data space )( dR⊆X  and F  is a feature space associated 
with X by a nonlinear mapping function. 

  )),((),(
:

hh jiΦji
Φ

xx 6
FX →

, (3) 

where xh (i, j) is an input vector which is mapped into a potentially much higher (possibly 
infinite) dimensional feature space.  Any linear anomaly technique can now be remodeled into 
this high-dimensional feature space by replacing the original input data xh (i,j) with the mapped 
data h

h
( x ( , )) x ( , )

Φ
Φ i j i j= .  Due to the high dimensionality of the feature space,F, it is 

computationally not feasible to directly implement any algorithm in this feature space.  However, 
kernel-based learning techniques use an effective kernel trick given by the following: 

 )()()(),(),( T yx  yx yx ΦΦΦΦk =><= , (4) 

which implements a dot product between two vectors in the feature space by employing a kernel 
function k  associated with the nonlinear mapping .Φ Using the kernel trick representation 
(equation 4), allows us to implicitly compute the dot products in F without mapping the input 
vectors intoF .  Therefore, in the kernel methods, the mapping function, ,Φ does not have to be 
identified.  A dot product in F can be avoided and replaced by a kernel function, k, a nonlinear 
function which can be easily calculated without identifying the nonlinear map, .Φ    

A preferred kernel to utilize is the Gaussian radial basis function kernel: 
2x y

(x, y) exp
σ

k
⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

− −
= , where σ > 0 is a constant. 
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Kwon and Nasrabadi3 show how to extend the RX algorithm given by equations 1 or 2 to a 
nonlinear version (so-called kernel RX) by using the idea of kernel-based learning theory.  The 
kernel version of the linear RX algorithm3 for HS and SAR sensor data is given by equations 5 
and 6, respectively. 

 
h h hh h h

h T 2

x μ x x μKRX ( , ) (k k ) K (k k ),i jδ −= − −  (5) 

and 

 )(ˆ)(),(
ssssss μx

2
xμx

s
KRX kkKkk T −−= −jiδ , (6) 

where )),(,( hhxh
jik xXk = , )),(,( ssxs

jik xXk = ,
hμ h hk (X , μ ( , )),k i j= and 

s ss
( , ( , ))k i j= X μk μ  are the kernel empirical expansion maps and similarly, 

ij)()( hhxhh
KX,XKK ==  and ij)()( ssxss

KX,XKK == are N × N kernel (gram) matrices whose 

entries are the dot products 〉〈 ))(()),(( hh jΦiΦ xx  and 〉〈 ))(()),(( ss jΦiΦ xx , respectively. hX  
and  sX  are matrices whose columns represent the data in the outer window of HS and SAR, 
respectively.  The kernel RX version for the concatenated data is given by the following: 

 
)()(),(

hshshshshs μx
2

xμx
hs
KRX kkKkk T −−= −jiδ ,

 (7) 

where 
shhs xxx kkk += , μhs h sμ μk k k ,= + and 

hs hh ssx x xK K K ,= +  which is a N × N kernel 

matrix whose entries are the dot products.  

 
hs

x hs hs h s h s

h h s s

(K ) (x ( ), x ( )) { (x ( )), (x ( ))},{ (x ( )), (x ( ))}

            = { (x ( )), (x ( ))} { (x ( )), (x ( ))} .

ij
k i j Φ i Φ i Φ j Φ j

Φ i Φ j Φ i Φ j

= = 〈 〉

〈 〉 + 〈 〉
 (8) 

Using different kernel functions or appropriately weighting the kernel functions for HS or SAR 
can achieve different fusion results. 

3. Results 

The hyperspectral mine image consists of 70 bands over the spectral range of 8–11.5μm , which 
includes the long-wave infrared band.  The SAR images used were produced from a SAR sensor 
operating in the high- and low-frequency range.  Figure 2a and b shows the co-registered SAR 
and HS images, which contain surface mines and disturbed soil representing buried mines, 
respectively.  The RX anomaly detector has been implemented, as well as the kernel RX, to 
detect mines in SAR and HS images separately and on concatenated SAR/HS data to obtain a  
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                      (a) Original HS                                                (b) Original SAR 

                          (c) RX_HS                                                       (d) RX_SAR 
 

                  
                        (e) KRX_HS                                                     (f) KRX_SAR 

                                                                                                          
                           (g) Fused RX                                                        (h) Fused KRX  
Figure 2.  (a) HS image, (b) SAR image, (c) RX detected mines for HS, (d) RX detected mines for 

SAR, (e) kernel RX detected mines for HS, (f) kernel RX detected mines for SAR, (g) 
joint linear fusion/detection RX results, and (h) joint nonlinear fusion/detection KRX 
results. 
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joint fusion/detection algorithm.  Figure 2a and b shows the original HS and SAR images of the 
same region that are processed, respectively.  Results of the RX algorithm and kernel RX are 
shown in figure 2c–f.  Figure 2g and h shows the joint linear and nonlinear fusion/detection 
results using the concatenated data, and the ROC curves are represented in figure 3.  It is clear 
from figure 3 that the nonlinear joint fusion/detection algorithm performance exceeds the linear 
RX as well as the single sensor results. 

 

Figure 3.  The ROC plots for the conventional RX and kernel RX algorithms. 

4. Conclusions 

A nonlinear fusion algorithm for detection of surface and buried mines has been designed.  
Nonlinear pixel level joint fusion and detection were developed based on the in-house kernel RX 
algorithm.  The nonlinear correlation between the SAR and HS data was exploited in the pixel-
based fusion and detection algorithm.  Use of different kernels as well as developing procedures 
for weighting the kernels is still to be investigated.  
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