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Introduction 

The U.S. Army can enhance availability of its war-fighting equipment and reduce costs by 
employing modern, condition-based, predictive maintenance.  The dynamics of the 
electromechanical systems used in equipment such as helicopters, tanks, trucks, etc., are quite 
complex, including nonlinearity, nonstationarity, quasi-periodicity and occasional chaos, 
especially if there is a mechanical fault.  Often, the pertinent parameters of the system cannot be 
measured conveniently, so the condition of the equipment is estimated on the basis of the 
vibrations measured at selected locations on the housing of the machinery.  Sometimes, certain 
characteristics of the vibrations can be related to faults in gears or bearings, but in general the 
relationship between the vibrations and the operational dynamics of the underlying system are 
unknown or too difficult to characterize.  Consequently, empirical algorithms are often 
developed to relate vibration characteristics and the condition of the equipment by analyzing the 
measured vibrations under different operating conditions, and sometimes with seeded faults in 
laboratory experiments.  

Since rolling element bearings and gears are widely used in modern rotating machinery, a 
number of procedures (1-5) have been developed to detect faults in such components based on 
measured vibrations.  Algorithms based on statistics of the measured vibration are summarized in 
(1).  A number of diagnostic procedures have been developed by using wavelet decomposition 
(2-4).  Phase-space based features for fault detection are discussed in (5).  The vibrations 
resulting from a fault in rotating machinery will have cyclical behavior and analysis of 
cyclostationarity is reviewed in (6).  Fusion of features for predictive diagnosis of 
electromechanical systems is discussed in (7).  For successful fusion, we need features that are 
statistically independent.  We present new features based on empirical mode decomposition of 
vibration data, which may complement existing features and thereby enhance accuracy of 
diagnosis by fusion of all the features. 

Empirical Mode Decomposition 

Empirical mode decomposition (EMD), intrinsic mode function (IMF), and the subsequent 
Hilbert transform for nonlinear and non-stationary time series analysis is described in (8) 
together with numerical procedure illustrated with examples.  Since EMD is based on the local 
characteristic time scale of the data, we want to investigate if it can help generate new features 
for detection of faults in electromechanical systems.  The decomposition of a given time series is 
based on direct extraction of the energy associated with various intrinsic time scales of the data, 
and we refer the reader to (8) for details of the method.  Briefly, local maxima and minima of the 
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data, x(t), are identified and the maxima are connected by a cubic spline line as the upper 
envelope.  Similarly, a lower envelope is generated from the minima.  The two envelopes should 
bracket all the data between them.  Let Eu(t) and El(t) denote the values of upper and lower 
envelopes as a function of discrete time t. The mean of the two envelopes is 

 M(t)=( Eu(t) + El(t)  )/2. 

The difference between the data and the mean gives the residue: 

 h1(t)=x(t) – M(t), 

where the subscript denotes level of iteration.  This process is iterated with h1(t) representing a 
new time series whose upper and lower envelopes and mean envelope, M1(t), are computed to 
obtain the value for next iteration: 

 hi+1(t)=hi(t)-Mi(t), where i=1,2,….  

Ideally, this process is continued until the residue hi(t) satisfies the conditions specified for IMF:  
(1) in the whole data set hi(t), the number of extrema and the number of zero crossings must 
either equal or differ at most by 1; and (2) Mi(t)=0 for all t.  It is not always advisable or efficient 
to test for these conditions.  Instead, the authors (8) recommend that the iteration process be 
terminated when the value of the standard deviation, SD: 
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is below a selected value, generally in the range of (0.2-0.3).  Note that when hi(t) = hi-1(t) for all 
t, no further reduction in residue is possible so hi(t) is considered to have converged and SD=0. 
The value of SD is used to gage the level of convergence. 

This gives us the first IMF, denoted as c1(t)=hi(t).  To obtain subsequent decompositions, ci, i=2, 
3… treat the residue ri:  

 ri=ri-1 -ci(t),  with  r0=x(t) 

as the signal to be decomposed and repeat the above procedure to obtain the IMF of the residue.  
This decomposition process can be stopped based on predetermined conditions.  Note that if n 
IMF’s are obtained then 
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Decomposition of Vibration Data 

We applied the empirical mode decomposition process to the vibration data measured by an 
accelerometer attached to the underside of the non-rotating main rotor swashplate of a AH64A 
helicopter (9).  We had 6 sets of this vibration data, the first two sets were from rotors with faults 
(“faulted data”) and the remaining 4 sets were from rotors with no known faults (“good data”).  
Each set consisted of 262,144 samples with sampling period of 0.0208 ms, thus, each set 
represented data collected over 5.4613s.  Figure 1 shows the first 2000 samples of one of the 
good data sets and figure 2 shows similar samples for one of the faulted data sets.  Note that the 
amplitude of the faulted data set is much larger than that of the good data set.  Both data sets 
exhibit some amplitude modulation and there are times when the peaks have negative values and 
the valleys have positive values.  The ratio of the mean squared acceleration for the faulted data 
sets with respect to the lowest mean squared acceleration obtained from the four good data sets is 
much higher than the corresponding ratios of the remaining three good data sets; see figure 3.  
The vibration level of the faulted system is much higher than the good system (ratio near 40) so 
we may not need any special detector to classify the data set as faulted.  However, we will 
examine how the IMFs for the good and bad data set compare with the view of determining 
features that may be more sensitive to the condition of the rotor swashplate. 

 

Figure 1.  The first 2000 samples of the good data.  
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Figure 2.  The first 2000 samples of the faulted data.  

 

 

Figure 3.  The power ratios of six data sets relative to the lowest power of the good data set (4). 

We found that the transients of the cubic spline line due to start and end points of the data can 
significantly alter the values of IMFs.  To minimize the effects of the transients, we generated 
ci(t)s (i=1,…,12) by using  all the data points (262,144 samples)  for each  of the six sets.  Each 
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of the ci(t)s  was then separated into 12 consecutive blocks for averaging the statistics of the 
results.  Each block consisted of 20,000 samples and the first block was generated by starting at 
the 2,001st sample so the first 2,000 samples were discarded to reduce the effects of the spline 
transients.  The 12th block ended at the 242,000th sample so the remaining 22,144 samples were 
discarded. 

The twelve IMFs generated from one of the good data set are shown in figures 4-6.  We have 
plotted only the first 2,000 samples from the first block so that we can show some level of 
details.  Figure 4 shows the first four IMFs starting with c1 at the top and ending with c4 at the 
bottom.  Similarly, figure 5 shows c5 to c8 and figure 6 shows c9 to c12. Note that the IMFs are 
centered about zero and most of the peaks have positive values and most of the valleys have 
negative values.  Figures 7-9 show the corresponding IMFs obtained from one of the faulted 
data. These IMFs look similar to those of the good data set, except for their amplitudes and 
frequencies, which we will examine next. 

The power in each of the twelve blocks as a function of mode number for one of the good data 
sets is shown in figure 10.  The power level varies slightly from block to block (different colors) 
for any given mode number but in general, the levels are consistent from one block to another 
indicating that the blocks have captured the essence of the whole data set. 

 

Figure 4.  The first four empirical mode decompositions from the good system data.  
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Figure 5.  The second four empirical mode decompositions from the good system data.  

 

Figure 6.  The last four empirical mode decompositions from the good system data.  
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Figure 7.  The first four empirical mode decomposition from the faulted system data.  

 

Figure 8.  The second four empirical mode decomposition from the faulted system data.  
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Figure 9.  The last four empirical mode decomposition from the faulted system data.  

 

 

Figure 10. Power level for each of the twelve blocks as a function of mode no. Colors denote results 
of different blocks. 
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Next, we examine the Fourier transforms of the IMFs.  The Fourier transforms of the IMFs were 
obtained for each block separately and then the amplitudes were averaged over the twelve 
blocks.  Further, the amplitudes were averaged over 10 frequency samples so that the resultant 
samples are averaged over 24 Hz.  The results are shown in figures 11-20 for the six data sets, 
two faulted and four good.  Only the first 10 modes are shown since the last two modes do not 
show much variation.  Note that the frequencies of the IMFs and the modulation rates decrease 
as the IMF number increases.  There is a difference in frequency where the amplitudes peak and 
in the frequency bands over which the amplitudes are relatively high for the good and the faulted 
data sets.  We use these differences to generate features for discriminating between the good and 
faulted data sets.  

 

Figure 11.  Amplitude of the Fourier transform of the first IMF of six data sets. 
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Figure 12.  Amplitude of the Fourier transform of the second IMF of six data sets. 
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Figure 13.  Amplitude of the Fourier transform of the third IMF of six data sets. 
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Figure 14.  Amplitude of the Fourier transform of the fourth IMF of six data sets. 
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Figure 15.  Amplitude of the Fourier transform of the fifth IMF of six data sets. 
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Figure 16.  Amplitude of the Fourier transform of the sixth IMF of six data sets. 
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Figure 17.  Amplitude of the Fourier transform of the seventh IMF of six data sets. 
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Figure 18.  Amplitude of the Fourier transform of the eight IMF of six data sets. 
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Figure 19.  Amplitude of the Fourier transform of the ninth IMF of six data sets. 
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Figure 20.  Amplitude of the Fourier transform of the tenth IMF of six data sets. 

To gauge variations in powers from one data set to another, we averaged the power over the 
twelve blocks for each of the modes, and obtained the ratios of the average powers for the two 
faulted and the three good data sets to the remaining fourth good set for each of the IMFs and the 
results are shown in figure 21.  These ratios for the two faulted data sets are much higher than the 
ratios for the three good data sets.  The ratios for modes 1 thru 8 are greater than 20 for the 
faulted data sets and less than 5 for the three good data sets.  Further, the ratios for mode 1 and 6 
of the faulted data sets are greater than 80 and 60, respectively.  Thus, the power ratio of these 
modes are higher than the power ratio of the original time series (near 40) and are therefore 
better features for classifying faulted and good data.  Thus, these ratios for mode 1 and 6 are 
good candidates for new features. 
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Figure 21.  Ratio of average power of 12 blocks with respect to that of the third good data set as a 
function of mode number.  

Next, we took the ratio of the maximum power spectral densities, i.e., the maximum of the 
squares of the Fourier transforms amplitudes, for all the IMFs of each of the two faulted data sets 
and three good data sets with respect to the maximum in one of the good data set and the results 
are given in figure 22.  The ratios for IMD no. 1, 2, 6, and 8 of the faulted systems are much 
higher than for the three good systems and should be potential candidates for the second set of 
new features to help classify faulted and good data sets.  Another candidate for features is shown 
in figure 23, where we plot the ratio of the maximum power spectral densities to the power 
density of the one of the good data set (same as the good one used to obtain figure 22) at the 
same frequency where the maximum density occurred for the test data.  This feature takes 
advantage of the fact that the peaks in power spectrum of the faulted data set are shifted from the 
corresponding peaks of the good data set. Note that the ratios for modes 1 and 6 are quite high 
and the reason is obvious from figures 11 and 16. This is our third set of new features.  
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Figure 22.  Ratio of maximum power spectral density of faulted and good data set to the maximum 
power spectral density of good data set #1. 
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Figure 23.  Ratio of maximum power spectral density of faulted and good data set to the power spectral 
density of good data set #1 at the same frequency where the maximum density occurred for 
the test data.  

We are proposing these sets of three features for assisting in diagnoses of the gear box. Since 
these features are obtained by using a new methodology, it is likely to complement the existing 
features and hence, improve the classifier which combines all the features to make a diagnosis.  

Summary 

Empirical mode decomposition of measured signals of the relevant state of a system can generate 
additional features for system diagnosis.  We developed three sets of new features for diagnosis 
of transmission box of AH64A helicopter based upon measurements of its vibration data.  This 
procedure is different from the existing procedures for defining features for the transmission box 
and therefore these new features should complement the existing features for diagnosis and 
improve performance of the classifier used to diagnose the system.  
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