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1. Introduction 

The electronic properties of ferroelectrics make them attractive candidates for incorporation into 
various kinds of electronic devices.  Because the performance of such devices in a given circuit 
environment depends in a highly specific way on the response of the material to external 
perturbations such as electric fields, stresses, and temperature, it is important to provide the 
device designer with an appropriate set of parameters that characterize this response, which may 
or may not be easy to obtain.  In contrast, when a chemist wishes to synthesize a new material, 
he needs a different set of responses, based on thermodynamics and chemistry.  Thus, it is vital 
to connect these differing responses mathematically so that the chemist can translate data from 
the device designer into a form that allows him to vary the parameters in the proper way.   

In this report we attempt such a connection for the specific example of a promising new 
ferroelectric material, BaTi.9(Sc,Ta).05O3.  This material, which was fabricated by a novel 
process developed by S. Tidrow and the first author of this report, exhibits a strong and nonlinear 
ferroelectric response, namely a dependence of its dielectric constant on an external bias voltage.  
Such behavior, which is referred to as tunability and is common to many ferroelectric materials, 
is an example of a property that can be exploited by device designers.  However, because it is 
intimately related to a strong increase in its dielectric constant with temperature near the 
transition from ferroelectric to paraelectric, it is very temperature-sensitive, an undesirable 
feature for electronic device applications.  Moreover, most procedures that decrease the 
temperature sensitivity also decrease the tunability, so that it is important to determine what steps 
can be taken to decouple these processes. 

2. Thermodynamics of Ferroelectrics 

The analysis used in this report is based on the macroscopic theory of ferroelectricity developed 
by L. D. Landau (1937) and A. F. Devonshire (1949), now referred to as mean-field theory, 
which postulates the existence of a free energy per unit volume of ferroelectric that is analytic at 
the Curie temperature TC, i.e., possesses a power-series expansion around that temperature: 

 ( )1 1 12 4 6
2 4 6

F a T T D bD cDC= − + +  

Here D = ε0Eex + P is the electric displacement, Eex is an externally applied electric field, and P 
is the polarization, i.e., the dipole moment per unit volume, whose nonzero value in the absence 
of an external electric field defines the ferroelectric state (1). 
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In a “normal” material, the minimum value of this free energy is obtained when D = 0.  The 
quantities a, b, c, and TC are referred to as Landau-Devonshire parameters.  They are all 
characteristic material properties, which the material scientist can vary by modifying the 
synthesis procedure, and are assumed to be temperature-independent (2). 

In the presence of an external field, the displacement can be computed by minimizing this free 
energy with respect to D, yielding the polynomial expression 

 ( ) 3 5E a T T D bD cDex C= − + +  (1) 

As Eex → 0 this polynomial has only the trivial solution D = P = 0 when T > TC, while for T < 
TC it has several nonzero solutions in addition to D = 0.  It is found that these nonzero solutions 
describe states with a lower free energy than the zero solution when T < TC.  For T > TC an 
additional differentiation yields the small-signal dielectric constant: 

 ( ) ( ) ( ) ( )
2 2 41 3 52

FE a T T bD E cD Eex C ex exD E Eex

∂−ε = = − + +
∂ =

 

It is this quantity that is usually measured in e.g., capacitance experiments.  For small values of 
Eex we derive the following expression for the dielectric constant: 

 ( ) ( )
1Eex a T TC

ε =
−

 

which is field-independent and exhibits a characteristic Curie-law behavior around TC. 

In experiments that involve moderate electric fields, the measured values of ε(Eex) for 
paraelectrics (T > TC) normally can be fitted to the following trend line:  if ε(Eex) = ε0κ(Eex), 
then 

 ( ) ( ) ( ) ( ) ( )2 4 6, 0,E T T A T E B T E C T Eex ex ex exκ ≈ κ − + +  

Relating this to the Landau-Devonshire parameters is not straightforward, due to the implicit 
nature of equation 1.  To deal with this problem, we expand the displacement D in powers of the 
external field:  if D = ε0{κ1E + κ3E3 + κ5E5 + κ7E7 …}, setting a(T – TC) ≡ α gives 
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( ) ( )
( )

( ) ( )
( )

3 5

33 5 7 3 3 5 7
0 1 3 5 7 0 1 3 5 7

55 3 5 7
0 1 3 5 7

3 3 3 3 2 5 5 530 1 0 3 0 1 0 5 0 1 3 0 1
3 2 3 2 5 4 53 3 50 7 0 1 5 0 1 3 0 3 1

E D bD cD

E E E E b E E E E

c E E E E

E b E b c E

b b c E

= α + +

= αε κ + κ + κ + κ + ε κ + κ + κ + κ

+ ε κ + κ + κ + κ

= αε κ + αε κ + ε κ + αε κ + ε κ κ + ε κ

+ αε κ + ε κ κ + ε κ κ + ε κ κ

L L

L

L

 

The last term can be neglected since it is not needed to determine α, b, and c, so 

 ( ) ( )3 3 3 3 2 5 5 530 1 0 3 0 1 0 5 0 1 3 0 1E E b E b c E= αε κ + αε κ + ε κ + αε κ + ε κ κ + ε κ +L  

Equating the coefficients of like powers gives 

 

( )

( ) ( )

1 0 1
3 30 0 3 0 1
3 2 5 50 30 5 0 1 3 0 1

1
0 1

3
0 1

0 3 4

2 5
23 30 1 0 3 0 1

0 5 7

b

b c

b b

b c b c

= αε κ

= αε κ + ε κ

= αε κ + ε κ κ + ε κ

⇒ ε κ =
α

ε κ
ε κ = − = −

α α

ε κ ε κ + ε κ −α
ε κ = − =

α α

M

 

This gives 

 ( ) ( )( )3 53 2 530 1 0 1 0 1 0 1D E b E b c Eex ex ex
⎧ ⎫

= ε κ − ε κ + ε κ − ε κ +⎨ ⎬
⎩ ⎭

L  

and hence the dielectric constant 

 ( ) ( ) ( )( )3 52 2 41 3 5 30 1 0 1 0 1 0 1
dDE b E b c E
dE

⎧ ⎫
ε = = ε κ − ε κ + ε κ − ε κ +⎨ ⎬

⎩ ⎭
L  

so that  
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( )

( ) ( )
( ) ( )( )

0, 1
4

30 0 1
625 30 0 1 0 1

T

A T b

B T b c

κ = κ

ε = ε κ

ε = ε κ − ε κ

 

Note that even if the Landau-Devonshire parameters are temperature independent, the 
coefficients A(T) and B(T) will vary strongly with temperature around the Curie temperature due 
to the presence of high powers of κ1.   

The coefficients ε(0,T), A(T), B(T), and C(T) can be obtained by fitting the experimental curves.  
A least-squares fit for the Curie temperature of the form 

 ( ) ( )
1
0,0

a T TC T
α = − =

ε κ
, 

where a and TC are fitting parameters, is described in appendix.  Once this is done, it is easy to 
derive the other Landau-Devonshire parameters: 

 ( ) ( )1 43 0,03
b A T T −−= ε κ⎡ ⎤⎣ ⎦  (2) 

 ( ) ( ) ( ) ( )1 16 725 50, 0,0 05 3
c B T T A T T− −− −= − ε κ + ε κ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (3) 

3. Fitting Results for BaTi.9(Sc,Ta).05O3 

One effective way to modify the electrical properties of perovskite compounds like BaTiO3 is to 
dope them with transition metals.  We have found that this leads to materials that are both 
temperature insensitive and highly tunable, a circumstance that our group has investigated for 
several years.  We use the following procedure to measure the dielectric constant versus 
temperature and field.  Contacts are deposited by E-beam evaporation on circular samples of 
~10.5 mm diameter and 0.5 mm thickness to form parallel-plate capacitors.  The contacts are 
composed of layers of 250 Å Ti, 1500 Å Au, 3000 Å Ag, 1500 Å Au, in that order.  The small-
signal capacitance is measured by an impedance bridge in the temperature range –55 ≤ T ≤  
120 °C at 5 values of bias voltage across the capacitors from 0 to 500 V.  The bias voltages 
needed for the measurement are provided by a Bertan 205B high-voltage D.C. power supply.  
The small-signal capacitance is given by the formula 

 ( )0 1
AC Ebias h

= ε χ  
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where A is the contact area, h is the sample thickness, and 
VbiasEbias h

= , the electric field 

created within the sample by the bias voltage Vbias, was computed for each sample capacitor.  
This formula was inverted to giver the dielectric response at each bias field. 

It is a striking property of this material that, despite its chemical similarity to BaTiO3, it is 
unambiguously paraelectric over the entire temperature measurement range.  In contrast, pure 
BaTiO3 is ferroelectric over this range.  A typical experimental curve of the dielectric constant 
versus field looks as seen figure 1. 

-6 -4 -2 2 4 6

200
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1200

 

Figure 1.  Typical experimental curve for ferroelectric dielectric constant. 

The symmetry with field reflects the cubic nature of the crystal symmetry, which eliminates all 
odd powers of the electric field E.  Comparing the shape of this curve with the expression 

 ( ) ( ){ }3 2 2 5 41 3 5 31 1 1 1E b E b c Eε = ε − ε + ε − ε +L  

shows that it curves upward at very high fields, indicating that 3b2ε1 > c in our materials. 

As stated above, our fitting procedure starts with the expression 

 ( ) ( ) ( ) ( ) ( )2 4 6, 0,E T T A T E B T E C T Eex ex ex exκ ≈ κ − + +  

where κ(0,T) is taken directly from the zero-field measurement and A(T), B(T), and C(T) are 
derived by least-squares fitting the difference 

 
( ) ( ) ( )

( ) ( ) ( )

, , 0,

2 4 6

E T E T Tex ex

A T E B T E C T Eex ex ex

Δκ = κ − κ

= − + +
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Once this is done, the other Landau-Devonshire parameters are computed using equations 2 and 
3.  Figure 2 shows a typical curve fit of the experimental points (large dots) to this function at a 
specific temperature. 
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2500
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Figure 2.  Theoretical fit for BaTi.9(Sc,Ta).05O3 dielectric constant showing  
experimental data points. 

The fitted values of a and TC for this material are V m74.2 10
C K
−

×
−°

 and –58 °C.  For comparison, 

the Curie constant C = 1.8 × 105 °K for single-crystal BaTiO3 given in Lines and Glass (3), plus 

the transition temperature TC = 120 °C, imply that V m73.7 10
C K

a −
= ×

−°
 for pure BaTiO3 (on the 

ferroelectric side of the Curie temperature).  While the value of a for our material is reasonably 
close to this number, our fitted transition temperature for the (cubic-tetragonal) transition is 
remarkably low.  Because pure BaTiO3 undergoes three phase transitions, the highest (cubic-
tetragonal) at around 120 °C and the lowest (orthorhombic-rhombohedral) at –60 °C, it is 
tempting to assume that in our material the two high-temperature phase transitions have been 
disrupted, leaving only the lowest-temperature one to form the observed peak in ε.  This is in fact 
consistent with the behavior of PbTiO3.  However, x-ray data indicate that the crystal structure 
of our material is cubic at room temperature, suggesting that the highest Curie temperature has 
indeed been moved down by this large amount.   
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Figure 3.  Fitted temperature variation of parameter α for BaTi.9(Sc,Ta).05O3. 

The other LD parameters b and c are strikingly different from those of pure BaTiO3. 

 

 
 

Figure 4.  Fitted temperature variation of L.-D. parameter b for BaTi.9(Sc,Ta).05O3. 
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Figure 5.  Fitted temperature variation of L.-D. parameter c for BaTi.9(Sc,Ta).05O3. 

Enumerating these differences, we have that 

1. According to LD theory, the constant b should be negative for ferroelectrics with first-order 
phase transitions like BaTiO3.  For our material this number is positive. 

2. LD theory predicts that b and c should be temperature independent, whereas both are 
strongly temperature dependent in our material, although there is a range of temperatures 
where they are almost constant. 

3. Both b and c are much larger than they are in BaTiO3.  Their minimum values in the “flat” 

regions of these curves (around room temperature) are 
5V m15~ 2 10 3C

−
×  and 

9V m21~ 8 10 5C

−
×  respectively.  Contrast these numbers with the values 

5V m136 10 3C
b −
= ×  and 

9V m176 10 5C
c −
= ×  reported in (4). 

One possible explanation for these anomalies is based on the commonly held idea that first order 
transitions in ferroelectrics are caused by electrostriction.  When a system develops a 
spontaneous polarization, the associated internal field causes a spontaneous strain, which adds a 

term 4
2
Q D
Y

−  to the free energy, where Q is the electrostrictive constant and Y is a combination 

of elastic constants.  Because this term is negative and proportional to D4, it reduces b in the free 
energy expression and can even make it negative, which converts the phase transition from 
second order to first order.  Then the argument can be made that in BaTiO3 the constant b is 
normally large, but is canceled out by this term, thereby converting a second-order phase 

c - parameter 

2.5 × 1024 

2 × 1024 

1.5 × 1024 

1 × 1024 

5 10 15 20 
Temperature

5 × 1024 
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transition into the (weak) first-order transition observed in experiment.  We tentatively advance 
the hypothesis that the elements we have added to the BaTiO3 somehow eliminate the 
spontaneous strain, converting the crystal structure from tetragonal to cubic and “exposing” a 
large but previously hidden positive value of b.  Similar arguments can be made for c.  This 
hypothesis will be a subject for future research. 
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Appendix.  Least-Squares Fit for the Curie Temperature 

In calculating the fitting parameters it is convenient to use the inverse relation 

 
( ) ( )1
0,

a T TCT
α = = −

ε
 

Then the error function is 

 ( ) ( ) 2
,a T a T TC i i C

i
⎡ ⎤Δ = α − −∑ ⎣ ⎦  

where the summation is over the experimental data points.  Minimizing this function with respect 
to a and TC gives 

 

( ) ( )

( ) [ ] ( )

, 2 0

, 2 0

2

2

2 22

a T T T a T TC i C i i Ca i

a T a a T TC i i CT iC

T T a T Ti i C i C
i i

a a T Ti i C
i i

T T a T T T NTi i C i i C i C
i i i i

i
ia T T ai i C T NTi i i C

i

∂ ⎡ ⎤⎡ ⎤Δ = − − α − − =∑ ⎣ ⎦ ⎣ ⎦∂

∂ ⎡ ⎤Δ = α − − =∑ ⎣ ⎦∂

⎧ ⎡ ⎤ ⎡ ⎤α − = −∑ ∑⎪ ⎣ ⎦ ⎣ ⎦⎪⇒ ⎨
⎪ ⎡ ⎤α = −∑ ∑ ⎣ ⎦⎪⎩
⎧ ⎛ ⎞

α − α = − +⎪∑ ∑ ∑ ∑⎜ ⎟⎜ ⎟⎪ ⎝ ⎠
⎪⇒ α⎨ ∑

⎡ ⎤α = − ⇒ =∑ ∑⎣ ⎦ −∑
⎩

⎪
⎪
⎪

 

Let N be the number of data points, and 

 1 1 1 12                              C               a T T a Ti i i i iN N N Ni i i i
Α = Β = = Μ =∑ ∑ ∑ ∑  

Then 
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( )
( )( ) ( )

( )
( )

( )

( )
( ) ( )

( )

2C 2
2C 2

2 2C 2

C 2

C

C

C C

2 2C C

T a T TC C C
T T T TC C C Ca

TC

T T T TC C C C
T TC C

TC

TC

a

⎫Μ −Α = − Β + ⎪⎪⇒ Β− Μ −Α = Α − Β +⎬Α
= ⎪
Β− ⎪⎭

⇒ ΒΜ − Μ +ΑΒ + Α = Α − ΑΒ + Α

⇒ΒΜ− Μ +ΑΒ = Α − ΑΒ

⇒ΒΜ −Α = Μ −ΑΒ

ΒΜ −Α
⇒ =

Μ −ΑΒ
Α Μ −ΑΒΑ

= =
ΒΜ −Α Β Μ −ΑΒ − ΒΜ −Α⎧ ⎫Β− ⎨ ⎬Μ −ΑΒ⎩ ⎭

Α Μ −ΑΒ Μ −ΑΒ
= =
−ΑΒ + Α −Β  
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