

The Implementation of a Python Class for Structuring

Network Data Collected in a Test Bed

by Binh Q. Nguyen

ARL-TR-4423 April 2008

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Adelphi, MD 20783-1197

ARL-TR-4423 April 2008

The Implementation of a Python Class for Structuring
Network Data Collected in a Test Bed

Binh Q. Nguyen

Computational and Information Sciences Directorate, ARL

Approved for public release; distribution unlimited.

 ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

April 2008
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

January to February 2008
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

The Implementation of a Python Class for Structuring Network Data Collected in
a Test Bed

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Binh Q. Nguyen

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRD-ARL-CI-CN
2800 Powder Mill Road
Adelphi, MD 20783-1128

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-4423

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report documents an internally developed Python class that takes in a set of data files and organizes them into effective data
structures that are suitable for the subsequent extraction, processing, and analysis. The report includes usage examples by
describing Python snippets that perform statistical calculations and that transform the data into comma-separated values.
Sample input and output data are appended to the report.

15. SUBJECT TERMS

Python, IDS data, network utilization, network performance

16. Security Classification of:
19a. NAME OF RESPONSIBLE PERSON
Binh Q. Nguyen

a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U

17. LIMITATION
OF
ABSTRACT

U

18. NUMBER
OF
PAGES

30

19b. TELEPHONE NUMBER (Include area code)
(301) 394-1781

 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

 iii

Contents

1. Introduction 1

2. The Record File 2
2.1 Metadata ..2

2.2 Data Blocks ...3

3. The ParseIDSdata Class 3
3.1 Interfacing Methods ..4

3.2 Internal Methods..8

4. Usage Examples 9
4.1 Example 1..10

4.2 Example 2..10

4.3 Example 3..11

5. Summary and Conclusion 13

Appendix A. The Structure of Record Files 15

Appendix B. Index File 17

Appendix C. The ParseIDSdata Class 19

Distribution List 24

 iv

Intentionally Left Blank

 1

1. Introduction

The U.S. Army Research Laboratory (ARL) has been developing intrusion detection systems
(IDS) intended for tactical wireless mobile ad-hoc network (MANET) systems through various
research programs, e.g., the Collaborative Technology Alliance (CTA) and Science and
Technology Objective (STO) programs. ARL also empirically evaluates newly developed and
experimental IDS in its wireless emulation laboratory (WEL).

In a recent evaluation, ARL captured a set of data describing quantitative network utilization and
performance and saved them in a record file for each run. (The description and an example of a
record file are presented respectively in subsequent paragraphs and in appendix A.) To parse
these record files, ARL had a computer program1 implemented as a Python2 script containing
two main functions: parseAllFiles and separateTestsByKeys. The former was to read, parse, and
return the data stored in a list of dictionaries, and the latter was to take the returned dictionary to
create another dictionary whose keys are the concatenation of three types of data: (1) attack type,
(2) node density, and (3) detector type. The functional behavior of the former appeared to
perform as expected, but that of the latter was still to be tested and evaluated for correctness and
usability.

As a script, the computer program was written in a procedural-programming style providing a
specific functionality, solving an exact problem at a certain time. The script thus was designed
to run as an independent Python application, not as a module that could be imported in a Python
shell for an interactive session or incorporated into another module. Therefore, as an alternative
to the script, a new Python class was designed and implemented, and it is called the
ParseIDSdata class.

This report documents the ParseIDSdata class that also takes in a set of record files and
organizes them into a list of dictionaries as the current script does. That is the only common
functionality between the current script and the new class. The ParseIDSdata class additionally
provides the user a set of data services, implemented as callable methods, for retrieving specific
types of data in the input files. The retrieved data are then used for subsequent analysis and
processing. As the term “class” implies, it is built using object-oriented (OO) techniques that
offer the benefits of reusability, extensibility, and maintainability. In addition, because the class
was implemented using Python, the user can import the class into a Python shell for an
interactive session with the class, experimenting with its features or developing new applications.

The intended readers of this report include technical personnel who are interested in using the
ParseIDSdata class to inspect, extract, or process record files. The report includes three usage

1The functions were created by Cem Karan of ARL in 2007.
2The Python computer programming language, http://www.python.org.

 2

examples of the ParseIDSdata class. The first example presents a screenshot of an interactive
session. The second example provides an implemented method that extracts a specific set of data
and calculates its statistics. The last example illustrates a way to transform a set of data into
comma-separated values. The internal structures, operations, and interfaces of the examples are
explained in this report.

The rest of this report consists of four sections. The next section describes the structure of a
record file. Section 3 presents and explains the functional behavior and the outputs of the
ParseIDSdata class. Section 4 gives usage examples of the ParseIDSdata class. Section 5
concludes the report.

2. The Record File

Each record file consists of two sections: (1) a metadata section and (2) a data section. The
metadata section describes the informational contents in the file. The data section has one or
more named blocks of data. Each block consists of data lines. Each data line is a name-value
pair (e.g., minRxHsls = 96). Non-data lines, such as comments and blank lines, are also included
in the file to improve readability and intelligibility. An input line is a comment line if its first
visible character is the percent (%) character. The structure of the file is depicted below:

Metadata { Data Block 1 } { Data Block 2 } ... { Data Block N }

2.1 Metadata

The metadata section has at most five name-value pairs to provide information about the
following data blocks. The five names include NODE_DENSITY, DATE & TIME, Attack Type,
Attacker Node, and DETECTOR. The first four names always appear in the sample set of data,
but the last one, the DETECTOR name, does not consistently appear.

DATE & TIME= 08-22-07_14:40
NODE_DENSITY= low_dense
Attacker Node= node47
Attack Type= FAST HELLO
DETECTOR= SPEC

The value of the DATE & TIME field is unique in every data file, and it matches the name suffix
of an input file, e.g., record_08-22-07_14:40. (On Microsoft Windows, the ‘:’ character cannot
be used to name a file. Therefore, it is converted into the ‘_’ character.) The values of other

 3

fields are not unique. For example, the value of the NODE_DENSITY field of many input data
files have the same value, e.g., low_dense.

2.2 Data Blocks

Each data block is enclosed between a pair of curly brackets “{}”. The open-curly bracket ‘{’
signifies the start of a data block, and the close-curly bracket ‘}’ signifies the end. The brackets
themselves are not part of the data. Each data block has a set of keywords describing its own
contents. The “Name” key word is a special one because it is the name of the associated block.
Below is a short example of a data block:

{
 Name = PreBANDWIDTH COMSUMPTION
 %All Bandwidth Consumption Calculations are in bps
AllReceivedTraffic = 434.41
...
TransmittedPmsTraffic = 245.80
}
{
 Name = BANDWIDTH COMSUMPTION
 %All Bandwidth Consumption Calculations are in bps

AllReceivedTraffic = 1.3857e+05
...
minTxPms = 482.40
}
{
 Name = CALCULATIONS LATENCY
Attack-Jmap = 31
...
False Detection = 0
}

3. The ParseIDSdata Class

The ParseIDSdata class is designed to read in the contents of record files and organize them in
data structures for subsequent extraction and processing. Invoking the class requires (1) the
specification of the directory in which the data files reside (e.g., records) and (2) the common
name prefix of all the data files (e.g., record_). The following statement instantiates an object of
type ParseIDSdata:

o = ParseIDSdata(datdir=”records”, prefix=”report_”)

 4

3.1 Interfacing Methods

The class provides several methods for retrieving and printing a set of specific data. The data
retrievers always return to their caller an object referring to the requested data. The data printers
format and print the requested data to the screen. The names of the methods are listed and
explained below.

Data Retriever Data Printer
get_metadata_list()
get_name_set()
get_idsinfo()
get_attack_types()
get_datalist()
extract_data()

print_metadata()
print_name_set()
print_idsinfo()
print_attack_types()

• The get_metadata_list method returns a list of dictionaries. The length of the list tells the

number of input data files because each file has a metadata section. Each dictionary stores
the metadata of each file. The print_metadata method prints the metadata of each input file
to the screen as shown below:

• The get_name_set method returns the names of all the data blocks in a set of strings. The

size of the set indicates the number of distinct categories of input data. Each string is the
name of a data block or that of the metadata section. The print_name_set method prints the
names to the screen. The example below shows four different categories of data:

Block Name: BANDWIDTH COMSUMPTION
Block Name: CALCULATIONS LATENCY
Block Name: PreBANDWIDTH COMSUMPTION
Block Name: Metadata

NODE_DENSITY = low_dense
 ATE & TIME = 08-17-07_14:20
Attacker Node = node41
 ttack Type = DROP VALID NEIGHBOR
…
…
NODE_DENSITY = low_dense
DATE & TIME = 08-17-07_14:08
Attacker Node = node27
Attack Type = DROP VALID NEIGHBOR

 5

• The get_idsinfo method returns the information about all the input data in a dictionary. The
keys of the dictionary are derived from the name-value pairs found in the metadata section
of all the input files. The value of each key is a set of a particular type of data, which can
be inspected by printing them on the screen using the print_idsinfo method. The output of
the print_idsinfo method reveals information about the input data. For example, two types
of detectors (SPEC and SPARTA) were found in the input data as shown below:

NODE_DENSITY : set(['low_dense','medium_dense','high_dense'])
DATE & TIME : set(['08-17-07_14:20', ..., '08-21-07_14:32'])
DETECTOR : set(['SPEC', 'SPARTA'])
Attacker Node : set(['node27', ..., 'node41'])
Attack Type : set(['FAST HELLO','DROP VALID NEIGHBOR'])

The length of each set tells the number of distinct categories in the set. The length of the
NODE_DENSITY set indicates the number of node densities. The length of the DATE & TIME
set shows the number of data files because every file has this information. The length of the
Attacker Node set reveals the number of nodes that act as attackers. The length of the Attack
Type set reports the number of attack types in the data files.

• The get_attack_types method returns a list of data associated with each type of attack in a
dictionary. Each key of dictionary is the name of an attack, and its value is a list of data
having the same attack type. The print_attack_types method the name of each attack and
the number of files that are associated with the attack; it does not print the data because of
their voluminous nature. An example of its output is shown below:

AttackType (PIM SEND BAD REGISTER): list(dict[k]) (28 items)
AttackType (DROP VALID NEIGHBOR): list(dict[k]) (30 items)
AttackType (PIM DROP PRUNE/JOIN): list(dict[k]) (30 items)
AttackType (Bad Local Neighbor): list(dict[k]) (67 items)
AttackType (FAST HELLO): list(dict[k]) (30 items)
AttackType (PIM BAD NEXT HOP): list(dict[k]) (30 items)

By inspecting the output of the print_attack_types method, one can find that the input data set
has 30 files having the same PIM BAD NEXT HOP attack type. To retrieve the data of these 30
files and to print out the contents of the first file, the following code is provided:

o = ParseIDSdata()
data_list = o.get_attack_types().get(‘PIM BAD NEXT HOP’)
print_dict(data_list[0])

 6

• The get_datalist method returns an object referring to the entire structured contents of all

the input files that are organized in a list of dictionaries; that is, each element of the list is a
dictionary containing the data of each file. The keys of the dictionary are the names of the
data blocks in an input file. The value of each key is the associated block of data which is
also organized as a dictionary storing the name-value pairs of data. The following Python
code illustrates the data structure by printing out all the data in the structure.

for input_data in get_datalist():
 for blockname, blockdata in input_data.iteritems():
 print 'Data Block Name:', blockname
 for field, value in blockdata.iteritems():
 print '%15s = %s' % (field, value)

• The extract_data method extracts and returns a list of data according to a specified set of
criteria: (1) attack type, (2) node-density type, and (3) detector type. If nothing meets all of
the criteria, then it returns an empty list. Each element of the list is a dictionary. They keys
of the dictionary are the names of the data blocks, and the values of the dictionary are also
dictionaries, which are structures that store name-value pairs of each data block. The
following Python code uses the extract_data method to extract a set of data that meet the
given criteria and prints out the metadata information of the data.

attack = 'Bad Local Neighbor'
dense = 'low_dense'
detect = 'SPARTA'
o = ParseIDSdata()
for data_dict in o.extract_data(attack, dense, detect):
 print_dict(data_dict.get(KEY_META))

Output:
NODE_DENSITY : low_dense
DATE & TIME : 08-27-07_17:31
DETECTOR : SPARTA
Attacker Node : node41
Attack Type : Bad Local Neighbor
...
...
NODE_DENSITY : low_dense
DATE & TIME : 08-27-07_18:00
DETECTOR : SPARTA
Attacker Node : node27
Attack Type : Bad Local Neighbor

 7

The following Python code uses the extract_data method to extract a set of data that meet every
possible criteria and prints out their associated file names.

o = ParseIDSdata()
idsinfo = o.get_idsinfo()
attack_types = idsinfo.get(KEY_ATTACK_TYPE)
density_types = idsinfo.get(KEY_NODE_DENSITY)
detector_types= idsinfo.get(KEY_DETECTOR)
detector_types.add(None)
for attack in attack_types:
 for density in density_types:
 for detect in detector_types:
 data_list = o.extract_data(attack, density, detect)
 print '%s - %s - %s: (%d files)' % (
 attack, density, detect, len(data_list))
 for data_dict in data_list:
 print'\treport_%s'%
data_dict.get(KEY_META).get(KEY_DATE_TIME))

Output:
PIM SEND BAD REGISTER - high_dense - SPEC: (0 files)
PIM SEND BAD REGISTER - high_dense - SPARTA: (0 files)
DROP VALID NEIGHBOR - low_dense - None: (10 files)
 report_08-31-07_11:20
 report_08-31-07_13:57
 ...
 report_08-31-07_15:49
 report_08-31-07_16:05
DROP VALID NEIGHBOR - low_dense - SPEC: (0 files)
DROP VALID NEIGHBOR - low_dense - SPARTA: (0 files)
DROP VALID NEIGHBOR - medium_dense - None: (10 files)
 report_08-17-07_13:41
 report_08-17-07_13:54
 ...
 report_08-17-07_14:32
 report_08-17-07_14:44

 8

Furthermore, the ParseIDSdata class also organizes the input file names according to the
information in the metadata section and creates an index file containing hyperlinks to the data
files. This feature is designed to provide the user a way to visually inspect an input data file. The
index file can be viewed using a web browser. Appendix B shows a shorten version of an index
file.

3.2 Internal Methods

This section describes and explains some internal methods in the ParseIDSdata class. Although
the implementation of these methods is transparent to the user, its description is intended to assist
the user in the understanding of the ParseIDSdata class, which will facilitate its improvement in
the future. Another purpose is to highlight special features of the Python programming language
that enable the expression of a solution in fewer lines of code. The special features are
implemented in the following three functions: (1) the filter_data input-data reader, (2) the
list2dict data converter, and (3) the print_dict recursive dictionary printer. Only the first two
functions are part of the ParseIDSdata class.

• Input Data Reader. Given the name of an input data file to which the fn variable refers,
the filter_data function performs six tasks: (1) opening the data file, (2) reading its contents
line by line, (3) removing any extra spaces preceding and trailing a line of text, (4)
eliminating blank lines and comments, (5) placing the filtered data in a Python data
structure called list, and (6) returning it to the caller. If the function encounters a system
error, it prints out an error message, e, and returns an empty list to the caller. Completing
all these tasks requires only a single line of Python code as shown below:

def filter_data(fn):
 try:
 return [s for s in [s.strip() for s in open(fn).readlines()]
 if len(s) and not s.startswith(COMMENT_CHAR)]
 except IOError, e:
 print_error(e)
 return list()

 9

• Data Structure Converter. Given a Python list of name-value pairs, s, the list2dict
function performs four tasks: (1) splitting each name-value pair into two strings, (2)
removing any extraneous white spaces surrounding the splitted strings, (3) creating a
Python dictionary, and (4) returning it to the caller. Completing all these tasks requires
only a single line of Python code as shown below:

def list2dict(s):
 return dict([(x[0].strip(), x[1].strip())
 for x in [x.split(“=”) for x in s]])
#name=value --> [name, value] to which x refers
--> x[0] = name, x[1]=value
--> dict[name]=value
--> dict[x[0]]=x[1]

• Dictionary Printer. Given a Python dictionary to which the variable named d refers, the

print_dict function recursively prints its key-value pairs on the screen. The function
displays two formatted columns of name-value pairs: the name is on the left, and the value
is on the right. The field length of the name is computed by taking the maximum value of
the calculated length of each key in the dictionary. Doing so requires a single expression
(max([len(x) for x in d.keys()])). The computed value is then incorporated in
the output format as shown below:

def print_dict(d):
 fmt='%%%ds : %%s' % max([len(x) for x in d.keys()])
 for k, v in d.iteritems():
 if type(v) == type(dict()):
 print 'Key = <%s>' % k
 print_dict(v)
 else:
 print fmt % (k, v)
 print

4. Usage Examples

This section provides three examples of Python snippets to illustrate different uses of the
ParseIDSdata class. Example 1 shows a screenshot of an interactive session. Example 2
explains the code that was used to extract the values of a specific field name. Example 3
presents the code that extracts a subset of the IDS data and converts them into comma-separated
values.

 10

4.1 Example 1

This example provides snippets of Python code that uses the basic data services provided by the
ParseIDSdata class to retrieve three data categories in the test data files: (1) node density, (2)
attack type, and (3) detector type. The code uses the ParseIDSdata class to read in all the data
files having their names beginning with “report_” in the “records” directory, which is located at
the current directory (M:\MyPythonProgs\arl-wel\idsdata). The variable “o” refers to the object
of type ParseIDSdata which has been instantiated successfully. The next statement, info =
o.get_idsinfo(), retrieves the IDS information to which the variable “info” refers. The
information is organized in a dictionary whose keys were derived from the name-value pairs in
the metadata section.

4.2 Example 2

This example shows the code necessary for computing a basic set of statistics of the values of the
Attack-Jmap data field that must meet a set of two criteria: (1) the node density must be of type
low_dense and (2) the attack type must be of type PIM DROP PRUNE/JOIN. Because the
specified Attack-Jmap data field exists only in the CALCULATIONS LATENCY block, the whole
block data must be first extracted, and then the value of the target field is extracted from the data
block.

from parseIDSdata import *
DATDIR = 'records'
PREFIX = 'report_'
BLOCK_NAME = 'CALCULATIONS LATENCY'
ATTACK_TYPE = 'PIM DROP PRUNE/JOIN'
DENSE_TYPE = 'low_dense'
FIELD_NAME = 'Attack-Jmap'

o = ParseIDSdata(DATDIR, PREFIX)
results = list()
for input_data in o.get_datalist():
 meta_data = input_data.get(KEY_META)

 11

 #print_dict(meta_data)
 if meta_data.get(KEY_NODE_DENSITY) != DENSE_TYPE:
 continue
 if meta_data.get(KEY_ATTACK_TYPE) != ATTACK_TYPE:
 continue
 block_data = input_data.get(BLOCK_NAME)
 if FIELD_NAME in block_data:
 field_value = block_data.get(FIELD_NAME)
 results.append(float(field_value))
 print '%s = <%s>' % (FIELD_NAME, field_value)

print '-----'
print 'unsorted =', results
results.sort()
print 'sorted =', results
print '-----'
print 'max=%.3f, min=%.3f, ave=%.3f' % (results[-1],
 results[0], sum(results)/len(results))
Output:
Attack-Jmap = <149>
Attack-Jmap = <128>
...
Attack-Jmap = <149>
Attack-Jmap = <93>
-
unsorted = [149.0, 149.0, 148.0, ..., 149.0, 148.0, 93.0]
sorted = [93.0, 128.0, 140.0, ..., 149.0, 149.0, 149.0]
-
max=149.000, min=93.000, ave=140.100

4.3 Example 3

This example provides a way to extract bandwidth-consumption data in "high_dense" (high node
density) scenarios and save them in a comma-separated file, which is ready to be used by a
spreadsheet program or by a database management system capable of importing comma-
separated values. The code consists of two main functions: (1) retrieve the specified data, and
(2) convert the data into comma-separated values and save them to the idsdata.csv file.

BW = 'BANDWIDTH COMSUMPTION'
TARGET_DENSITY = 'high_dense'

def retrieve_data():
 results = list()

 12

 for data in ParseIDSdata().get_datalist():
 metadata = data.get('Metadata')
 if metadata.get('NODE_DENSITY') == TARGET_DENSITY:
 results.append(data.get(BW))
 return results

def save_as_csv_file(datalist, fn):
 titles = set()
 for data in datalist:
 titles.update(data.keys())
 titles = sorted(titles)

 ofd = open(fn, 'w')
 for title in titles:
 print >> ofd, '%s,' % (title),
 print >> ofd

 for data in datalist:
 for title in titles:
 print >> ofd, '%s,' % (data.get(title)),
 print >> ofd
 ofd.close()

#-------------------------------------

data = retrieve_data()
save_as_csv_file(data, fn='idsdata.csv')

Output File Name: 'idsdata.csv'

File Contents:
AllRecTraffic, AllTransTraffic, ... minTxPms, minTxTraf,
3.2479e+05, 4.6541e+04, ... , 7832.8, 43.200,
...

 13

5. Summary and Conclusion

The description in this report of the ProcessIDSdata class and its interfaces shows how the class
is designed to read in a set of IDS data files and then organize their contents in effective data
structures that are highly suitable for subsequent analysis and processing. The usage examples
illustrate the built-in functions to extract a specific set of data, calculate their statistics, and view
the results using a web browser. The third example illustrates the implementation of an
algorithm for extracting a set of specific data and then converting them into a comma-separated
file. The report also stresses some special features of the Python programming language that
enable the expression of algorithmic solutions in fewer lines of code.

 14

INTENTIONALLY LEFT BLANK

 15

Appendix A. The Structure of Record Files

DATE & TIME= 11-01-07_11:38
NODE_DENSITY= low_dense
Attacker Node= node92
Attack Type= PIM DROP PRUNE/JOIN

{
 Name = PreBANDWIDTH COMSUMPTION
 %All Bandwidth Consumption Calculations are in bps
AllReceivedTraffic = 2.9269e+05
maxRxTraf = 1.3423e+07
minRxTraf = 0
…
…
maxTxHsls = 288
TransmittedPmsTraffic = 3.0573e+05
maxTxPms =
13422568
minTxPms = 0
}
{
 Name = BANDWIDTH COMSUMPTION

 %All Bandwidth Consumption Calculations are in bps

AllReceivedTraffic = 1.7987e+05
maxRxTraf = 3.0944e+06
minRxTraf = 787.20
…
…
TransmittedPmsTraffic = 1.4553e+05
maxTxPms = 3.0707e+06
minTxPms = 563.20
}
{
 Name = CALCULATIONS LATENCY

Attack-Jmap = 93
Snort-Jmap = 0
Jmap-Pms = 1
PMS-SmartFirewall = 14
…
…
False Detection = 0
Detected = 1
Miss Detection = 0
Initialization Time = 203
}

 16

INTENTIONALLY LEFT BLANK

 17

Appendix B. Index File

PIM BAD NEXT HOP: report_10-03-07_17_44 report_10-03-07_18_34
report_10-04-07_18_13 report_10-04-07_18_27 report_10-04-07_18_42
PIM SEND BAD REGISTER: report_09-16-07_19_36 report_09-16-07_19_50
report_09-17-07_10_21 report_09-17-07_10_32 report_09-17-07_19_34
DROP VALID NEIGHBOR: report_08-17-07_13_41 report_08-17-07_13_54
report_09-05-07_16_41 report_09-05-07_16_57 report_09-05-07_17_09
Sparta: report_08-27-07_17_31 report_08-27-07_17_47 report_08-27-
07_18_00 report_08-27-07_18_11 report_08-28-07_18_07
node42: report_09-13-07_16_54 report_09-13-07_17_07 report_09-13-
07_17_33 report_10-05-07_11_22 report_10-05-07_11_34 report_10-05-
07_11_45
high_dense: report_08-31-07_16_38 report_08-31-07_16_49 report_08-31-
07_17_00 report_08-31-07_17_11 report_08-31-07_17_22 report_08-31-
07_17_33 report_10-30-07_13_12 report_10-30-07_13_24
SPEC: report_08-27-07_11_29 report_08-27-07_11_47 report_08-27-
07_12_00 report_09-11-07_10_34 report_09-11-07_10_45 report_09-11-
07_10_56 report_10-17-07_14_37 report_10-17-07_14_48
SPARTA: report_09-04-07_16_58 report_09-04-07_18_00 report_09-05-
07_10_43 report_09-05-07_10_56 report_09-05-07_12_31 report_09-05-
07_12_41
PIM DROP PRUNE/JOIN: report_09-13-07_16_54 report_09-13-07_17_07
report_09-13-07_17_33 report_09-13-07_17_47 report_09-13-07_17_57
report_09-13-07_18_08 report_11-01-07_11_38
Bad Local Neighbor: report_08-27-07_11_29 report_08-27-07_11_47
report_08-27-07_12_00 report_08-27-07_15_22 report_08-27-07_15_36
report_08-27-07_15_52 report_10-17-07_12_29 report_10-17-07_14_26
report_10-17-07_14_37
low_dense: report_08-21-07_14_32 report_08-21-07_17_39 report_08-21-
07_17_51 report_08-22-07_10_50 report_08-22-07_13_06 report_08-22-
07_14_40 report_11-01-07_11_27 report_11-01-07_11_38
FAST HELLO: report_08-21-07_14_32 report_08-21-07_17_39 report_09-10-
07_11_31 report_09-10-07_11_43 report_09-10-07_11_54 report_09-10-
07_12_05 report_09-10-07_12_15 report_09-10-07_14_50
medium_dense: report_08-17-07_13_41 report_08-17-07_13_54 report_08-
17-07_14_08 report_08-17-07_14_20 report_08-17-07_14_32 report_08-17-
07_14_44 report_09-16-07_20_01 report_09-16-07_20_14 report_09-16-
07_20_40

 18

INTENTIONALLY LEFT BLANK

 19

Appendix C. The ParseIDSdata Class

#!/usr/bin/env python
#==
'''Author: bnguyen@arl.army.mil - Version 0.8 Thu 21 Feb 08'''

import os, sys
import glob
from webbrowser import open_new

#==
Predefined keywords in the input files:
#==
KEY_PREBANDWIDTH_COMSUMPTION = 'PreBANDWIDTH COMSUMPTION'
KEY_BANDWIDTH_COMSUMPTION = 'BANDWIDTH COMSUMPTION'
KEY_CALCULATIONS_LATENCY = 'CALCULATIONS LATENCY'
KEY_META = 'Metadata'

#The metadata block has five fields:
KEY_NODE_DENSITY= 'NODE_DENSITY'
KEY_DATE_TIME = 'DATE & TIME'
KEY_ATTACK_TYPE = 'Attack Type'
KEY_ATTACK_NODE = 'Attacker Node'
KEY_DETECTOR = 'DETECTOR'
METADATA_KEYS = (KEY_NODE_DENSITY, KEY_DATE_TIME, KEY_ATTACK_TYPE,
KEY_ATTACK_NODE, KEY_DETECTOR)

#==
DEFAULT_DATA_DIR = 'records'
DEFAULT_FN_PREFIX= 'report_'
#==

KEY_NAME = 'Name'
KEY_VAL_SEP = '='
BLOCK_START = '{'
BLOCK_END = '}'
COMMENT_CHAR= '%'

#==
def print_error(m): print >> sys.stderr, '***Error:', m
def print_dict(d):
 fmt='%%%ds : %%s' % max([len(x) for x in d.keys()])
 for k, v in d.iteritems():
 if type(v) == type(dict()):
 print 'Key = <%s>' % k
 print_dict(v)
 else:
 print fmt % (k, v)
 print

#==

 20

class ParseIDSdata:
 def __init__(self, datdir=DEFAULT_DATA_DIR,

 prefix=DEFAULT_FN_PREFIX):
 #preparation
 data_list = self.read_data(datdir, prefix)
 metalist, nameset, idsinfo = self.extract_info(data_list)

 attack_types = self.split_attack_types(data_list, idsinfo)
 #preservation
 self._metadata_list = metalist
 self._name_set = nameset
 self._idsinfo = idsinfo
 self._data_list = data_list
 self._attack_types = attack_types

 self.create_index_file(datdir, prefix)

 #--
 #--

 # getters() -- returning various data types ...
 def get_datalist(self):
 '''return data[i]=dict[k]'''
 return self._data_list

 def get_metadata_list(self):
 '''return list(dict[k])'''
 return self._metadata_list

 def get_name_set(self):
 '''return set([block-data names])'''
 return self._name_set

 def get_idsinfo(self):
 '''return dict[metadata-key]=set(values)'''
 return self._idsinfo

 def get_attack_types(self):
 '''return dict[attack-type]=list(data)'''
 return self._attack_types

 def extract_data(self, attack_type, density_type, detector_type):
 '''extract and return a list of data that meet the
 specifications (attack, density, detector)
 '''
 results = list()
 for input_data in self.get_datalist():
 metadata = input_data.get(KEY_META)
 if metadata.get(KEY_ATTACK_TYPE) != attack_type:
 continue
 if metadata.get(KEY_NODE_DENSITY) != density_type:
 continue
 if metadata.get(KEY_DETECTOR) != detector_type:
 continue
 results.append(input_data)

 21

 return results

 def get_data_name_sets(self):
 ''' return list(set(k)), k is the name in the metadata block'''
 info = self.get_idsinfo()
 return (info.get(KEY_NODE_DENSITY),
 info.get(KEY_DATE_TIME),
 info.get(KEY_ATTACK_TYPE),
 info.get(KEY_ATTACK_NODE),
 info.get(KEY_DETECTOR))

 # ==
 # the above statement = "get_idsinfo().values()"
 # The former is ordered, the latter is not.
 # ==

 # printers()/debuggers() ---
 def print_attack_types(self):
 for attack, data in self.get_attack_types().iteritems():
 print 'AttackType (%s): list(dict[k]) (%d items)' % (attack, len(data))
 def print_metadata(self):
 for metadata in self.get_metadata_list():
 print_dict(metadata)
 def print_idsinfo(self):
 print_dict(self.get_idsinfo())
 def print_name_set(self):
 for name in self.get_name_ set():
 print 'Unique Block Name:', name

 #--
 # preparers -
 #--
 def extract_info(self, data_list):
 metalist= list()
 nameset = set()
 idsinfo = dict() # idsinfo[k]= set()
 for mkey in METADATA_KEYS:
 idsinfo[mkey] = set()
 for data in data_list:
 metadata = data.get(KEY_META)
 for k, v in metadata.iteritems():
 if k not in idsinfo:
 idsinfo[k]= set()
 idsinfo[k].add(v)
 metalist.append(metadata)
 nameset = nameset.union(data.keys())
 return metalist, nameset, idsinfo

 def split_attack_types(self, data_list, idsinfo):
 '''requires: (1) a list of attack types + (2) list of data.'''
 results = dict()
 for attack in idsinfo.get(KEY_ATTACK_TYPE):
 if attack not in results:
 results[attack]= list()

 22

 for data in data_list:
 metadata = data.get(KEY_META)
 if attack == metadata.get(KEY_ATTACK_TYPE):
 results[attack].append(data)
 return results

 def create_index_file(self, dirname, prefix, fname='index.htm'):
 '''create an index file organized according to the information
 described in the metadata block of each data file.
 '''
 #-------------------------------
 def html_hdrs(d):
 title = 'IDS Data Files in [%s] - bnguyen@arl.army.mil' % d
 return '<html><head><title>%s</title></head><body>' % title
 def html_tail(): return '</body></html>'
 #-------------------------------

 fd = open(os.path.join(dirname, 'index.htm'), 'w')
 print >> fd, html_hdrs(dirname)

 results = dict()
 for metadata in self.get_metadata_list():
 for k, v in metadata.iteritems():
 if k == KEY_DATE_TIME:
 continue
 if v not in results:
 results[v]= list()

 if 'win' in sys.platform: #':'-->'_'
 results[v].append(metadata.get(KEY_DATE_TIME).replace(':', '_'))
 else:
 results[v].append(metadata.get(KEY_DATE_TIME))

 for k, v in results.iteritems():
 print >> fd, '<P>%s:' % (k)
 for suffix in v:
 name = prefix+suffix
 print >> fd, '%s ' % (name, name)
 print >> fd, html_tail()
 fd.close()

 #--
 #
 #--

 def read_data(self, datdir, prefix):
 def filter_data(fn):
 try:
 return [s for s in [s.strip() for s in open(fn).readlines()] if len(s) and not
s.startswith(COMMENT_CHAR)]
 except IOError, e:
 print_error(e)
 return list()

 #----------------
 def parse_input(datalist):

 23

 #--
 def list2dict(s):
 return dict([(x[0].strip(), x[1].strip()) for x in
 [x.split(KEY_VAL_SEP) for x in s if KEY_VAL_SEP in x]])
 #---

 results = dict()

blkstart = datalist.index(BLOCK_START) results[KEY_META] = list2dict(
datalist[:blkstart])

 if KEY_DETECTOR in results[KEY_META]: # Sparta -> SPARTA
 results[KEY_META][KEY_DETECTOR] =

 results[KEY_META].get(KEY_DETECTOR).upper()

 blkend = datalist.index(BLOCK_END)
 while True:
 block = list2dict(datalist[blkstart+1:blkend])
 results[block.get(KEY_NAME)] = block
 try:
 blkstart = datalist.index(BLOCK_START, blkend+1)
 blkend = datalist.index(BLOCK_END, blkstart)
 except ValueError:
 break # end of data.

 return results

 #----------------
 # read_data() ---
 #----------------

 if not os.path.isdir(datdir):
 raise SystemExit('<%s> is not a directory or does not exist' % (datdir))

 results = list()

 for fn in glob.glob(os.path.join(datdir, prefix + '*')):
 input_data = filter_data(fn)
 if not input_data: continue
 results.append(parse_input(input_data))

 return results

#==

#==

 24

No. of
Copies Organization

1 ADMNSTR
(ELECT DEFNS TECHL INFO CTR
COPY) ATTN DTIC OCP
 8725 JOHN J KINGMAN RD
 STE 0944
 FT BELVOIR VA 22060-6218

1 DARPA
 ATTN IXO S WELBY
 3701 N FAIRFAX DR
 ARLINGTON VA 22203-1714

1 OFC OF THE SECY OF DEFNS
 ATTN ODDRE (R&AT)
 THE PENTAGON
 WASHINGTON DC 20301-3080

1 US ARMY RSRCH DEV AND
 ENGRG CMND
 ARMAMENT RSRCH DEV AND
 ENGRG CTR ARMAMENT ENGRG
 AND TECHNLGY CTR
 ATTN AMSRD AAR AEF T
 J MATTS
 BLDG 305
 ABERDEEN PROVING GROUND
 MD 21005-5001

1 US ARMY TRADOC
 BATTLE LAB INTEGRATION &
 TECHL DIRCTRT
 ATTN ATCD B
 10 WHISTLER LANE
 FT MONROE VA 23651-5850

1 US ARMY INFO SYS ENGRG CMND
 ATTN AMSEL IE TD F JENIA
 FT HUACHUCA AZ 85613-5300

1 COMMANDER
 US ARMY RDECOM
 ATTN AMSRD AMR
 W C MCCORKLE
 5400 FOWLER RD
 REDSTONE ARSENAL AL
 35898-5000

No. of
Copies Organization

1 US ARMY RSRCH LAB
 ATTN AMSRD ARL CI OK TP
 TECHL LIB T LANDFRIED
 BLDG 4600
 ABERDEEN PROVING GROUND
 MD 21005-5066

1 US GOVERNMENT PRINT OFF
 DEPOSITORY RECEIVING
 SECTION
 ATTN MAIL STOP IDAD J TATE
 732 NORTH CAPITOL ST NW
 WASHINGTON DC 20402

1 DIRECTOR
 US ARMY RSRCH LAB
 ATTN AMSRD ARL RO E
 W D BACH
 PO BOX 12211
 RESEARCH TRIANGLE PARK NC
 27709

7 US ARMY RSRCH LAB
 ATTN AMSRD ARL CI NT
 B NGUYEN
 ATTN AMSRD ARL CI NT
 B RIVERA
 ATTN AMSRD ARL CI NT
 N IVANIC
 ATTN AMSRD ARL CI NT
 R HARDY
 ATTN AMSRD ARL CI OK T
 TECHL PUB
 ATTN AMSRD ARL CI OK T
 TECHL LIB
 ATTN IMNE ALC IMS MAIL &
 RECORDS MGMT
 ADELPHI MD 20783-1197

Total 17 (16 HC and 1 ELECT)

