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1. Introduction 

Materials for many applications relevant to U.S. Army needs, ranging from lubricants to 
nanocomposites, are often designed to attain required viscoelastic properties.  Biomimetic gels as 
tissue-surrogate materials used in designing devices to protect Soldiers against blunt-force 
trauma, the permselective membranes for Soldiers’ protective clothing, elastomeric adhesives for 
composites and armor design, and the design of hypergolic fuel gels to minimize catastrophic 
failures of fuel containers are just a few examples in which viscoelastic properties of materials 
are of critical importance.  A challenge in designing these types of systems is in the large 
parameter space which needs to be explored.  Many variables characterize such polymer 
systems, including molecular weights, compositions, segmental interactions, and more.  As a 
result, it is difficult to anticipate the concomitant changes to material properties and morphology, 
with for example, temperature.  Trial-and-error approaches which rely on laboratory 
measurements are costly and time consuming.  Thus, computational material science has played 
an ever-increasing role in the design of polymeric materials (Andzelm et al., 2006; Lísal et al., 
2006).  The viscoelastic properties of polymer systems depend on morphologies and structures 
that span over length and time scales which are inaccessible by molecular modeling.  Therefore, 
coarse-grained, particle-based mesoscale models that retain only the most essential features of 
the polymer system must be utilized. 

In this report, we outline a computational protocol that invokes a particle-based mesoscale 
method, dissipative particle dynamics (DPD) (Hoogerbrugge and Koelman, 1992; Koelman and 
Hoogerbrugge, 1993), to simulate the viscoelastic properties of various polymer systems (Sen et 
al., 2005; Pryamitsyn and Ganesan, 2006).  This tool will be invaluable to U.S. Army scientists 
in accelerating the design of materials with superior viscoelastic properties.  In section 2, a brief 
overview of the dissipative particle dynamics method is given, followed by a description of the 
approach to calculate the viscoelastic properties using an oscillatory shear technique (Pryamitsyn 
and Ganesan, 2006) in section 3, followed by conclusions in section 4. 

 

2. Dissipative Particle Dynamics 

The DPD method is a mesoscale simulation technique that operates at time and length scales 
larger than those of traditional molecular dynamics, but for situations that are inaccessible to 
continuum dynamics (Hoogerbrugge and Koelman, 1992; Koelman and Hoogerbrugge, 1993).  
A DPD system is composed of soft particles, each representing a region of fluid, which moves 
continuously in space and discretely in time.  In a DPD simulation, the polymer chain is modeled 
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as a collection of point particles that represent lumps of the chain containing several segments.  
DPD particles are defined by a mass mi, ri, and velocity vi, and interact with each other via a 
pairwise, two-body, short-ranged force F that is written as the sum of a conservative force FC, 
dissipative force FD, and random force FR: 

 C D R
ij ij ij ijF F F F    . (1) 

FC includes a soft repulsion force FCr acting between two particles and a harmonic spring force 
FCs acting between adjacent particles in a polymer chain.  Therefore, the DPD polymer chains 
are flexible since no additional constraints such as bond bending or bond torsion are included.  
FCr and FCs are given by 
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and 
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The remaining two forces, FD and FR, are given by 
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and
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   ij ijR R
ij ij

ij

ξ r
F = σω r ,

rΔt
 (7) 

where  Dω r  and  Rω r  are weight functions that vanish for cr ³ r ,  is the friction coefficient,  

is the noise amplitude, ij i jv = v – v ,  ijξ is the Gaussian random number with zero mean and unit 

variance that is chosen independently for each pair of interacting particles, and t is the time 
step. 

Español and Warren (1995) showed that the system samples the canonical ensemble and obeys 
the fluctuation-dissipation theorem (in the limit of t→0) if the following relations hold: 

     2D Rω r = ω r   , (8) 

and 

 2
Bσ = 2γk T , (9) 

where T is the temperature and kB is Boltzmann’s constant.   Dω r  and  Rω r  are typically 

chosen as 
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The evolution of DPD particles in time t is governed by Newton’s equations of motion: 

  i
i

dr
v (t)

dt
 , (11) 

and 

  D Ri
i ij ij ij

i j

dv
m f (t) F F F

dt 

    C
i . (12) 

For a more detailed description, see the original papers (Hoogerbrugge and Koelman, 1992; 
Koelman and Hoogerbrugge, 1993). 
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3. Viscoelastic Property Calculations 

The substantial effort underway to develop materials for U.S. Army applications with improved 
thermal and environmental stability and tunable viscoelastic properties require a broad range of 
strain rates (100−105/s) and elastic moduli (0.1−2.6 MPa).  Therefore, the theoretical methods 
which we propose must account for distinct physico-chemical processes occurring at vastly 
different strain rates.  Both the measurements and calculations that attempt to characterize the 
dynamic mechanical properties use a relationship between the applied strain and the resulting 
stress in the material (Ferry, 1980).  When the viscoelastic material is subjected to oscillatory 
strains, , of frequency ω, the stress response, σ, is necessarily cyclic and can be written as  
σ(ω) = G΄΄(ω) (ω), where  G΄΄(ω) = G΄ + iωη and η is the viscosity.  The storage modulus, G΄, 
indicates the material’s ability to store energy and the imaginary part of G΄΄(ω), the loss 
modulus, ωη, characterizes the amount of energy lost through the viscous process.  Simulations 
can be used to determine which parameters govern the viscoelastic behavior of polymer systems, 
delineating the regimes and frequencies at which various effects (e.g., polymer chain length) are 
manifested. 

The viscoelastic properties are calculated using a non-equilibrium oscillatory shear technique 
(Allen and Tildesley, 1987), which entails a simulation with an additional force in the shear 
direction along with time-dependent Lees-Edwards boundary conditions (Lees and Edwards, 
1972).  For oscillatory shear imposed in the xy-plane, the equation of motion for the particle 
velocities become 

 
2

2 )(

dt

td
rmf

dt

dv
m yix

x
i


ii

i   . (13) 

The oscillatory strain can be taken as  ) cos(1)( tAt    , where A and  are the chosen 

values of the amplitude and frequency, respectively.  For the Lees-Edwards boundary conditions, 
the simulation box and its images centered at (x,y) = (±L,0), (±2L,0), ... are taken to be stationary.  
Boxes in the layer above, (x,y) = (0,L), (±L,L), (±2L,L), ... are moving at a speed L in the 
positive x-direction, where  is the shear rate.  Boxes in the layer below, (x,y) = (0,−L), (±L,−L), 
(±2L,−L), ... move at a speed L in the negative x-direction. 

Following equilibration of the structure, a series of stress trajectories are generated by imposing 
the oscillatory shear conditions.  A sample output for a diblock copolymer system is given in 
figure 1.  Note that numerical errors tend to be higher at low frequencies requiring averaging 
over more stress trajectories to minimize these errors. 
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Figure 1.  Sample output for a model diblock copolymer system which has microphase 
separated in spherical domains. 

 

4. Conclusions 

In this report, we have reviewed a computational method to calculate the viscoelastic properties 
of polymeric systems. We have used the DPD method and the non-equilibrium oscillatory shear 
technique as implemented in the code by Pryamitsyn and Ganesan to calculate the storage and 
loss moduli of the diblock copolymer.  Such capability will be an invaluable tool for assisting 
material scientists in accelerating the design of materials with superior viscoelastic properties.  
Numerous U.S. Army applications such as multifunctional materials, coatings, hypergolic fuel 
gels, and elastomeric adhesives will greatly benefit from this tool. 
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