Development of a Ballistic Specification for Magnesium Alloy AZ31B

by Tyrone L. Jones and Richard D. DeLorme
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.
Development of a Ballistic Specification for Magnesium Alloy AZ31B

Tyrone L. Jones
Weapons and Materials Research Directorate, ARL

Richard D. DeLorme
Magnesium Elektron North America, Inc.
1. REPORT DATE (DD-MM-YYYY)
December 2008

2. REPORT TYPE
Final

3. DATES COVERED (From - To)
June 2007–July 2008

4. TITLE AND SUBTITLE
Development of a Ballistic Specification for Magnesium Alloy AZ31B

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER
1L162618AH80

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)
Tyrone L. Jones and Richard D. DeLorme*

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Army Research Laboratory
ATTN: AMSRD-ARL-WM-TA
Aberdeen Proving Ground, MD 21005-5069

7. PERFORMING ORGANIZATION REPORT NUMBER
ARL-TR-4664

8. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
*Magnesium Elektron North America, Inc., 1001 College St., Madison, IL 62060

14. ABSTRACT
The U.S. Army Research Laboratory (ARL) and Magnesium Elektron North America (MENA) have conducted a joint effort to develop and evaluate rolled plate in commercially available magnesium alloy-temper AZ31B-H24. MENA produced the rolled product and conducted the mechanical analysis, while ARL performed the ballistic analysis. The magnesium alloy plates were parametrically compared with the minimum performance requirements of aluminum alloy 5083-H131 temper rolled plate using various armor-piercing and fragment-simulating projectiles (FSPs). The ballistic results and comparisons are presented herein. The yield strength of AZ31B-H24 is the dominant mechanical property that will improve the performance at increased weights.

15. SUBJECT TERMS
magnesium, aluminum, AZ31B, 5083, ballistic performance, military specification, protection

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNCLASSIFIED</td>
<td>UNCLASSIFIED</td>
<td>UNCLASSIFIED</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
UL

18. NUMBER OF PAGES
52

19a. NAME OF RESPONSIBLE PERSON
Tyrone L. Jones

19b. TELEPHONE NUMBER (Include area code)
410-278-6223

Standard Form 298 (Rev. 8/98)

Prescribed by ANSI Std. Z39.18
Contents

List of Figures iv
List of Tables v
Acknowledgments vi
1. Background 1
2. Chemical Composition 1
3. Mechanical Properties 2
4. Terminal Ballistic Evaluation 5
5. Experimental Results 5
6. Discussion and Conclusion 11
7. References 12
Appendix A. Post-Ballistic Pictures 13
Appendix B. Fragment-Simulating Projectile (FSP) Data for Post-Ballistic Pictures 21
Appendix C. APM2 Projectile Data for Post-Ballistic Pictures 27
Distribution List 34
List of Figures

Figure 1. UTS – AZ31B-H24 vs. 5083-H131. ...3
Figure 2. TYS – AZ31B-H24 vs. 5083-H131. ...3
Figure 3. Percent elongation – AZ31B-H24 vs. 5083-H131. ..3
Figure 4. Specific UTS – AZ31B-H24 vs. 5083-H131. ...4
Figure 5. Specific TYS – AZ31B-H24 vs. 5083-H131. ..5
Figure 6. Diagrams of 0.30-cal. APM2 projectile (upper) and 0.50-cal. APM2 projectile (lower). ...6
Figure 7. Diagram of 0.50-cal. FSP and 20-mm FSP. ..6
Figure 8. A 0.30-cal. APM2 performance comparison by areal density.7
Figure 9. A 0.50-cal. APM2 performance comparison by areal density.7
Figure 10. A 0.50-cal. FSP performance comparison by areal density.8
Figure 11. A 20-mm FSP performance comparison by areal density.8
Figure 12. A 0.30-cal. APM2 performance comparison by plate thickness.9
Figure 13. A 0.50-cal. APM2 performance comparison by plate thickness.9
Figure 14. A 0.50-cal. FSP performance comparison by plate thickness.10
Figure 15. A 20-mm FSP performance comparison by plate thickness.10
Figure A-1. The 1-in AZ31B-H24. ...14
Figure A-2. The 1.5-in AZ31B-H24. ..15
Figure A-3. The 2.0-in AZ31B-H24. ..16
Figure A-4. The 2.5-in AZ31B-H24. ..17
Figure A-5. The 3.0-in AZ31B-H24: 0.50-cal. APM2 impacts18
Figure A-6. The 3.5- and 4.0-in AZ31B-H24: 0.50-cal. APM2 impacts.19
List of Tables

Table 1. Magnesium alloy AZ31B chemical composition limits (weight-percent) 1
Table 2. Aluminum alloy 5083 chemical composition limits (weight-percent). 1
Table 3. Typical Mg AZ31B-H24 plate tensile properties ... 2
Table 4. Typical Al 5083-H131 plate tensile properties ... 2
Table 5. Typical Mg AZ31B-H24 plate specific strength .. 4
Table 6. Typical Al 5083-H131 plate specific strength ... 4
Acknowledgments

The development of these aluminum alloy armor solutions were performed with assistance from the following technicians: Donnie Little, Vaughn Torbert, and Shawn Thomas for the testing of these plates against armor-piercing projectiles and fragment-simulating projectiles.
1. Background

The U.S. Army is interested in providing greater ballistic protection at lower weight; thus, magnesium-based alloys are currently of interest because the density of magnesium (~1.77 g/cm³) is ~35% lower than aluminum (~2.68 g/cm³) and ~77% lower than steel (I).

In general, there is a positive correlation between tensile strength and small arms ballistic performance in metal alloys. Although the tensile strength of rolled magnesium alloys is traditionally lower than that of rolled aluminum armor alloys, magnesium may possess other unique characteristics, including superior vibration damping and differences in failure mechanisms, that could provide for improved relative ballistic performance (2).

The data generated in this manuscript will be used to develop the ballistic specification for magnesium alloy AZ31B.

2. Chemical Composition

The chemical composition limits of magnesium alloy AZ31B are listed in table 1, as specified by the commercial material specification AMS-4377H (3). The chemical composition limits of aluminum alloy 5083 are listed in table 2 per military material specification MIL-DTL-46027K (MR) (4).

Table 1. Magnesium alloy AZ31B chemical composition limits (weight-percent).

<table>
<thead>
<tr>
<th></th>
<th>Al</th>
<th>Zn</th>
<th>Mn</th>
<th>Si</th>
<th>Cu</th>
<th>Ca</th>
<th>Fe</th>
<th>Ni</th>
<th>Others Each</th>
<th>Others Total</th>
<th>Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max.</td>
<td>3.5</td>
<td>1.3</td>
<td>—</td>
<td>0.05</td>
<td>0.05</td>
<td>0.04</td>
<td>0.005</td>
<td>0.005</td>
<td>0.10</td>
<td>0.30</td>
<td>Balance</td>
</tr>
<tr>
<td>Min.</td>
<td>2.5</td>
<td>0.7</td>
<td>0.20</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 2. Aluminum alloy 5083 chemical composition limits (weight-percent).

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>Fe</th>
<th>Cu</th>
<th>Mn</th>
<th>Mg</th>
<th>Cr</th>
<th>Zn</th>
<th>Ti</th>
<th>Others Each</th>
<th>Others Total</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max.</td>
<td>0.40</td>
<td>0.40</td>
<td>0.10</td>
<td>1.2</td>
<td>4.9</td>
<td>0.25</td>
<td>0.25</td>
<td>0.15</td>
<td>0.05</td>
<td>0.15</td>
<td>Balance</td>
</tr>
<tr>
<td>Min.</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.40</td>
<td>4.0</td>
<td>0.05</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
3. Mechanical Properties

Magnesium Elektron North America provided typical tensile properties of rolled AZ31B-H24 magnesium plate and rolled 5083-H131 aluminum alloy plate. These mechanical properties were accumulated in a database of rolled plate produced at its Madison, IL, facility over a 7-year period. All plates were manufactured in accordance with ASTM-B90 (5) and/or AMS-4377 (AZ31B-H24) and MIL-A/DTL-46027K (5083-H131) (6). This historical data is presented in tabular format in tables 3 and 4 and in graphical format in figures 1–3.

Table 3. Typical Mg AZ31B-H24 plate tensile properties.

<table>
<thead>
<tr>
<th>Thickness Range</th>
<th>Ultimate Tensile Strength (ksi)</th>
<th>Tensile Yield Strength (ksi)</th>
<th>Elongation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.376–0.500</td>
<td>39.2</td>
<td>25.6</td>
<td>14.4</td>
</tr>
<tr>
<td>0.501–0.750</td>
<td>38.6</td>
<td>24.4</td>
<td>13.5</td>
</tr>
<tr>
<td>0.751–1.000</td>
<td>38.4</td>
<td>24.0</td>
<td>13.1</td>
</tr>
<tr>
<td>1.001–1.500</td>
<td>38.2</td>
<td>24.3</td>
<td>12.5</td>
</tr>
<tr>
<td>1.501–2.500</td>
<td>38.3</td>
<td>24.6</td>
<td>11.9</td>
</tr>
<tr>
<td>2.501–3.500</td>
<td>37.9</td>
<td>24.0</td>
<td>11.1</td>
</tr>
</tbody>
</table>

Table 4. Typical Al 5083-H131 plate tensile properties.

<table>
<thead>
<tr>
<th>Thickness Range</th>
<th>Ultimate Tensile Strength (ksi)</th>
<th>Tensile Yield Strength (ksi)</th>
<th>Elongation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.376–0.500</td>
<td>50.4</td>
<td>42.5</td>
<td>13.4</td>
</tr>
<tr>
<td>0.501–0.750</td>
<td>51.2</td>
<td>42.6</td>
<td>12.7</td>
</tr>
<tr>
<td>0.751–1.000</td>
<td>51.5</td>
<td>45.0</td>
<td>10.1</td>
</tr>
<tr>
<td>1.001–1.500</td>
<td>50.9</td>
<td>43.9</td>
<td>10.1</td>
</tr>
<tr>
<td>1.501–2.500</td>
<td>50.2</td>
<td>42.5</td>
<td>10.9</td>
</tr>
<tr>
<td>2.501–3.500</td>
<td>48.1</td>
<td>39.1</td>
<td>13.8</td>
</tr>
</tbody>
</table>

While the AZ31B-H24 and 5083-H131 exhibit similar ductility (% elongation), the 5083-H131 is superior in ultimate tensile strength (UTS) by 10–12 ksi (69–83 MPa) and in tensile yield strength (TYS) by 15–19 ksi (103–131 MPa). However, as shown in tables 5 and 6 and in figures 4 and 5, the specific strength of AZ31B-H24 is superior to 5083-H131 in specific UTS and approaching 5083-H131 in specific TYS. Then, based on the positive general correlation between tensile properties and ballistic performance, one might predict a similar relationship in terminal ballistic performance between rolled AZ31B-H24 plate and rolled 5083-H131 plate. Clearly, the relatively lower specific TYS may reduce fragment-simulating projectile (FSP) performance.
Figure 1. UTS – AZ31B-H24 vs. 5083-H131.

Figure 2. TYS – AZ31B-H24 vs. 5083-H131.

Figure 3. Percent elongation – AZ31B-H24 vs. 5083-H131.
Table 5. Typical Mg AZ31B-H24 plate specific strength.

<table>
<thead>
<tr>
<th>Thickness Range</th>
<th>Specific Ultimate Tensile Strength (ksi·cu in/lb)</th>
<th>Specific Tensile Yield Strength (ksi·cu in/lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.376–0.500</td>
<td>613</td>
<td>399</td>
</tr>
<tr>
<td>0.501–0.750</td>
<td>602</td>
<td>380</td>
</tr>
<tr>
<td>0.751–1.000</td>
<td>600</td>
<td>375</td>
</tr>
<tr>
<td>1.001–1.500</td>
<td>597</td>
<td>380</td>
</tr>
<tr>
<td>1.501–2.500</td>
<td>598</td>
<td>384</td>
</tr>
<tr>
<td>2.501–3.500</td>
<td>592</td>
<td>375</td>
</tr>
</tbody>
</table>

Table 6. Typical Al 5083-H131 plate specific strength.

<table>
<thead>
<tr>
<th>Thickness Range</th>
<th>Specific Ultimate Tensile Strength (ksi·cu in/lb)</th>
<th>Specific Tensile Yield Strength (ksi·cu in/lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.376–0.500</td>
<td>520</td>
<td>438</td>
</tr>
<tr>
<td>0.501–0.750</td>
<td>528</td>
<td>439</td>
</tr>
<tr>
<td>0.751–1.000</td>
<td>530</td>
<td>463</td>
</tr>
<tr>
<td>1.001–1.500</td>
<td>524</td>
<td>452</td>
</tr>
<tr>
<td>1.501–2.500</td>
<td>517</td>
<td>438</td>
</tr>
<tr>
<td>2.501–3.500</td>
<td>495</td>
<td>403</td>
</tr>
</tbody>
</table>

Figure 4. Specific UTS – AZ31B-H24 vs. 5083-H131.
4. Terminal Ballistic Evaluation

Ballistic testing of all rolled AZ31B-H24 magnesium plate samples was performed by the U.S. Army Research Laboratory (ARL) at Aberdeen Proving Ground, MD, in accordance with MIL-STD-662F (7). Ballistic results were characterized using the standard V₅₀ test methodology, also documented in MIL-STD-662F. The ballistic projectiles were selected for each nominal plate thickness as specified by the 5083-H131 armor material specification MIL-DTL-46027K (MR). The specific projectiles used to evaluate the magnesium alloy plates were the 0.30-cal. APM2 and the 0.50-cal. APM2, depicted in figure 6, and 0.50-cal. and 20-mm FSP, depicted in figure 7. The APM2 projectiles used were standard production, while the FSPs used were produced in accordance with MIL-DTL-46593B (MR) (8).

5. Experimental Results

The rolled plate of AZ31B-H24 and 5083-H131 was evaluated on an equivalent weight (i.e., areal density) basis. The AZ31B-H24 ballistic results vs. areal density are displayed in figures 8–11, and the same results vs. plate thickness are displayed in figures 12–15. See appendices A–C for AZ31B-H24 plate post-ballistic pictures and data at various thicknesses. The 5083-H131 data points in these figures are the minimum ballistic limit requirements per military material specification MIL-DTL-46027K (MR).
Figure 6. Diagrams of 0.30-cal. APM2 projectile (upper) and 0.50-cal. APM2 projectile (lower).

d = 0.50-cal FSP Mass = 13.4 g, Steel, R_c = 29-3

d = 20mm FSP Mass = 53.8 g, Steel, R_c = 29-31

Figure 7. Diagram of 0.50-cal. FSP and 20-mm FSP.
Figure 8. A 0.30-cal. APM2 performance comparison by areal density.

Figure 9. A 0.50-cal. APM2 performance comparison by areal density.
Figure 10. A 0.50-cal. FSP performance comparison by areal density.

Figure 11. A 20-mm FSP performance comparison by areal density.
Figure 12. A 0.30-cal. APM2 performance comparison by plate thickness.

Figure 13. A 0.50-cal. APM2 performance comparison by plate thickness.
Figure 14. A 0.50-cal. FSP performance comparison by plate thickness.

Figure 15. A 20-mm FSP performance comparison by plate thickness.
6. Discussion and Conclusion

On an equivalent weight basis, AZ31B-H24 plate performed just above (against the 0.30 cal.) or just below (against the 0.50 cal.) the 5083-H131 APM2 minimum ballistic performance limits, while its performance against the specified FSP was thickness-dependent (i.e., the lower thickness plate passed handily while the thicker plate fell short of the minimum requirements). These results indicate that rolled AZ31B-H24 magnesium plate may be an effective substitution for 5083-H131 against armor-piercing projectiles on an equivalent weight basis. Of course, weight-neutral AZ31B-H24 plate would be 50% thicker than the 5083-H131 it might replace, which would require consideration during the design of any armor system.

On a plate-thickness basis, the V50 AZ31B-H24 fell ~300 fps lower than the 5083-H131 minima against the armor-piercing projectiles and fell ~1000 fps short against the FSPs. This would indicate that the relatively lower TYS of AZ31B-H24 plate as compared to 5083-H131 plate might play a role in predicting the difference in terminal ballistic resistance between the materials compared. Therefore, further development of higher strength wrought magnesium alloys might reduce or close the performance gap between magnesium alloy and aluminum alloy plates.

An AZ31B-H24 armor material specification guide is expected to be completed in the near future. This guide will serve as a baseline for any future developments of magnesium alloys for armor.
7. References

3. AMS 4377H. Magnesium Alloy, Sheet and Plate 3.0Al - 1.0Zn - 020Mn (AZ31B-H24) Cold Rolled, Partially Annealed; Society of Automotive Engineers International: Warrendale, PA, 1 September 2005.

8. MIL-DTL-46593B (MR). *Projectile, Calibers 0.22, 0.30, 0.50, and 20 MM Fragment-Simulating* 2006.
Appendix A. Post-Ballistic Pictures
Figure A-1. The 1-in AZ31B-H24.
Figure A-2. The 1.5-in AZ31B-H24.
Figure A-3. The 2.0-in AZ31B-H24.
Figure A-4. The 2.5-in AZ31B-H24.
Figure A-5. The 3.0-in AZ31B-H24: 0.50-cal. APM2 impacts.
Figure A-6. The 3.5- and 4.0-in AZ31B-H24: 0.50-cal. APM2 impacts.
Appendix B. Fragment-Simulating Projectile (FSP) Data for Post-Ballistic Pictures*

List of Definitions and Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>Complete penetration; penetrator/target material exits rear surface of target.</td>
</tr>
<tr>
<td>PIP</td>
<td>Penetrator in plate; penetrator lodged in impact crater.</td>
</tr>
<tr>
<td>Pitch</td>
<td>Attitude of projectile in the vertical direction.</td>
</tr>
<tr>
<td>PP</td>
<td>Partial penetration; the penetrator is defeated by the target.</td>
</tr>
<tr>
<td>Plug</td>
<td>Target material ejected off rear of the plate.</td>
</tr>
<tr>
<td>Result</td>
<td>Result of shot; CP or PP.</td>
</tr>
<tr>
<td>Striking Velocity</td>
<td>Velocity of the projectile just before it impacts the target.</td>
</tr>
<tr>
<td>TP</td>
<td>Tip protruding out the back of the target.</td>
</tr>
<tr>
<td>Yaw</td>
<td>Attitude of projectile in the horizontal direction.</td>
</tr>
</tbody>
</table>

*The charts in this appendix appear in their original form, without editorial change.
Target: Magnesium AZ31B-H24
Plate #: --
Lot#: --
Thickness: 25.019mm 0.985"

Hardness: 57 BHN on 500kg scale
Obliquity: 0°
Projectile: .50 cal FSP

Setup: Mg-Air(6")-AL 2024(0.020")

<table>
<thead>
<tr>
<th>V50:</th>
<th>shots:</th>
</tr>
</thead>
<tbody>
<tr>
<td>507 m/s</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Std Dev:</th>
<th>Spread:</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 m/s</td>
<td>24 m/s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZMR:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Striking Velocity (m/s)</th>
<th>Pitch (deg)</th>
<th>Yaw (deg)</th>
<th>Result</th>
<th>Used for V50</th>
<th>Comments</th>
<th>Shot</th>
</tr>
</thead>
<tbody>
<tr>
<td>639</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>No</td>
<td>--</td>
<td>5070</td>
</tr>
<tr>
<td>519</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>Yes</td>
<td>--</td>
<td>5071</td>
</tr>
<tr>
<td>417</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>No</td>
<td>--</td>
<td>5072</td>
</tr>
<tr>
<td>479</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>No</td>
<td>--</td>
<td>5073</td>
</tr>
<tr>
<td>511</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>Yes</td>
<td>--</td>
<td>5074</td>
</tr>
<tr>
<td>456</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>No</td>
<td>--</td>
<td>5075</td>
</tr>
<tr>
<td>448</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>No</td>
<td>--</td>
<td>5076</td>
</tr>
<tr>
<td>495</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>Yes</td>
<td>--</td>
<td>5077</td>
</tr>
<tr>
<td>441</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>No</td>
<td>--</td>
<td>5078</td>
</tr>
<tr>
<td>498</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>Yes</td>
<td>--</td>
<td>5081</td>
</tr>
<tr>
<td>470</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>No</td>
<td>--</td>
<td>5082</td>
</tr>
<tr>
<td>498</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>Yes</td>
<td>--</td>
<td>5083</td>
</tr>
<tr>
<td>518</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>Yes</td>
<td>--</td>
<td>5084</td>
</tr>
</tbody>
</table>
Target: Magnesium AZ31B-H24 9-May-06
Plate #: -- EF108
Lot#: --
Thickness: 38.735mm 1.525 "

Hardness: 61 BHN on 500kg scale
Obliquity: 0°
Projectile: .50 cal FSP

Setup: Mg-Air(6")-AL 2024(0.020")

<table>
<thead>
<tr>
<th>V50: 742 m/s</th>
<th># shots: 6</th>
<th>Std Dev: 9 m/s</th>
<th>Spread: 27 m/s</th>
</tr>
</thead>
</table>

<p>| Striking Pitch Yaw Result Used Comments Shot |
|----------------|----------------|----------------|----------------|</p>
<table>
<thead>
<tr>
<th>Velocity (m/s)</th>
<th>(deg)</th>
<th>(deg)</th>
<th>(PP/CP)</th>
<th>for V50</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>630</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>No</td>
<td>--</td>
</tr>
<tr>
<td>729</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>No</td>
<td>--</td>
</tr>
<tr>
<td>764</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>No</td>
<td>--</td>
</tr>
<tr>
<td>738</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>Yes</td>
<td>--</td>
</tr>
<tr>
<td>762</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>No</td>
<td>--</td>
</tr>
<tr>
<td>746</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>Yes</td>
<td>--</td>
</tr>
<tr>
<td>738</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>Yes</td>
<td>--</td>
</tr>
<tr>
<td>757</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>Yes</td>
<td>--</td>
</tr>
<tr>
<td>720</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>No</td>
<td>--</td>
</tr>
<tr>
<td>730</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>Yes</td>
<td>--</td>
</tr>
<tr>
<td>745</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>Yes</td>
<td>--</td>
</tr>
</tbody>
</table>
Target: Magnesium AZ31B-H24 4-Jun-07
Plate #: ASTM B90-98 EF108
Lot#: --
Thickness: 38.74mm 1.525 "

Hardness: 61 BHN on 500kg scale
Obliquity: 0°
Projectile: 20mm FSP

Setup: Mg-Air(6")-AL 2024(0.020")

<table>
<thead>
<tr>
<th>Striking Velocity (m/s)</th>
<th>Pitch (deg)</th>
<th>Yaw (deg)</th>
<th>Result</th>
<th>Used for V50</th>
<th>Comments</th>
<th>Shot</th>
</tr>
</thead>
<tbody>
<tr>
<td>773</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>No</td>
<td>--</td>
<td>5163</td>
</tr>
<tr>
<td>485</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>Yes</td>
<td>--</td>
<td>5164</td>
</tr>
<tr>
<td>472</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>Yes</td>
<td>--</td>
<td>5165</td>
</tr>
<tr>
<td>476</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>Yes</td>
<td>--</td>
<td>5166</td>
</tr>
<tr>
<td>476</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>Yes</td>
<td>--</td>
<td>5167</td>
</tr>
</tbody>
</table>

V50: 477 m/s shots: 4
Std Dev: 6 m/s Spread: 13 m/s
ZMR: 0

shots: 4

Std Dev: 6 m/s Spread: 13 m/s
Target: Magnesium AZ31B-H24 5-Jun-07
Plate #: ASTM B90-98 EF108
Lot#: --
Thickness: 49.73mm 1.958 "

Hardness: 55 BHN on 500kg scale
Obliquity: 0°
Projectile: 20mm FSP

Setup: Mg-Air(6")-AL 2024(0.020")

<table>
<thead>
<tr>
<th>V50:</th>
<th>576 m/s</th>
<th># shots:</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std Dev:</td>
<td>7 m/s</td>
<td>Spread:</td>
<td>15 m/s</td>
</tr>
<tr>
<td>ZMR:</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Striking Velocity (m/s)</th>
<th>Pitch (deg)</th>
<th>Yaw (deg)</th>
<th>Result</th>
<th>Used for V50</th>
<th>Comments</th>
<th>Shot #</th>
</tr>
</thead>
<tbody>
<tr>
<td>540</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>No</td>
<td>--</td>
<td>5176</td>
</tr>
<tr>
<td>549</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>No</td>
<td>--</td>
<td>5177</td>
</tr>
<tr>
<td>585</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>Yes</td>
<td>--</td>
<td>5178</td>
</tr>
<tr>
<td>569</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>No</td>
<td>--</td>
<td>5179</td>
</tr>
<tr>
<td>567</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>No</td>
<td>--</td>
<td>5180</td>
</tr>
<tr>
<td>574</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>Yes</td>
<td>--</td>
<td>5181</td>
</tr>
<tr>
<td>573</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>Yes</td>
<td>--</td>
<td>5182</td>
</tr>
<tr>
<td>572</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>No</td>
<td>--</td>
<td>5183</td>
</tr>
<tr>
<td>569</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>No</td>
<td>--</td>
<td>5184</td>
</tr>
<tr>
<td>570</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>Yes</td>
<td>--</td>
<td>5185</td>
</tr>
</tbody>
</table>
Target: Magnetesium AZ31B-H24 11-Jun-07
Plate #: ASTM B90-98 EF108
Lot#:
Thickness: 63.119mm 2.485 "

Hardness: 61 BHN on 500kg scale
Obliquity: 0°
Projectile: 20mm FSP
Setup: Mg-Air(6")-AL2024(0.020")

<table>
<thead>
<tr>
<th>V50: 735 m/s</th>
<th># shots: 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std Dev: 4 m/s</td>
<td>Spread: 9 m/s</td>
</tr>
<tr>
<td>ZMR: 3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Striking Pitch Yaw Result Used Comments Shot</th>
<th>Velocity (m/s)</th>
<th>Pitch (deg)</th>
<th>Yaw (deg)</th>
<th>Result (PP/CP)</th>
<th>Shot #</th>
</tr>
</thead>
<tbody>
<tr>
<td>834 -- -- CP No -- 5186</td>
<td>834</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>No</td>
</tr>
<tr>
<td>816 -- -- CP No -- 5187</td>
<td>816</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>No</td>
</tr>
<tr>
<td>806 -- -- CP No -- 5188</td>
<td>806</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>No</td>
</tr>
<tr>
<td>768 -- -- CP No -- 5189</td>
<td>768</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>No</td>
</tr>
<tr>
<td>714 -- -- PP No -- 5190</td>
<td>714</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>No</td>
</tr>
<tr>
<td>731 -- -- CP Yes -- 5191</td>
<td>731</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>Yes</td>
</tr>
<tr>
<td>723 -- -- PP No -- 5192</td>
<td>723</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>No</td>
</tr>
<tr>
<td>734 -- -- PP Yes -- 5193</td>
<td>734</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>Yes</td>
</tr>
<tr>
<td>733 -- -- PP Yes -- 5194</td>
<td>733</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>Yes</td>
</tr>
<tr>
<td>740 -- -- CP Yes -- 5195</td>
<td>740</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Appendix C. APM2 Projectile Data for Post-Ballistic Pictures*

List of Definitions and Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>Complete penetration; penetrator/target material exits rear surface of target.</td>
</tr>
<tr>
<td>PIP</td>
<td>Penetrator in plate; penetrator lodged in impact crater.</td>
</tr>
<tr>
<td>Pitch</td>
<td>Attitude of projectile in the vertical direction.</td>
</tr>
<tr>
<td>PP</td>
<td>Partial penetration; the penetrator is defeated by the target.</td>
</tr>
<tr>
<td>Plug</td>
<td>Target material ejected off rear of the plate.</td>
</tr>
<tr>
<td>Result</td>
<td>Result of shot; CP or PP.</td>
</tr>
<tr>
<td>Striking Velocity</td>
<td>Velocity of the projectile just before it impacts the target.</td>
</tr>
<tr>
<td>TP</td>
<td>Tip protruding out the back of the target.</td>
</tr>
<tr>
<td>Yaw</td>
<td>Attitude of projectile in the horizontal direction.</td>
</tr>
</tbody>
</table>

*The charts in this appendix appear in their original form, without editorial change.
Target: Magnesium AZ31B-H24 20-Apr-06
Plate #: -- EF106
Lot#: --
Thickness: 38.74mm 1.525 "

Hardness: 61 BHN on 500kg scale
Obliquity: 0°
Projectile: .30 cal APM2

Setup: Mg-Air(6")-AL 2024(0.020")

<table>
<thead>
<tr>
<th>V50: (m/s)</th>
<th>shots:</th>
<th># shots</th>
</tr>
</thead>
<tbody>
<tr>
<td>579</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Std Dev: (m/s)</th>
<th>Spread: (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>11</td>
</tr>
</tbody>
</table>

ZMR: 0

<table>
<thead>
<tr>
<th>Striking Velocity (m/s)</th>
<th>Pitch (deg)</th>
<th>Yaw (deg)</th>
<th>Result</th>
<th>Used for V50</th>
<th>Comments</th>
<th>Shot #</th>
</tr>
</thead>
<tbody>
<tr>
<td>584</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>Yes</td>
<td>--</td>
<td>5561</td>
</tr>
<tr>
<td>543</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>No medium bulge</td>
<td>5562</td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>No medium bulge with crack</td>
<td>5563</td>
<td></td>
</tr>
<tr>
<td>564</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>No large bulge with cracks: PIP, TP</td>
<td>5564</td>
<td></td>
</tr>
<tr>
<td>574</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>Yes PIP, TP</td>
<td>5565</td>
<td></td>
</tr>
<tr>
<td>584</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>Yes</td>
<td>--</td>
<td>5566</td>
</tr>
<tr>
<td>573</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>Yes PP, TP</td>
<td>5567</td>
<td></td>
</tr>
</tbody>
</table>
Target: Magnesium AZ31B-H24
Plate #: --
Lot#: --
Thickness: 49.73mm 1.958 "

Hardness: 61 BHN on 500kg scale
Obliquity: 0°
Projectile: .30 cal APM2

Setup: Mg-Air(6")-AL 2024(0.020")

<table>
<thead>
<tr>
<th>V50:</th>
<th>687 m/s</th>
<th>shots: 4</th>
<th>Std Dev: 8 m/s</th>
<th>Spread: 18 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZMR:</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Striking Velocity (m/s)</th>
<th>Pitch (deg)</th>
<th>Yaw (deg)</th>
<th>Result</th>
<th>Used for V50</th>
<th>Comments</th>
<th>Shot</th>
</tr>
</thead>
<tbody>
<tr>
<td>729</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>No</td>
<td>--</td>
<td>5568</td>
</tr>
<tr>
<td>698</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>No</td>
<td>--</td>
<td>5569</td>
</tr>
<tr>
<td>658</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>No</td>
<td>PIP, TP</td>
<td>5570</td>
</tr>
<tr>
<td>665</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>No</td>
<td>PIP, TP</td>
<td>5571</td>
</tr>
<tr>
<td>662</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>No</td>
<td>large bulge with cracks</td>
<td>5572</td>
</tr>
<tr>
<td>676</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>Yes</td>
<td>large bulge with cracks</td>
<td>5573</td>
</tr>
<tr>
<td>684</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>Yes</td>
<td>Hole in target; dent in witness</td>
<td>5574</td>
</tr>
<tr>
<td>693</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>Yes</td>
<td>--</td>
<td>5575</td>
</tr>
<tr>
<td>694</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>Yes</td>
<td>--</td>
<td>5576</td>
</tr>
</tbody>
</table>
Target: Magnesium AZ31B-H24 25-Apr-06
Plate #: -- EF106
Lot#: --
Thickness: 63.5mm 2.485 "

Hardness: 61 BHN on 500kg scale
Obliquity: 0°
Projectile: .30 cal APM2

Setup: Mg-Air(6")-AL 2024(0.020")

<table>
<thead>
<tr>
<th>Striking Velocity (m/s)</th>
<th>Pitch (deg)</th>
<th>Yaw (deg)</th>
<th>Result (PP/CP)</th>
<th>Used for V50</th>
<th>Comments</th>
<th>Shot #</th>
</tr>
</thead>
<tbody>
<tr>
<td>757</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>No</td>
<td>medium bulge with cracks</td>
<td>5577</td>
</tr>
<tr>
<td>792</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>Yes</td>
<td>large bulge with cracks</td>
<td>5578</td>
</tr>
<tr>
<td>805</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>No</td>
<td>--</td>
<td>5579</td>
</tr>
<tr>
<td>804</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>No</td>
<td>--</td>
<td>5635</td>
</tr>
<tr>
<td>789</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>Yes</td>
<td>--</td>
<td>5636</td>
</tr>
<tr>
<td>791</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>Yes</td>
<td>--</td>
<td>5637</td>
</tr>
<tr>
<td>777</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>Yes</td>
<td>PP, TP</td>
<td>5638</td>
</tr>
</tbody>
</table>

V50: 787 m/s
Std Dev: 7 m/s
ZMR: 3

shots: 4
Spread: 15 m/s
Std Dev: 7 m/s
ZMR: 3
Target: Magnesium AZ31B-H24 3-Apr-06
Plate #: -- EF108
Lot#: --
Thickness: 76.48mm 3.011"

Hardness: 61 BHN on 500kg scale
Obliquity: 0°
Projectile: .50 cal AP M2

Setup: Mg-Air(6")-AL 2024(0.020")

<table>
<thead>
<tr>
<th>Striking Velocity (m/s)</th>
<th>Pitch (deg)</th>
<th>Yaw (deg)</th>
<th>Result</th>
<th>Used for V50</th>
<th>Comments</th>
<th>Shot #</th>
</tr>
</thead>
<tbody>
<tr>
<td>V50: 650 m/s</td>
<td>5 m/s</td>
<td>4 shots: 4</td>
<td>Spread: 10 m/s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std Dev: 5 m/s</td>
<td>ZMR: 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>621</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>No</td>
<td>Med. bulge w/crack</td>
<td>3605</td>
</tr>
<tr>
<td>696</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>No</td>
<td>--</td>
<td>3606</td>
</tr>
<tr>
<td>661</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>No</td>
<td>--</td>
<td>3607</td>
</tr>
<tr>
<td>655</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>Yes</td>
<td>--</td>
<td>3608</td>
</tr>
<tr>
<td>647</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>Yes</td>
<td>Lg. bulge; star break</td>
<td>3609</td>
</tr>
<tr>
<td>653</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>Yes</td>
<td>--</td>
<td>3610</td>
</tr>
<tr>
<td>629</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>No</td>
<td>Lg. bulge w/cracks</td>
<td>3611</td>
</tr>
<tr>
<td>645</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>Yes</td>
<td>Lg. bulge; star break</td>
<td>3612</td>
</tr>
</tbody>
</table>
Target: Magnesium AZ31B-H24
Plate #: --
Lot#: --
Thickness: 88.93mm 3.501"

Hardness: 55 BHN on 500kg scale
Obliquity: 0°
Projectile: .50 cal AP M2

Setup: Mg-Air(6")-AL 2024(0.020")

<table>
<thead>
<tr>
<th>Striking Velocity (m/s)</th>
<th>Pitch (deg)</th>
<th>Yaw (deg)</th>
<th>Result (PP/CP)</th>
<th>Used for V50</th>
<th>Comments</th>
<th>Shot #</th>
</tr>
</thead>
<tbody>
<tr>
<td>714</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>No</td>
<td>--</td>
<td>4949</td>
</tr>
<tr>
<td>706</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>No</td>
<td>--</td>
<td>4950</td>
</tr>
<tr>
<td>650</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>No</td>
<td>--</td>
<td>4951</td>
</tr>
<tr>
<td>661</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>No</td>
<td>--</td>
<td>4952</td>
</tr>
<tr>
<td>697</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>Yes</td>
<td>--</td>
<td>4953</td>
</tr>
<tr>
<td>672</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>Yes</td>
<td>--</td>
<td>4954</td>
</tr>
<tr>
<td>687</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>Yes</td>
<td>--</td>
<td>4955</td>
</tr>
<tr>
<td>694</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>Yes</td>
<td>--</td>
<td>4956</td>
</tr>
<tr>
<td>692</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>Yes</td>
<td>--</td>
<td>4957</td>
</tr>
<tr>
<td>684</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>Yes</td>
<td>--</td>
<td>4958</td>
</tr>
</tbody>
</table>

V50: 688 m/s
Std Dev: 9 m/s
Spread: 25 m/s

shots: 6
ZMR: 0

2-Apr-07
EF108

Target: Magnesium AZ31B-H24 2-Apr-07
Plate #: -- EF108
Lot#: --
Thickness: 102.03mm 4.017 "

Hardness: 55 BHN on 500kg scale
Obliquity: 0°
Projectile: .50 cal AP M2

Setup: Mg-Air(6")-AL 2024(0.020")

<table>
<thead>
<tr>
<th>V50:</th>
<th>746 m/s</th>
<th>shots:</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std Dev:</td>
<td>7 m/s</td>
<td>Spread:</td>
<td>15 m/s</td>
</tr>
<tr>
<td>ZMR:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Striking Velocity (m/s)</th>
<th>Pitch (deg)</th>
<th>Yaw (deg)</th>
<th>Result (PP/CP)</th>
<th>Used for V50</th>
<th>Comments</th>
<th>Shot #</th>
</tr>
</thead>
<tbody>
<tr>
<td>769</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>No</td>
<td>--</td>
<td>4959</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>uncaptured data</td>
<td>4960</td>
</tr>
<tr>
<td>755</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>Yes</td>
<td>--</td>
<td>4961</td>
</tr>
<tr>
<td>740</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>Yes</td>
<td>--</td>
<td>4962</td>
</tr>
<tr>
<td>740</td>
<td>--</td>
<td>--</td>
<td>PP</td>
<td>Yes</td>
<td>--</td>
<td>4963</td>
</tr>
<tr>
<td>748</td>
<td>--</td>
<td>--</td>
<td>CP</td>
<td>Yes</td>
<td>--</td>
<td>4964</td>
</tr>
<tr>
<td>NO. OF COPIES</td>
<td>ORGANIZATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (PDF only)</td>
<td>DEFENSE TECHNICAL INFORMATION CTR DTIC OCA 8725 JOHN J KINGMAN RD STE 0944 FORT BELVOIR VA 22060-6218</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DIRECTOR US ARMY RESEARCH LAB IMNE ALC IMS 2800 POWDER MILL RD ADELPHI MD 20783-1197</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DIRECTOR US ARMY RESEARCH LAB AMSRD ARL C1 OK TL 2800 POWDER MILL RD ADELPHI MD 20783-1197</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DIRECTOR US ARMY RESEARCH LAB AMSRD ARL C1 OK PE 2800 POWDER MILL RD ADELPHI MD 20783-1197</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ABERDEEN PROVING GROUND

<p>| 1 | DIR USARL AMSRD ARL C1 OK TP (BLDG 4600) |</p>
<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
<th>ORGANIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>CDR US ARMY TACOM AMSTA TR S T FURMANIKA L FRANKS D TEMPLETON MS 263 WARREN MI 48397-5000</td>
</tr>
<tr>
<td>1</td>
<td>CDR US ARMY TACOM AMSTA TR R D HANSEN WARREN MI 48397-5000</td>
</tr>
<tr>
<td>1</td>
<td>PM SFAE GCSS HBCTS J ROWE MS 325 WARREN MI 48397-5000</td>
</tr>
<tr>
<td>2</td>
<td>NATL GROUND INTEGRALNGN CTR J CRIDER W GSTATTENBAUER 2055 BOULDERS RD CHARLOTTESVILLE VA 22091-5391</td>
</tr>
<tr>
<td>1</td>
<td>CRUSADER OPM SFAE GCSS CR E B ROOPCHAND BLDG 171A PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>1</td>
<td>DIRECTOR DARPA 3701 N FAIRFAX DR ARLINGTON VA 22203-1714</td>
</tr>
<tr>
<td>1</td>
<td>PM BFVS ATTN SFAE GCSS W BV S M KING WARREN MI 48397-5000</td>
</tr>
<tr>
<td>1</td>
<td>NVL SURFC WARFARE CTR CARDEROCK DIV R PETERSON CODE 28 9500 MACARTHUR BLVD WEST BETHESDA MD 20817-5700</td>
</tr>
<tr>
<td>2</td>
<td>LAWRENCE LIVERMORE NATL LAB R LANDINGHAM L372 J REAUGH L282 PO BOX 808 LIVERMORE CA 94550</td>
</tr>
<tr>
<td>2</td>
<td>LOS ALAMOS NATL LAB F ADDESIO B M BURKEET PO BOX 1663 LOS ALAMOS NM 87545</td>
</tr>
<tr>
<td>3</td>
<td>SANDIA NATL LAB J ASAY MS 1811 L CHHABILDA MS 1811 D CRAWFORD MS 0836 9116 PO BOX 5800 ALBUQUERQUE NM 87185-0307</td>
</tr>
<tr>
<td>1</td>
<td>AIR FORCE ARMAMENT LAB AFATL DLJW W COOK EGLIN AFB FL 32542</td>
</tr>
<tr>
<td>4</td>
<td>UNIV OF TEXAS INST FOR ADVANCED TECH S BLESS H FAIR J HODGE R SUBRAMANIAN 3925 W BRAKER LN AUSTIN TX 78759-5316</td>
</tr>
<tr>
<td>1</td>
<td>UNIV OF DAYTON RSRCH INST N BRAR KLA 14 300 COLLEGE PARK DAYTON OH 45469-0182</td>
</tr>
<tr>
<td>3</td>
<td>SOUTHWEST RSCH INST C ANDERSON J RIEGEL J WALKER 6220 CULEBRA RD SAN ANTONIO TX 78238</td>
</tr>
<tr>
<td>4</td>
<td>US DEPT OF ENERGY ALBANY RSCH CTR J HANSEN (2 CPS) P TURNER (2 CPS) 1450 QUEEN AVE SW ALBANY OR 97321-2198</td>
</tr>
<tr>
<td>1</td>
<td>BROWN UNIV DIV OF ENGRG R CLIFTON PROVIDENCE RI 02912</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| 2 | UNIV OF CA SAN DIEGO
DEPT OF APPL MECH & ENGR
SVC RO11
S NEMAT NASSER
M MEYERS
LA JOLLA CA 92093-0411 |
| 2 | AERONAUTICAL RSRCH ASSN
R CONTILIANO
J WALKER
PO BOX 2229
50 WASHINGTON RD
PRINCETON NJ 08540 |
| 1 | ALLIANT TECHSYSTEMS
G JOHNSON
5050 LINCOLN DR
EDINA MN 55340-1097 |
| 1 | APPLIED RSRCH ASSN INC
D GRADY
4300 SAN MATEO BLVD NE STE A
ALBUQUERQUE NM 87110 |
| 1 | BRIGGS COMPANY
ATTN J BACKOFEN
2668 PETERSBOROUGH ST
HERNDON VA 222071-2443 |
| 3 | CERCOM
R PALICKA
G NELSON
B CHEN
1960 WATSON WAY
VISTA CA 92083 |
| 1 | CYPRESS INTERNTL
A CAPONECCHI
1201 E ABINGDON DR
ALEXANDRIA VA 22314 |
| 1 | EPSTEIN AND ASSN
K EPSTEIN
2716 WEMBERLY DR
BELMONT CA 94002 |
| 1 | GEN RSRCH CORP
PO BOX 6770
SANTA BARBARA CA 93160-6770 |
| 1 | INTERNATL RSRCH ASSN
D ORPHAL
4450 BLACK AVE
PLEASANTON CA 94566 |
| 3 | GDLS
W BURKE MZ436 21 24
G CAMPBELL MZ436 30 44
D DEBUSSCHER MZ436 20 29
38500 MOUND RD
STERLING HTS MI 48310-3200 |
| 3 | GDLS
J ERIDON MZ436 21 24
W HERMAN MZ435 01 24
S PENTESCU MZ436 21 24
38500 MOUND RD
STERLING HTS MI 48310-3200 |
| 1 | JET PROPULSION LAB
IMPACT PHYSICS GRP
M ADAMS
4800 OAK GROVE DR
PASADENA CA 91109-8099 |
| 3 | OGARA HESS & EISENHARDT
G ALLEN
D MALONE
T RUSSELL
9113 LE SAINT DR
FAIRFIELD OH 45014 |
| 2 | ALLVAC OREMET FACILTY
J KOSIN
B MAHONEY
530 34TH AVE SW
PO BOX 460
ALBANY OR 97321 |
| 4 | POULTER LAB
SRI INTRNTL
D CURRAN
R KLOOP
L SEAMAN
D SHOCKEY
333 RAVENSWOOD AVE
MENLO PARK CA 94025 |
| 6 | RMI TITANIUM CO
J BENNETT
E CHRIST
F JANOWSKI
W PALLANTE
S ROBERTSON
O YU
1000 WARREN AVE
NILES OH 44446 |
<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
<th>ORGANIZATION</th>
<th>NO. OF COPIES</th>
<th>ORGANIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TIMET</td>
<td>1</td>
<td>EMBASSY OF AUSTRALIA COUNSELLOR DEFNC SCI</td>
</tr>
<tr>
<td></td>
<td>J FANNING</td>
<td></td>
<td>1601 MASSACHUSETTS AVE NW</td>
</tr>
<tr>
<td></td>
<td>PO BOX 2128</td>
<td></td>
<td>WASHINGTON DC 20036-2273</td>
</tr>
<tr>
<td></td>
<td>HENDERSON NV 89009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SIMULA INC</td>
<td>1</td>
<td>FORCE PROTECTION INDUST INC</td>
</tr>
<tr>
<td></td>
<td>R WOLFFE</td>
<td></td>
<td>V JOYNT</td>
</tr>
<tr>
<td></td>
<td>10016 SOUTH 51ST ST</td>
<td></td>
<td>9801 HWY 78</td>
</tr>
<tr>
<td></td>
<td>PHOENIX AZ 85044</td>
<td></td>
<td>LADSON SC 29456</td>
</tr>
<tr>
<td>3</td>
<td>UNITED DEFNS LIMITED PARTNERS GROUND SYS DIV</td>
<td>2</td>
<td>US ARMY RSRCH DEV & ENGRG CTR</td>
</tr>
<tr>
<td></td>
<td>E BRADY</td>
<td></td>
<td>AMSRD NSC IPD B</td>
</tr>
<tr>
<td></td>
<td>R JENKINS</td>
<td></td>
<td>P CUNNIFF</td>
</tr>
<tr>
<td></td>
<td>K STRITTMATTER</td>
<td></td>
<td>J WARD</td>
</tr>
<tr>
<td></td>
<td>PO BOX 15512</td>
<td></td>
<td>KANSAS ST</td>
</tr>
<tr>
<td></td>
<td>YORK PA 17405-1512</td>
<td></td>
<td>NATICK MA 01760-5019</td>
</tr>
<tr>
<td>1</td>
<td>PENN STATE UNIV APPLIED RSRCH LAB ACOUSTICS PRGM</td>
<td>1</td>
<td>THE AIR FORCE RSRCH LAB</td>
</tr>
<tr>
<td></td>
<td>D SWANSON</td>
<td></td>
<td>AFRL/MLLMP</td>
</tr>
<tr>
<td></td>
<td>504L APPLIED SCI BLDG UNIVERSITY PK PA 16803</td>
<td></td>
<td>T TURNER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BLDG 655 RM 115</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2230 TENTH ST</td>
</tr>
<tr>
<td>5</td>
<td>MENA</td>
<td></td>
<td>WRIGHT-PATTERSON AFB OH</td>
</tr>
<tr>
<td></td>
<td>R DeLORME</td>
<td></td>
<td>45433-7817</td>
</tr>
<tr>
<td></td>
<td>1001 COLLEGE ST</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MADISON IL 62060</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CENTRAL 7</td>
<td>1</td>
<td>PRATT & WHITNEY ROCKETDYNE</td>
</tr>
<tr>
<td></td>
<td>R JONES</td>
<td></td>
<td>A PANDEY</td>
</tr>
<tr>
<td></td>
<td>80 PALISADE AVE</td>
<td></td>
<td>PO BOX 109600 MS 702-06</td>
</tr>
<tr>
<td></td>
<td>WHITE PLAINS NY 10607</td>
<td></td>
<td>WEST PALM BEACH FL 33410-9600</td>
</tr>
<tr>
<td>1</td>
<td>PACIFIC NORTHWEST NATL LAB E NYBERG</td>
<td>1</td>
<td>GEN MOTORS CORP</td>
</tr>
<tr>
<td></td>
<td>MSIN P7-82</td>
<td></td>
<td>P CREPEAU</td>
</tr>
<tr>
<td></td>
<td>902 BATTELLE BLVD</td>
<td></td>
<td>MAIL CODE 483-730-472</td>
</tr>
<tr>
<td></td>
<td>RICHLAND WA 99352</td>
<td></td>
<td>823 JOSLYN RD</td>
</tr>
<tr>
<td>1</td>
<td>UNIV OF VIRGINIA DEPT OF MTRLS SCI & ENG SCHOOL</td>
<td>1</td>
<td>PONTIAC MI 48340</td>
</tr>
<tr>
<td></td>
<td>OF ENG & APPL SCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H WADLEY</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B214 THORNTON HALL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>116 ENGINEERS WAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHARLOTTESVILLE VA 22903</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CELLULAR MTRLS INTRNTL INC Y MURTY</td>
<td>1</td>
<td>CHRYSLER CORP</td>
</tr>
<tr>
<td></td>
<td>2 BOARS HEAD LN</td>
<td></td>
<td>R BEALS</td>
</tr>
<tr>
<td></td>
<td>CHARLOTTESVILLE VA 22903</td>
<td></td>
<td>CIMS 481-01-41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>800 CHRYSLER DR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AUBURN HILLS MI 48326-2757</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NO. OF COPIES ORGANIZATION

1 MISSOURI UNIV OF SCI & TECHLGY
R MISHRA
B37 MCNUTT HALL
ROLLA MO 65409-0340

1 THIXOMAT
S LEBREAUX
620 TECHNLGY DR
ANN ARBOR MI 48108

1 US INFANTRY CTR
MTRLS LOG NCO – SCI TECHNLGY ADVISOR
SOLDIER DIV
S VAKERICS
6731 CONSTITUTION LOOP STE 319
FORT BENNING GA 31905

3 NATL GROUND INTELLIGENCE CTR
D EPPERLY
T SHAVER
T WATERBURY
2055 BOULDERS RD
CHARLOTTESVILLE VA 22911-8318

3 PROG EXECUTIVE OFC – SOLDIER
US ARMY DIR TECH MGMT
PROJ MGR - SOLDIER EQUIP
K MASTERS
C PERRITT
J ZHENG
15395 JOHN MARSHALL HWY
HAYMARKET VA 20169

1 CERADYNE INC
M NORMANDIA
3169 RED HILL AVE
COSTA MESA CA 92626

2 SOUTHWEST RSRC INST
C ANDERSON
J WALKER
6220 CULEBRA RD
PO DRAWER 28510
SAN ANTONIO TX 78228

2 FOSTER-MILLER
J REIGEL
R SYKES
195 BEAR HILL RD
WALTHAM MA 02451

2 SOUTHWEST RSRC INST
T HOLMQVIST
G JOHN
5353 WAYZATA BLVD STE 607
MINNEAPOLIS MN 55416

1 US ARMY RAPID EQUIPPING FORCE
R TURNER
10236 BURBECK RD
BLDG 361T
FORT BELVOIR VA 22060-5806

1 MAGNESIUM TECH RESOURCES LLC
S ERICKSON
4241 AUGUSTA CT
HOWELL MI 48843

2 LETTERKENNY ARMY DEPOT
PRODUCTION ENGR DIV
AMSAM LE MO E S
K HERSHEY
J FRIDAY
1 OVERCASH AVE
CHAMBERSBURG PA 17201-4150

1 TIMMINCO CORP
DIR BUS DEV
S SHOOK
3595 MOLINE ST
AURORA CO 80010

1 MINE SAFETY APPLIANCES CO
T MOYNIHAN
PO BOX 439
PITTSBURGH PA 15230-0439

1 NATL TECH SYS
S DETRUIT
3070 SW CAPTIVA CT
PALM CITY FL 34990

1 SAINT GOBAIN
D MCELWEE
9 RENEE CT
NORTHGATE COMMONS
NEWARK DE 19711

1 CIVILIAN HUMAN RESOURCES AGCY
B ANDERSON
200 OAK LEAF CIR
ABINGDON MD 21009
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DIR US ARMY RSRCH LAB</td>
<td>AMSRD ARL WM</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>AMSRD ARL D</td>
<td>J MCCAULEY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J MILLER</td>
<td>P PLOSTINS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V WEISS</td>
<td>J SMITH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2800 POWDER MILL RD</td>
<td>T WRIGHT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADELPHI MD 20783-1197</td>
<td>M ZOLTOSKI</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DIR US ARMY RSRCH LAB</td>
<td>AMSRD ARL WM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMSRD ARL SE SA</td>
<td>AMSRD ARL WM B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N SROUR</td>
<td>AMSRD ARL WM BC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2800 POWDER MILL RD</td>
<td>R ANDERSON</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADELPHI MD 20783-1197</td>
<td>AMSRD ARL WM BD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D LOWRY</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>J BEATTY</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B DOWDING</td>
<td></td>
</tr>
<tr>
<td>ME</td>
<td>AMSRD ARL WM MB</td>
<td>S MCKNIGHT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMSRD ARL WM MC</td>
<td>AMSRD ARL WM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMSRD ARL WM MD</td>
<td>AMSRD ARL WM SG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMSRD ARL WM T</td>
<td>AMSRD ARL WM TA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMSRD ARL WM SG</td>
<td>AMSRD ARL WM MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMSRD ARL WM T</td>
<td>AMSRD ARL WM SL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMSRD ARL WM T</td>
<td>AMSRD ARL SL B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMSRD ARL WM T</td>
<td>AMSRD ARL SL B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMSRD ARL WM T</td>
<td>AMSRD ARL SL B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMSRD ARL WM T</td>
<td>AMSRD ARL SL B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMSRD ARL WM T</td>
<td>AMSRD ARL SL B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMSRD ARL WM T</td>
<td>AMSRD ARL SL B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMSRD ARL WM T</td>
<td>AMSRD ARL SL B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMSRD ARL WM T</td>
<td>AMSRD ARL SL B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMSRD ARL WM T</td>
<td>AMSRD ARL SL B</td>
<td></td>
</tr>
<tr>
<td>NO. OF COPIES</td>
<td>ORGANIZATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| AMSRD ARL WM TB | R BANTON
 | | R GUPTA
| AMSRD ARL WM TC | T FARRAND
 | | K KIMSEY
 | | L MAGNESS
 | | R MUDD
 | | D SCHEFFLER
 | | S SCHRAML
 | | S SEGLETES
 | | R SUMMERS
 | | W WALTERS
| AMSRD ARL WM TD | S BILYK
 | | T BJERKE
 | | D CASEM
 | | J CLAYTON
 | | D DANDEKAR
 | | M GREENFIELD
 | | Y HUANG
 | | B LOVE
 | | M RAFTENBERG
 | | E RAPACKI
 | | M SCHEIDLER
 | | T WEERASOORIYA
| AMSRD ARL WM TE | C HUMMER
 | | B RINGERS
<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
<th>ORGANIZATION</th>
<th>NO. OF COPIES</th>
<th>ORGANIZATION</th>
</tr>
</thead>
</table>
| 3 | AERONAUTICAL & MARITIME RSCH LAB
N MURMAN
S CIMPOERU
D PAUL
PO BOX 4331
MELBOURNE VIC 3001
AUSTRALIA | 1 | OSAKA UNIVERSITY
JOINING & WELDING RSCH INST
DR KATSUYOSHI KONDOH
11-1 MIHOGAOAKA IBARAKI
OSAKA 567-0047 JAPAN |
| 1 | ARMSCOR
L DU PLESSIS
PRIVATE BAG X337
PRETORIA 0001
SOUTH AFRICA | 2 | DEFENCE PROCUREMENT ACY
G LAUBE
W ODERMATT
BALLISTICS WPNS & COMBAT VEHICLE TEST CTR
CH 3602 THUN
SWITZERLAND |
| 1 | CARLOS III UNIV OF MADRID
C NAVARRO
ESCUELA POLTEENICA SUPERIOR
C/BUTARQUE 15
28911 LEGANES MADRID
SPAIN | 1 | TDW EADS
ATTN M EADS
PO BOX 1340
SCHROBENHAUSEN D 86523
GERMANY |
| 1 | CELIUS MATERIAL TEKNIK
KARLSKOGA AB
L HELLMER
S 69180 KARLSKOGA
SWEDEN | 4 | DEFENSE RESEARCH AGENCY
ATTN W CARSON
ATTN T HAWKINS
ATTN B JAMES
ATTN B SHRUBSALL
PORTON DOWN
SALISBURY WTTTS SP04 OJQ
UNITED KINGDOM |
| 3 | CENTRE D'ETUDES GRAMAT
J CAGNOUX
C GALLIC
J TRANCHET
GRAMAT 46500
FRANCE | 1 | DEFENCE RESEARCH AND DEVELOPMENT-VALCARTIER
ATTN R DELAGRAVE
2459 PIE XI NORTH
VAL-BELAIR QC G3J 1X5
CANADA |
| 1 | MINISTRY OF DEFENCE
DGA DSP STTC
G BRAULT
4 RUE DE LA PORTE D'ISSY
00460 ARMEES
F 75015 PARIS
FRANCE | 2 | DEUTSCH FRANZOSISCHES FORSCHUNGSINSTITUT ST LOUIS
H ERNST
H LERL
CEDEX 5 RUE DU GENERAL CASSAGNOU
F 68301 SAINT LOUIS
FRANCE |
| 1 | CONDAT PROJEKT GMBH
ATTN J KIERMEIR
MAXIMILIANSTR 28
SCHEYERN 85298
GERMANY | 1 | DIEHL GMBH AND CO
M SCHILDKNECHT
FISCHBACHSTRASSE 16
D 90552 ROTBENBACH AD PEGNITZ
GERMANY |
1 DYNAMEC RSCH AB
 A PERSSSON
 PARADESGRND 7
 SODERTALJE S151 36
 SWEDEN

2 ETBS DSTI
 P BARNIER
 M SALLES
 ROUTE DE GUERAY
 BOITE POSTALE 712
 18015 BOURGES CEDEX
 FRANCE

1 FEDERAL MINISTRY OF DEFENCE
 DIR OF EQPT & TECH LAND
 RUV 2
 D HAUG
 POSTFACH 1328
 53003 BONN
 GERMANY

4 FRANHOFER INSTITUT FUR
 KURZZEITDYNAMIK
 ERNST MACH INSTITUT
 V HOHLER
 E STRASSBURGER
 R TRAM
 K THOMA
 ECKERSTRASSE 4
 D 79 104 FREIBURG
 GERMANY

1 MINISTRY OF DEFENCE
 DGA/SPART
 C CANNAVO
 10 PLACE GEORGES CLEMENCEAU
 BP 19
 F 92211 SAINT CLOUD CEDEX
 FRANCE

2 HIGH ENERGY DENSITY RSCH CTR
 V FORTOV
 G KANEL
 IZHORSKAY STR 13/19
 MOSCOW 127412
 RUSSIAN REPUBLIC

1 INGENIEURBURO DEISENROTH
 F DEISENROTH
 AUF DE HARDT 33 35
 D 5204 LOHMAR 1
 GERMANY

1 INST OF CHEMICAL PHYSICS
 S RAZORENOV
 142432 CHERNOGOLOVKA
 MOSCOW REGION
 RUSSIAN REPUBLIC

7 INST FOR PROBLEMS IN MATLS SCI
 S FIRSTOV
 B GALANOV
 O GRIGORIEV
 V KARTUZOV
 V KOVTUN
 Y MILMAN
 V TREFILOV
 3 KRHYZHANOVSKY STR
 252142 KIEV 142
 UKRAINE

1 INST FOR PROBLEMS
 OF STRENGTH
 G STEPANOV
 TIMIRY AZEVSKAYA STR 2
 252014 KIEV
 UKRAINE

3 INST OF MECH ENGR PROBLEMS
 V BULATOV
 D INDEITSEV
 Y MESCHERYAKOV
 BOLSHOY 61 VO
 ST PETERSBURG 199178
 RUSSIAN REPUBLIC

2 IOFFE PHYSICO TECH INST
 E DROBYSHEVSKI
 A KOZHUSHKO
 ST PETERSBURG 194021
 RUSSIAN REPUBLIC

1 R OGORKIEWICZ
 18 TEMPLE SHEEN
 LONDON SW 14 7RP
 UNITED KINGDOM

2 NATL DEFENCE HDQRTRS
 PMO MRCV MAJ PACEY
 PMO LAV A HODAK
 OTTOWA ONTARIO K1A OK2
 CANADA
<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
<th>ORGANIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OTO BREDA</td>
</tr>
<tr>
<td></td>
<td>M GUALCO</td>
</tr>
<tr>
<td></td>
<td>VIA VALDIOCCHI 15</td>
</tr>
<tr>
<td></td>
<td>119136 LA SPEZIA</td>
</tr>
<tr>
<td></td>
<td>ITALY</td>
</tr>
<tr>
<td>1</td>
<td>ROYAL NETHERLANDS ARMY</td>
</tr>
<tr>
<td></td>
<td>JHOENEVELD</td>
</tr>
<tr>
<td></td>
<td>V D BURCHLAAN 31</td>
</tr>
<tr>
<td></td>
<td>PO BOX 90822</td>
</tr>
<tr>
<td></td>
<td>2509 LS THE HAGUE</td>
</tr>
<tr>
<td></td>
<td>NETHERLANDS</td>
</tr>
<tr>
<td>1</td>
<td>DEFENCE MATERIEL ADMIN</td>
</tr>
<tr>
<td></td>
<td>WEAPONS DIRECTORATE</td>
</tr>
<tr>
<td></td>
<td>A BERG</td>
</tr>
<tr>
<td></td>
<td>S 11588 STOCKHOLM</td>
</tr>
<tr>
<td></td>
<td>SWEDEN</td>
</tr>
<tr>
<td>1</td>
<td>SINGAPORE INST OF MFG TECHLGY</td>
</tr>
<tr>
<td></td>
<td>RSRCH SCIENTIST</td>
</tr>
<tr>
<td></td>
<td>FORMING TECHNGLY</td>
</tr>
<tr>
<td></td>
<td>M CHANDRASEKARAN</td>
</tr>
<tr>
<td></td>
<td>71 NANYANG DR</td>
</tr>
<tr>
<td></td>
<td>SINGAPORE 638075</td>
</tr>
<tr>
<td>1</td>
<td>ACERAM TECHLGY INC</td>
</tr>
<tr>
<td></td>
<td>DIRECTOR PROD DEV</td>
</tr>
<tr>
<td></td>
<td>V LUCATA</td>
</tr>
<tr>
<td></td>
<td>102 FRASER ST</td>
</tr>
<tr>
<td></td>
<td>KINGSTON ON K7K 2J2 CANADA</td>
</tr>
<tr>
<td>1</td>
<td>AMERICAN EMBASSY SINGAPORE</td>
</tr>
<tr>
<td></td>
<td>E STIerna</td>
</tr>
<tr>
<td></td>
<td>PO BOX ODC FPO AP 96507</td>
</tr>
<tr>
<td>1</td>
<td>ADVNCD DEF MTRLS LTD</td>
</tr>
<tr>
<td></td>
<td>G ROBERSON</td>
</tr>
<tr>
<td></td>
<td>SIR FRANK WHITTLE BUSINESS</td>
</tr>
<tr>
<td></td>
<td>CENTRE</td>
</tr>
<tr>
<td></td>
<td>GREAT CENTRAL WAY RUGBY</td>
</tr>
<tr>
<td></td>
<td>WARWICKSHIRE ENGLAND</td>
</tr>
<tr>
<td></td>
<td>CV21 3XH</td>
</tr>
<tr>
<td>1</td>
<td>NATL INST FOR MTRLS SCI</td>
</tr>
<tr>
<td></td>
<td>MAGNETIC MTRLS CTR</td>
</tr>
<tr>
<td></td>
<td>NANOSTRUCTURE ANLYS GR</td>
</tr>
<tr>
<td></td>
<td>C MENDIS</td>
</tr>
<tr>
<td></td>
<td>1-2-1 SENGEN TSUKUBA</td>
</tr>
<tr>
<td></td>
<td>IBARAKI 305-0047 JAPAN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
<th>ORGANIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TNO SCIENCE AND INDUST</td>
</tr>
<tr>
<td></td>
<td>W SILLEKENS</td>
</tr>
<tr>
<td></td>
<td>DE RONDOM 1</td>
</tr>
<tr>
<td></td>
<td>PO BOX 6235</td>
</tr>
<tr>
<td></td>
<td>5600 HE EINDHOVEN</td>
</tr>
<tr>
<td></td>
<td>THE NETHERLANDS</td>
</tr>
<tr>
<td>1</td>
<td>BISALLOYS STEELS PTY LTD</td>
</tr>
<tr>
<td></td>
<td>W PANG</td>
</tr>
<tr>
<td></td>
<td>18 RESOLUTION DR</td>
</tr>
<tr>
<td></td>
<td>UNANDERRA NSW 2526 AUSTRALIA</td>
</tr>
<tr>
<td>1</td>
<td>TNO DEFENCE SEC AND SAFETY</td>
</tr>
<tr>
<td></td>
<td>F T M VAN WEGEN</td>
</tr>
<tr>
<td></td>
<td>LANGE KLEIPEG 137</td>
</tr>
<tr>
<td></td>
<td>PO BOX 45</td>
</tr>
<tr>
<td></td>
<td>2280 AA RIJSWIJK THE NETHERLANDS</td>
</tr>
<tr>
<td>1</td>
<td>USA ITC-PAC</td>
</tr>
<tr>
<td></td>
<td>J P SINGH</td>
</tr>
<tr>
<td></td>
<td>7-23-17 ROPPONGI MINATO-KU</td>
</tr>
<tr>
<td></td>
<td>TOKYO JAPAN 106-0032</td>
</tr>
<tr>
<td>1</td>
<td>OSAKA UNIV</td>
</tr>
<tr>
<td></td>
<td>JOINING AND WELDING RSRCH INST</td>
</tr>
<tr>
<td></td>
<td>K KONDOH</td>
</tr>
<tr>
<td></td>
<td>11-1 MIHOGAOKA IBARAKI 567-0047</td>
</tr>
<tr>
<td></td>
<td>OSAKA JAPAN</td>
</tr>
</tbody>
</table>

43
INTENTIONALLY LEFT BLANK.