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1. Introduction 

Ballistic gelatin has been in use as a convenient soft tissue simulant for impact studies for several 
decades (1, 2).  To better understand the impact physics behind the phenomenological 
correlations, further details about the physical properties of the gelatin are needed.  As the gelatin 
is extracted from the collagen in the animal hide or bone, the resultant gelatin powder is an 
aggregate of various molecular sizes and molecular formulae (3).  Its composition also varies 
from batch to batch due to variations in the manufacturing processes.  Furthermore, the 
procedure in mixing the gelatin powder and water into gelatin blocks for laboratory tests is also 
not always consistent.  So the physical properties of the gelatin should be viewed as being within 
certain statistical variations. 

The equation of state relates the pressure, the specific volume and the temperature for the 
material under study.  One of the traditional methods of acquiring high pressure properties is by 
performing uni-axial strain experiments (high velocity gas gun impacts), and study the Hugoniot 
characteristics.  This aspect of the study will be discussed in a separate report.  Another method 
is by using the diamond anvil technique, which is to be described in this report.  The laboratory 
tests are done at the Carnegie Institution of Washington (CIW), which is a distinguished research 
facility for high pressure physics.  The resultant contract report (4) describes the Brillouin 
scattering test procedure, the longitudinal and transverse sound velocities acquired, and the data 
post-processing using these sound velocities.  In the data post-processing, the densities, specific 
volumes and bulk moduli are calculated.  The calculated bulk moduli in this contract report are 
higher than expected.  In the following sections, the Brillouin scattering test procedure is 
recapped.  Then, a review of the data and improved data processing is presented. 

2. The Brillouin Scattering Data 

In the Brillouin scattering system at the CIW, an incident laser light from a single mode Ar-ion 
laser (wavelength λ=514.5 nm) passing through a transparent sample, held pressurized in a 
diamond anvil cell, is scattered in relation to the thermally excited acoustic waves in the sample 
(see figure 1). 
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Figure 1.  Diamond anvil cell for the Brillouin scattering test. 

When the incident light and scattering light directions are arranged symmetrically, the frequency 
shift Δν in the scattering light has the following relationship with the acoustic property of the 
sample: 
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where υ is the sound velocity, λ = 514.5 nm is the laser wavelength, and θ = 80° is the scattering 
angle. 

The ballistic gelatin is non-linear viscoelastic; but, when the gelatin is considered as linear elastic 
isotropic, its density at temperature T can be related to pressure as: 
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where ρ0 and ρ are the density at pressure P0 and P respectively, υL and υT are the longitudinal 
and transverse sound velocities respectively from the Brillouin scattering measurement, and γ= 
Cp/Cv is the specific heat ratio.  This procedure is repeated for a series of different temperatures. 

The density, pressure and temperature data thus obtained are then fitted with the Vinet 
formulation of isothermal equation of state: 
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where B0 is the isothermal bulk modulus, B0’ is its pressure derivative at zero pressure, and V0 is 
the initial specific volume at zero pressure.  The calculated isothermal bulk modulus B0 (at 
reference temperature 302 °K) is found to be 4.6 GPa; its pressure derivative B0’ to be 8.7 GPa 
and the initial specific volume V0 to be 1.004 cm3/g.  The isothermal bulk modulus B0 can be 
translated into the adiabatic bulk modulus through the relationship Bs=γxB0.  When compared 
with gas gun Hugoniot test data (5, 6, 7), the adiabatic bulk modulus has been found to be too 
high. 

3. Reassess the Brillouin Scattering Data 

During the density calculation (equation 2), the specific heat ratio γ has been assumed to be 1.  
From the thermodynamic relationship  
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CP=CV for truly incompressible material, therefore γ=1; which is valid for most geology 
problems.  However, the specific heat ratios of some polymers at ambient atmospheric pressure 
are mostly greater than one, i.e., 1 < γ < 2. 

While there is no good data for the specific heat ratio for the ballistic gelatin, data fittings using 
the Vinet equation of state (equation 3) and another widely used Birch-Murnaghan isothermal 
equation of state, 
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have shown that increasing the specific heat ratio will result in lowering the calculated 
isothermal bulk modulus B0.  However, to lower the adiabatic bulk modulus (calculated from the 
isothermal bulk modulus) to the level comparable to that from the gas gun Hugoniot data will 
need to increase the specific heat ratio to about 6 or 7, which is most likely not physically 
realistic.  So for the data points at higher pressures, the ballistic gelatin must have transformed 
into a different phase.  The CIW report has indeed mentioned that a phase change has been 
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observed at around 2 GPa: when “the samples are compressed to around 2 GPa and stay at this 
pressure regime, the samples will crystallize; if they are compressed very quickly and pass 
through this pressure regime, the samples will not crystallize but will go into a glassy state” (4).  
Even though a comprehensive phase diagram for the ballistic gelatin is not yet available, this 
phase change of the ballistic gelatin at around 2 GPa is very similar to the phase change of water 
observed from liquid to ice VII phase at room temperature.  So it is safe to say that for the 
ballistic gelatin at room temperature and at pressure higher than 2 GPa, it has transitioned into a 
different phase. 

When using the Vinet equation of state (equation 3) or the Birch-Murnaghan equation of state 
(equation 5) to fit the isothermal density and pressure data in the higher pressure phase, the 
specific volume at zero pressure V0 is a mathematical construct representing the specific volume 
of the material in the same molecular structure as that in the high pressure phase but 
hypothetically existing at zero pressure.  This molecular structure cannot be reproduced in the 
lab for testing.  This specific volume V0 can only be calculated from the data-fitting using either 
the Vinet equation or the Birch-Murnaghan equation or any other models of choice.  The 
properties thus calculated cannot be verified or compared to the data post-processed from the gas 
gun Hugoniot tests, because the gas gun tests at a higher pressure in that different phase cannot 
easily be performed. 

In contrast to the CIW approach, the pressure range is now divided into two domains: (a) in the 
low pressure phase, for the pressure below ~2 GPa, the specific heat ratio γ is assumed to be 1.5.  
From the density measurement (1.058 g/cm3) by J. Winter at 5 ~ 7 °C (3) and the density 
derivative ∂ρ/∂T (-0.000415 g/cm3/°C) mentioned in the CIW report, the zero pressure density ρ0 
is estimated to be 1.05 g/cm3 at room temperature (30 °C); (b) in the higher pressure phase, for 
pressure higher than 2 GPa, the specific heat ratio γ is assumed to be 1.0, which is valid for 
incompressible material, because at higher pressure, the material has transitioned into a glassy 
state.  The zero pressure density ρ0 is a mathematical construct, which is to be estimated from the 
equation of state curve-fit.  The results are shown in figure 2, wherein the pink line labeled 
‘Vinet’ is from the curve-fitting using the Vinet isothermal equation of state (equation 3), 
whereas the yellow line labeled ‘B-M’ is from the curve-fitting using the Birch-Murnaghan 
equation of state.  The two curves don’t differ much.  Both show a transitional twist near 2 GPa 
in relation to the probable phase change. 
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Figure 2.  Estimated pressure versus specific volume ratio for gelatin, from Hugoniot data and isothermal 
equation of state curve-fits for both low pressure and high pressure domains.  The Hugoniot and 
isothermal data for water are also shown for comparison. 

The curve labeled ‘Gurtman’ came from the Hugoniot curve data for water (8).  The curve 
labeled ‘Heydemann’ came from a Birch-Murnaghan isothermal equation of state calculation 
using the bulk modulus data from Heydemann’s work (9).  The phase change is not considered in 
these two curves related to water. 

The phase change in water is seen in the phase diagram for water (see figure 3), where the curve 
on an isothermal plane turned at the phase change from liquid to ‘Ice VII’ phase. 
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Figure 3.  Three dimensional phase diagram for water. 

Note:  Source for figure 3 is http://www.unca.edu/~dmiller/cceqtn11_a305.ppt (last accessed August 20, 
2009). 

From the Brillouin scattering data, the bulk sound velocity can be calculated using the 
relationship: 
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where υB is the bulk sound velocity, υL and υT are the longitudinal and transverse sound 
velocities respectively from the Brillouin scattering measurement.  The calculated sound 
velocities versus pressure is shown in figure 4. 
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Figure 4.  Bulk sound velocity versus pressure calculated from the Brillouin scattering data. 

For comparison, the sound velocity versus pressure for water (10) is shown in figure 5. 

 

Figure 5.  Sound velocity versus pressure along several isotherms for water. 



 8

From these calculated bulk sound velocities and the specific volumes from the isothermal 
equation of state curve-fit, the adiabatic bulk modulus can be calculated from the relationship 
between the sound velocity and the adiabatic bulk modulus and the density.  Figure 6 shows the 
relation between the adiabatic bulk modulus and pressure. 

 

Figure 6.  Adiabatic bulk modulus versus pressure calculated from the sound velocities and specific 
volume. 

The bulk moduli at zero pressure for the low pressure domain (below 2 GPa) from the Vinet 
equation of state, the Birch-Murnaghan equation and from the sound velocity calculations are 
summarized in the following table: 

Table 1.  Bulk moduli (in GPa) for the low pressure domain (below 2 GPa) from Vinet equation of 
state, the Birch-Murnaghan equation of state and from the sound velocity calculation. 

 
Isothermal 

Bulk modulus 
B0 

B0 ‘s 
Pressure Derivative 

B0’ 

Adiabatic  
Bulk Modulus  

Bs 

Vinet 1.52 13.88 2.28 

Birch-Murnaghan 0.94 34.04 1.40 

Sound Velocity — — 1.95 
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4. Summary 

The Brillouin scattering data have been reviewed and divided into two domains:  (a) in the low 
pressure phase, for the pressure below 2 GPa, the specific heat ratio γ is assumed to be 1.5; (b) in 
the higher pressure phase, for pressure higher than 2 GPa, the specific heat ratio γ is assumed to 
be 1.0, which is valid for incompressible material, because at higher pressure, the material has 
transitioned into a glassy state.  The calculated pressure, density data are fitted with the Vinet 
and the Birch-Murnaghan equations of state to find the isothermal bulk moduli and its pressure 
derivatives.  The results compare more favorably with Hugoniot test data. 

More accurate measurements for the densities, the specific heats, the thermal expansion 
coefficient, and the sound velocities in the low pressure domain will improve the data post-
processing.  Lab tests in the high pressure domain above 2 GPa are not easy to perform.  But the 
low pressure domain will cover the majority of application needs. 
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