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Abstract 
 
Multilayered hybrid metal laminates have been studied for structural applications due to their potential for 
higher strength, toughness, and stiffness.  The goal of this study was to modify the microstructure and 
mechanical properties of commercial purity titanium (CP-Ti) and 1100 aluminum (Al) laminates for 
potential applications in mine blast mitigation.  Alternating layers of 50 μm thick CP-Ti and Al layers 
were ultrasonically consolidated. To provide high hardness and stiffness, the consolidated laminates were 
heat-treated in a variety of conditions to form intermetallic titanium aluminide (TiAl3) layers.  The 
resulting CP-Ti/TiAl3/Al laminates were characterized by scanning electron microscopy.  Plate impact 
testing, an instrumented laboratory scale test to characterize the dynamic spall behavior of the material, 
was conducted on select laminates.  Based on these results, the CP-Ti/TiAl3/Al laminate had a higher 
spall strength compared to the Cp-Ti/Al laminate.   
 

Introduction 
  

Titanium alloys and intermetallics have been used in light weight structural and armor 
applications.  The TiAl3 intermetallic compound, like most intermetallics, has high hardness and 
stiffness, but is brittle [1].  However when combined in a metal-intermetallic laminate system 
with Ti and Al layers, the brittle property is offset by the strength and ductility of Ti and Al, 
increasing the toughness.  In this study, Ti-TiAl3-Al metal-intermetallic laminates were 
ultrasonically consolidated, processed, and characterized for microstructure and spall strength.  

Ultrasonic consolidation is a high speed process that uses ultrasonic oscillation to 
produce friction leading to adhesion of dissimilar metallic foil layers. The ultrasonic weld, or 
bond, is formed between the metal foils in less than 250 milliseconds, by localized slip that 
breaks up the surface oxide and causes elastoplastic deformation at the interface.  The sonotrode, 
which produces the ultrasonic oscillation while rotating over the metal surface, applies low 
pressures below 50 MPa, and does not produce heat.  These aspects make it ideal for fragile 
structures and heat sensitive metals to be consolidated.  In addition, sensors can be embedded 
between the metallic foils for measurements of stimuli or for adaptive response. 
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Experimental Procedure 
 

Laminate Sample Processing 
Alternating layers of 50 μm thick CP-Ti and Al were ultrasonically consolidated (UC) by 

Solidica Inc. Repeated sets of an Al and a CP-Ti double layer were laid down over a 1.27 cm 
thick base 3003 Al, each double layer ultrasonically welded by the sonotrode oscillating over the 
Ti surface, to form 0.64 cm thick laminates of CP-Ti/Al on the base Al.  A scanning electron 
microscopy (SEM) image of a cross section of the as-received laminate is shown in Fig. 1.  The 
laminates were then cut into roughly 5.0 cm by 5.0 cm by 1.9 cm samples and heat treated.  
 

 

1100-Al Ti 3003-Al Ti 1100-Al

Figure 1.  Scanning electron microscopy image of a cross section of  
the as received unreacted laminate. 

 
Following the studies by Xu et al [2] to form TiAl3, the annealing temperature of 550°C, 

which is below the melting point of Al, was chosen [3].  Six different heat treatments at 550°C 
were conducted in vacuum or in air, in the hot press with or without pressure.  Table I shows the 
different heat treatments conducted.   
 

Table I. Heat Treatments Conducted  
Experiment 1 2 3 4 5 6 
Time at 550°C (h) 1 1 1 1 3 12 
Pressure (MPa) 6 6 0 0 6 Minimal 
Environment Vacuum Air Vacuum Air Vacuum Vacuum 
 

After the heat treatments, smaller samples were sectioned off with Struers Discotom 
abrasive cutoff saw, then encased in Bakelite mount and polished. Each sample was polished 
with 240 grit, 320 grit, 400 grit, 600 grit, and 800 grit SiC paper, then polished on the vibramet 
with 5 μm alumina slurry for 1 h, 1 μm alumina slurry for 0.5 h, and finished with a 0.06 μm 
colloidal silica for 0.5 h.  
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Spall Strength Test 
The procedure to determine spall strength is to impact a plate of the sample material with 

a flyer plate of known properties at normal incidence.  As a result of impact, a compressive 
shock wave traverses the target and reflects from the free-surface, in tension, back into the 
shocked material.  This reflection then interacts at some point with the release wave that follows 
the original shock.  This produces tension which can, if it is of sufficient duration and magnitude, 
spall the material.  The particle velocity at the target free-surface is monitored with laser 
interferometry (VISAR, [4]).  The specimens were oriented such that the spall plane is parallel to 
the individual laminates.   

Since the spall strength of the laminate was expected to be limited by the strength of the 
Al even with perfect bonding, the spall strength of the solid Al, both heat-treated and untreated 
were tested.  Laminates of heat treated and as received UC Al were also tested to determine the 
bonding quality of the laminates.  For the UC CP-Ti/Al laminates, as received samples and heat 
treated laminates (using the Experiment 1 heat treatment parameters) were tested. 
 

Results and Discussion 
 
Microstructure 

X-ray diffraction (XRD) of the heat treated UC laminates indicated the Ti reacted with 
the Al to form the TiAl3 intermetallic phase.  This is in agreement with previous researchers who 
observed TiAl3 formation between the Ti and Al layers after heat treatment [2, 3, 5-7].  The XRD 
pattern of the sample from experiment 1, with labeled Ti, Al, and TiAl3 peaks, is shown in Fig. 2.  
 

 

 
 

Figure 2.  XRD Pattern of a sample hot pressed at 550°C with 6 MPa of  
pressure for 1 h in vacuum. 

 
The samples that were hot pressed with 6 MPa of pressure, regardless of the environment, 

exhibited more distinct TiAl3 layer interfaces between the CP-Ti and Al layers.  Experiment 1 
and 2 did not show any cracking of the TiAl3 layer.  Experiment 5 showed cracking only at the 
thick TiAl3 layers.  In addition, the pressure appeared to have assisted in the reaction of Ti with 
Al, forming a homogenous TiAl3 layer.  In contrast, the samples heat treated without any applied 
pressure (experiment 3 and 4) exhibited cracking in the TiAl3 phase, perpendicular to the length 
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of the layer.  A back scattered electron micrograph obtained by a SEM of the polished cross 
sectioned surface of the sample from experiment 3 shows this cracking in Fig. 3.  In addition, 
some parts of the TiAl3 layers were less homogenous.   

Comparing the results between experiment 1 and 2, as well as results between 3 and 4, 
the furnace environment had an effect on the Ti-Al reaction.  Regardless of the pressure 
condition, thicker TiAl3 layers were observed when heat treated in vacuum rather than in air.  
However more experiments are necessary to determine the difference in the reaction rates.   
 

 

CP-Ti TiAl3Al 

T
iA

l Al 

Cracks 

Figure 3. Back scattered diffraction micrograph of the reacted laminate  
layers.  Cracks were observed in the thicker TiAl3 layers. 

 
For all heat treatments, the TiAl3 layer on one side of Al was less wide than the other 

side.  As shown in Fig. 3, the right side of the CP-Ti has a thicker TiAl3 layer than the left side of 
the Al.  This was attributed to the sonotrode causing more surface roughening and breaking up 
the oxide layer on one surface of the CP-Ti; the right Ti surface as shown in Fig. 3.  The rougher 
surface, having a larger surface area with less oxide, had more reaction between Ti and Al, 
resulting in a thicker TiAl3 layer.  Experiment 6, which unintentionally cycled minimal pressure 
throughout the heat treatment, delaminated after the heat treatment and could not be examined.  
The heat treatment properties of the experiments and the resulting TiAl3 layer are shown in Table 
II. 
 

Table II. Heat Treatment and Resulting TiAl3 Layer 
Experiment 1 2 3 4 5 6 
Time at 550°C (h) 1 1 1 1 3 12 
Pressure (MPa) 6 6 0 0 6 Minimal 
Environment Vacuum Air Vacuum Air Vacuum Vacuum 
TiAl3 Thickness (μm) 1 - 5 0.5 - 1 2 - 10 < 0.5 3 - 30 - 
TiAl3 Cracked? No No Yes Yes Yes Delaminated 
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Spall Strength 

The spall strength can be related to the size of the so-called “pull-back” signal seen in the 
velocity trace following the initial compressive wave, as described by the following:  
 

Spall Strength = ½ · ρ · (shock speed) · (pull-back velocity)  (1) 
 
where ρ is the density of the material.  Due to the uncertainty of the material properties in the 
present experiments, we have elected to report the spall strength in terms of the more qualitative 
measure of the pull-back velocity, following the linear-elastic material spall strength equation 
(Eq. 1) above, rather than an actual strength.  The pull-back velocities, along with other relevant 
conditions of each test, are given in Table III. 
 

Table III. Spall Test Parameters and Results 
F l y e r T a r g e t 

  
Material 

Thickness 
(mm) 

Heat 
Treatment Material

Thickness
(mm) 

Heat 
Treatment 

Impact 
Speed 
(m/s) 

Pull-back 
Velocity 

(m/s) 
Solid Al 2.04 None Solid Al 3.84 None 200 118 
Solid Al 2.00 None Solid Al 4.01 None 204 115 
Solid Al 2.02 None Solid Al 3.89 3 hours 210 130 
Solid Al 1.96 None UC Al 3.97 None 204 22 
Solid Al 2.04 None UC Al 4.06 None 200 20 
Solid Al 2.03 None UC Al 3.82 3 hours 210 38 
Solid Al 1.96 None UC TiAl 3.98 None 235 5 

Solid CP Ti 1.99 None UC TiAl 3.98 None 235 4 
Solid Al 1.98 None UC TiAl 3.94 1 hour 228 45 

 
From this data, four observations can be made.  First, when the solid Al is heat-treated, 

there is a small gain in spall strength (~12%).  When the UC Al is heat-treated, there is a 
moderate gain in spall strength (~81%).  However, when the CP-Ti/Al laminate is heat-treated, 
there is a much larger gain in spall strength (~1000%), indicating that the formation of TiAl3 
greatly increases the bond strength.  It should be note that the pull-back velocity of the heat-
treated Cp-Ti/Al is about 1/3 that of the heat-treated solid Al, which indicates that the spall plane 
is occurring at the bond, and not within an Al layer. 
 

Conclusions 
  
 Alternating CP-Ti and Al layers were ultrasonically consolidated into laminates and heat 
treated to form intermetallic layers, which were determined by XRD to be TiAl3.  SEM analysis 
of the post-heat treated samples showed the heat treatment parameters of pressure and 
environment had an effect on the reaction between Ti and Al.  On the CP-Ti surfaces made 
rougher due to the sonotrode, consistently thicker TiAl3 was observed.   
 The spall strength tests were conducted by plate impact on solid AL, UC Al laminates, 
and UC CP-Ti/Al laminates.  Heat treatment was observed to increase the spall strength, 
however for the Cp-Ti/Al laminate, the increase in spall strength was most likely due to the 
increase in bond strength with the formation of TiAl3 layers.   
 Though the kinetics of the Ti-Al reaction and the effect of TiAl3 layer thickness on spall 
strength need to be further explored, these initial results show heat treating UC CP-Ti/Al 
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laminates forms TiAl3 intermetallic layers which not only increases the bond between the CP-Ti 
and Al layers, but also increases the strength and of the laminate material.  
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