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ABSTRACT

Gravitational and magnetic anomaly inversion of homoge-
neous 2D and 3D structures is treated using a geometric pa-
rameterization that can represent multiple, arbitrary poly-
gons or polyhedra and a local-optimization scheme based on
a hill-climbing method. This geometry representation uses a
tree data structure, which defines a set of Boolean operations
performed on convex polygons. A variable-length list of
points, whose convex hull defines a convex polygon operand,
resides in each leaf node of the tree. The overall optimization
algorithm proceeds in two steps. Step one optimizes geomet-
ric transformations performed on different convex polygons.
This step provides approximate size and location data. The
second step optimizes the points located on all convex hulls
simultaneously, giving a more accurate representation of the
geometry. Though not an inherent restriction, only the geom-
etry is optimized, not including material values such as densi-
ty or susceptibility. Results based on synthetic and measured
data show that the method accurately reconstructs various
structures from gravity and magnetic anomaly data. In addi-
tion to purely homogeneous structures, a parabolic density
distribution is inverted for 2D inversion.

INTRODUCTION

Gravitational and magnetic anomaly inversion has applications in
any fields, including geophysical prospecting and archeology

Oldenburg, 1974�. Fortunately, exact forward models for comput-
ng gravitational and magnetic fields caused by either infinite polyg-
nal cylinders �2D� or arbitrary polyhedra �3D� exist so that compu-
ational modeling and inversion of such structures is very efficient
Hubbert 1948; Won and Bevis, 1987�. Several methods for model-
ng and inversion have been explored, such as those based on a data-
ase of known masses �Bullard and Cooper, 1948�, linear splines

Manuscript received by the Editor 6 March 2008; revised manuscript recei
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Murthy and Rao 1993�, neural networks �Osman et al., 2006, Os-
an et al., 2007� continuous curves �Abdelrahman and Essa, 2005;
ssa, 2007�, linearization of the nonlinear integral equation �Gao et
l., 2007�, singular value decomposition �Lines and Treitel, 1984�,
ourier transform �Mareschal, 1985�, simulated annealing �Mundim
t al., 1998�, 2D binary grid methods �Krahenbuhl and Li, 2006�, and
D prism methods �Rao et al., 1999�.

The method presented here focuses on the data structure used to
epresent the geometry of the inverted structure. First introduced in

ildman and Weile �2007�, the data structure is a binary tree that de-
nes a set of Boolean operations performed on convex polygons.
ach convex polygon is defined as the convex hull of a list of points.
his representation can then use line segments to approximate any
eometry or topology. The method can represent exactly any poly-
on and also approximate curved structures using an arbitrary num-
er of line segments.Also, multiple shapes are easily represented us-
ng the tree structure; because the size of the tree is unrestricted, any
umber of shapes can be imaged.

This method has a number of advantages. First, contrary to spline-
ased methods, the number of points used in any single convex hull
s not restricted. In spline approaches, using too few points can lead
o an inaccurate geometry. If too many points are chosen, the optimi-
ation can be inefficient. Second, the number of separate shapes is
nrestricted. Again, many spline-based methods require a priori
nowledge of the number of separate geometries, and the possible
ntersection between shapes can be difficult to handle. Third, the size
f the search space scales up only as the geometry becomes more
omplicated. In contrast, pixel-based methods rely on a discretiza-
ion of the region that can be too coarse or too fine. Fine grids are ca-
able of a higher-resolution image; however, the search space is
uch larger at the outset. Fourth, Fourier-based methods cannot re-

roduce nonsmooth structures. The use of line segments allows for
ccurate representation of corners, and because their length can be
rbitrarily small, curves are also well approximated. Finally, the
ethod easily extends to three dimensions. Every geometric concept

sed has an obvious 3D analog. �See 3D examples in the results sec-
ion; however, the algorithm is not described in detail because it is

ovember 2008; published online 23April 2009.
berdeen Proving Ground, Aberdeen, Maryland, U.S.A. E-mail: raymond.a.
EG license or copyright; see Terms of Use at http://segdl.org/
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I24 Wildman and Gazonas
ssentially identical to the 2D algorithm.� In total, our method makes
o assumptions regarding the number or complexity of the objects to
e imaged.

Previously, a genetic algorithm �GA� was used with the above ge-
metry representation for the electromagnetic inversion of conduct-
ng cylinders �Wildman and Weile, 2007�. Although the GA ap-
roach showed the viability of the method, it required a significant
umber of function evaluations; subsequently, a greedy search
ethod and a combined GA/local search method were implemented

o improve performance �Wildman and Weile, 2008�. The method
iscussed here forgoes any stochastic optimization and adapts a
ewton-like local search method, giving a simplified and more effi-

ient approach. Ultimately, the method uses local search combined
ith geometric operations discussed in previous work.
The local search is used to optimize two quantities: affine trans-

ormations that are applied separately to each convex polygon in a
ree and the individual points on the convex hulls of each polygon.
ach optimization scheme has advantages. The affine transforma-

ion is lower dimensional, leading to more efficient convergence of
he local search. Approximate size and location of geometry can be
etermined using this optimization. Optimizing the individual
oints is more efficient for recovering detailed shape information.
he overall optimization algorithm proceeds in two stages, only us-

ng higher dimensional searches after other options have been ex-
austed. The result is an efficient search algorithm that typically re-
urns results with low relative errors in the gravitational or magnetic
eld �on the order of 10�3 to 10�4 as measured in the �2-norm for
imulated targets� using on the order of, depending on the complexi-
y of the target, 103 to 104 function evaluations.

In the next section, the geometry optimization method is detailed.
he geometric data structure is reviewed, and a local optimization-
ased method for inversion is discussed. The numerical results sec-
ion explores the use of gravitational and magnetic data as well as

easured data from the literature. The final section discusses con-
lusions and future work.

GEOMETRY OPTIMIZATION

This section details the geometry encoding and optimization
cheme. In the first subsection, the key data structure is reviewed and

igure 1. Convex hull of a set of points.
Downloaded 30 Apr 2009 to 128.175.13.10. Redistribution subject to S
iscussed. The second subsection details the optimization algorithm
hich is a combination of a Newton-like search method and several
eometric operations. The objective function, which relates the error
n a potential solution to some synthetic or measured data, is present-
d in the third subsection. Next, the gradient-based search method is
eviewed and discussed in context with the given objective function
nd geometry representation. Finally, the algorithm is reviewed in
otal through an example.

eometry representation

The basic principle behind this geometry parameterization is the
se of convex polygons to build more complex geometries and to-
ologies. Though unnecessary, convex shapes are ideal because they
an be represented easily as the convex hull of a list of points. The
onvex hull of a set of points is defined as the smallest convex set that
ontains all points or, equivalently, the intersection of all half-planes
hat contain the points �de Berg et al., 2000�. Figure 1 gives an exam-
le of the convex hull �solid line� of a set of points �shown as black
ots�.

Any list of three or more noncollinear points generates a valid
onvex hull, making self-intersections impossible. A mathematical
efinition of the convex hull �CH� of a set of N points, �

�p�1� , . . . , p�N��, is given by

CH��� � ��
i�1

N

� ip
�i��� i � 0 , ∀ i , �

i�1

N

� i � 1� . �1�

hough this strict definition defines the set of �infinitely many�
oints contained in a convex hull, typical algorithms return the sub-
et of points that are located on the vertices of a convex hull �as
hown in Figure 1 and denoted as matrix P throughout� rather than
he set of coefficients � i.

In this work, line segments are used to connect points, giving a lin-
ar, polygon-based approximation of target geometries. This is not a
imitation of the method because splines or Bézier curves could also
e used �Farin and Hansford 2000; Mortenson, 1999�. Additionally,
he number of points on a convex hull is not restricted in any way, so
rbitrarily small line segments can be used to approximate curved
tructures.

More complex structures, such as multiple and concave shapes,
an be generated by combining convex shapes. One way of combin-
ng convex polygons is to generate expressions involving Boolean
et operations such as union, subtraction, and intersection applied to
onvex polygon operands. Moreover, mathematical expressions can
e represented as binary trees, which can be manipulated with an op-
imization scheme. Here, the internal nodes of the tree represent
oolean operations and the leaf nodes represent convex polygons.
One difference between this work and Wildman and Weile �2007�

s that only union operations are used. Figure 2 gives an example of
his scheme. Consider a Boolean expression �shown in Figure 2a as a
ree� of the form

CH��� � CH��� � CH��� , �2�

here �, �, and � represent three separate sets of points �shown in
igure 2b, with dashed lines representing the convex hulls� and �
epresents union.

The first step in generating the geometry defined by expression 2
s to compute the union of the convex polygons represented by
H��� and CH���, as shown in Figure 2c. In this case, the polygons
EG license or copyright; see Terms of Use at http://segdl.org/
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Gravity inversion using tree geometry I25
re separate, so computing the union is trivial. Next, the union of the
esult of the previous step �shown in Figure 2d as the shapes with �s
n the vertices� and the convex polygon represented by CH��� is
omputed. In Figure 2d, the result of the union operation is shown as
he solid line, and the operands are shown as dotted lines. Figure 2e
llustrates the result of expression 2.

Evaluating geometries such as expression 2 requires several com-
utational geometry algorithms. First, there are a number of convex
ull algorithms; should structures with a large number of points be
ecessary, O�n log�n�� �in the total number of points n� algorithms
xist. Computing Boolean operations requires an algorithm known
s map overlay �de Berg et al., 2000�. This algorithm computes a
artitioning of the plane based on the input polygons. Intersection
oints and separate regions are identified so that Boolean opera-
ions can be performed. This algorithm also can be computed in
�n log�n�� I log�n�� time, where the computation time depends
n the number of intersections I �de Berg et al., 2000�. In this imple-
entation, the Computational Geometry Algorithms Library was

sed for all 3D geometry operations.
Ultimately, this scheme applies an optimization process to the

ata structure defined above. The data structure can be summarized
s a set of lists or arrays containing 2D �or 3D� points stored in the
eaf nodes of a tree. The internal nodes of the tree define some Bool-
an combination of the convex polygons that each point list repre-
ents. An optimization scheme applied to this data structure must
hen operate on individual points and the actual structure of the tree.

numerical optimization scheme is applied to the convex shapes
directly optimizing the coordinates and geometric transforma-
ions�, and decisions in the shape of the tree are made based on the
erformance of several runs of the optimizer.

ptimization algorithm

Given the possible complexity of the geometry representation, an
ptimization scheme must be designed to construct a target geome-
ry efficiently. To that end, the local optimization method used here
ently increases the dimension of the search space by optimizing dif-
erent geometric transformations and carefully controlling the size
f the tree. The method proceeds in two stages: a split stage deter-
ines the approximate size, location, and geometric complexity of

he target and an optimize stage gives a more accurate image. Each
teration of the split stage divides the leaf nodes of the tree into the
nion of two separate convex polygons along one or more angles.
he best choice is saved and optimized. Once the change in the ob-

ective function is sufficiently small, the optimize stage applies high-
r-dimension searches to the geometry to model the target more ac-
urately.

The optimization algorithm used here is the Broyden-Fletcher-
oldfarb-Shanno �BFGS� local search method �Dennis and Schna-
el, 1996�. BFGS is a hill-climbing method similar to Newton’s
ethod. It differs from Newton’s method in that it uses a specific

ank-two update to the Hessian matrix of approximated second de-
ivatives. Because the search space is multidimensional, line search
s used at a fixed number of search directions to find successive mini-

ized vectors. Throughout this paper, the term iteration refers to a
ingle loop through a stage of the global scheme, not separate search
irections within BFGS.
Downloaded 30 Apr 2009 to 128.175.13.10. Redistribution subject to S
The dimension of the space searched by BFGS can be controlled
y optimizing various affine transformations, including scaling and
ranslation. An affine transformation, essentially a linear transfor-

ation and a translation, can be expressed as

x* � Ax � b , �3�

here A is a square matrix representing the linear transformation
nd b is a column vector representing the translation. When applied
o a set of 2D points, expression 3 can be rewritten as

P* � A�P � C� � B � C ,

B � b	11 . . . 1
1�n,

C � c	11 . . . 1
1�n, �4�

here A is a 2 � 2 matrix representing a linear transformation, b is a
D column vector representing a translation vector, c is a 2D column
ector representing the center of mass of the set of points, and P is a
� n matrix representing the components of the n points. �For three
imensions, the dimensions of all matrices and vectors are increased
o 3 � 3 and 3 � 1, respectively.�

�

��

�

�
)

)

c)

d)

e)

igure 2. Decoding process. �a� Tree structure. �b� Point lists with
heir convex hulls. �c� Union of two separate convex hulls. �d� Union
ith remaining shape. �e� Final result.
EG license or copyright; see Terms of Use at http://segdl.org/
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I26 Wildman and Gazonas
Geometric transforms can be applied �and optimized� by selecting
pecific parts of an affine transformation given by

A�sxx , sxz , szx , szz� � �sxx sxz

szx szz
� , b�tx , tz� � �tx

tz
� .

�5�

caling in two dimensions involves optimizing the quantities sxx and
zz, with

A�sxx , szz� � �sxx 0

0 szz
� , b � �0

0
� . �6�

imilarly, translation in two dimensions involves optimizing the ele-
ents of b, tx, and tz,

A � �1 0

0 1
� , b�tx , tz� � �tx

tz
� . �7�

ombining scaling and translation gives a four-parameter optimiza-
ion problem:

A�sxx , szz� � �sxx 0

0 szz
� , b�tx , tz� � �tx

tz
� . �8�

Figure 3 shows an example of an affine transformation applied to
rectangle, characterized by

A � �1.4 � 0.1

0.1 1.2
� , b � � 5

1.844
� , �9�

here A is unitless and b is measured in kilometers.
In addition, a separate transformation is applied to each point list

n a tree. Given k leaf nodes in a tree, optimizing a scaling or transla-
ion transformation requires 2k parameters, each combined scaling
nd translation requires 4k parameters, and each affine transforma-
ion requires 6k parameters. The initial guess for each leaf node is
hosen as the corresponding identity transformation with some
aussian random variable �with a small variance� added. �In three
imensions, the corresponding optimizations require 3k, 6k, and 12k
arameters, respectively.�

Individual points are also optimized. Given a set of N points,
FGS must optimize a set of 2N parameters �or 3N in three dimen-

ions� comprised of the components of each point. The set of optimi-
ation parameters is given by

0 5 10 15 20 25 30 35 4

0

5

10

15

20

x (km)

y
(k
m
)

a)

igure 3. Affine transformation applied to a rectangle. �a� Initial shap
Downloaded 30 Apr 2009 to 128.175.13.10. Redistribution subject to S
P � �px
�1� . . . px

�N�

pz
�1� . . . pz

�N� � . �10�

gain, the initial guess used with BFGS is the original set of points
ith some small random variable added.
Figure 4 shows a flow chart of the overall optimization scheme.

he method is broken into three stages: initialize, split, and opti-
ize. Each stage consists of a loop over a set of optimizations, each
ith a certain termination criterion. Termination criteria can be a
xed number of iterations, achievement of a fixed absolute error, or
tagnation measured as an insufficient change in the error.

nitialize

The initial geometry is always a centered rectangle with x and z di-
ensions equal to half the specified bounds of the region. This step is

enoted as the Rectangle block in Figure 4. Next, the initial geome-
ry is optimized using the scaling and translation transforms given in
quations 6 and 7. The two optimizations are repeated a set number
f times; typically two or three iterations are sufficient. Using only
caling and translation optimizations gives approximate size and lo-
ation information.

plit

The split stage determines the geometric and topological com-
lexity of the structure. The splitting operation splits a chosen leaf
ode along a given line into the union of two separate nodes while
dding the intersection points of the line and the hull to the newly
reated leaf nodes. Including intersection points ensures that the re-
ulting geometry is identical to the original. Figure 5 shows an exam-
le of the splitting process: Figure 5a shows the initial and resulting
ree structure, and Figure 5b and c shows the corresponding geome-
ries. �The centerline in Figure 5c is for illustrative purposes; the
dded intersection points ensure that the resulting geometry is iden-
ical to the initial.�

The “split all” block attempts to determine the best choice of split
etween all current convex shapes. Each convex shape is first split
long 0° and subsequently 90° and is optimized using the combined
ranslation/scaling given in equation 8. �In three dimensions, the ob-
ects are split along the three planes that compose the coordinate
xes.� After all combinations of splitting are completed, the best re-
ult is saved. Next, optimization of a full affine transformation is ap-
lied to the newly split structure; however, the result of this optimi-
ation is kept only if one of the termination criteria of the split stage

0 5 10 15 20 25 30 35 40

0

5

10

15

20

x (km)

y
(k
m
)

ffine transformation applied.
0

b)

e. �b�A
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Gravity inversion using tree geometry I27
s achieved. The termination criteria used here are the reduction be-
ow an error of 10�2 or the difference between the initial error and er-
or after splitting below 10�2. The former criterion indicates that the
tructure is likely accurate enough and further subdivision will not
id the final step because the latter indicates that the splitting process
as stagnated.

ptimize

The final stage simply optimizes the divided structure alternating
etween affine transformations �equation 5� and points �equation
0�. In addition, new points may be added in between the two opti-
ization runs. In this implementation, a point is added in turn to the
idpoint of each line segment �or polygon centroid in three dimen-

ions� and slightly translated outward along the normal direction of
he line segment. The objective function of this structure is evaluat-
d, and the new structure with the best objective function value is
aved. Finally, the termination criteria are similar to the split stage,
hough both the error and difference in the error must be below 10�3.
n addition, this step can be terminated after four or five iterations.

bjective function

An objective function must be defined to measure the perfor-
ance of the algorithm relative to some input data. The objective

unction is then the relative error of a potential solution compared
ith simulated or actual data produced by a target geometry. Gravi-

ational and magnetic anomalies can be computed efficiently for po-
ygonal geometries such as those produced by the proposed geome-
ry representation in Figure 2 �Won and Bevis, 1987�.

For homogeneous polygonal structures �represented as K line seg-
ents�, the vertical component of the gravity anomaly measured at a

tation oi can be expressed as

gi � 2G� �
k�1

K

Zk�oi� , �11�

here G is the gravitational constant, � is the density contrast of the
tructure, and Zk is a line integral over the kth segment of the struc-
ure. Analytical expressions for the line integrals Zk are available,
nd one efficient representation is given by Won and Bevis �1987�:

Zk�oi� � A��� k � � k�1� � B ln rk�1

rk
�� , �12�

here

A �
�px

�k�1� � px
�k���px

�k�pz
�k�1� � px

�k�1�pz
�k��

�px
�k�1� � px

�k��2 � �pz
�k�1� � pz

�k��2 , �13�

B �
pz

�k�1� � pz
�k�

px
�k�1� � px

�k� , �14�

rk
2 � �px

�k��2 � �pz
�k��2, �15�

� k � tan�1 pz
�k�

px
�k�� . �16�

he terms px
�k� and pz

�k� represent the coordinates of the kth vertex of a
tructure �equation 10, or, e.g., the result of equation 2� relative to the
Downloaded 30 Apr 2009 to 128.175.13.10. Redistribution subject to S
tation location oi, and index arithmetic is performed cyclically. Sev-
ral special cases exist �e.g., rk�0�, details of which can be found in
on and Bevis �1987�. Also, magnetic anomalies mi are computed

n a similar fashion. Finally, gravity anomalies of polygons with par-

Split Optimize

Affine

Point

Add

Split all

Affine

Initialize

Rectangle

Translate

Scale

igure 4. Optimization algorithm flowchart.

� �
�

�Split, 90�

a)

b)

c)

igure 5. The splitting process. �a� Tree structure. �b� Initial point list
ith convex hull. �c� Union of two convex hulls at 90°.
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I28 Wildman and Gazonas
bolic density distributions and 3D polyhedra can be computed as
iven in Rao et al. �1994� and Singh and Guptasarma �2001�.

For 2D geometries, a set of Ns measurements is taken at linearly
paced stations along the z�0, 0 � x � ymax line segment. �For 3D
ases, a uniform grid of observation stations is used to measure the
arget data.� Although the altitudes of the stations are assumed to be
onstant, local topography can be modeled by varying the station
eight z. The objective function is defined as the �2 errors relative to
ome measured or synthetic data for gravitational data

fg ���i�1
Ns �gi � gi

meas�2

�i�1
Ns �gi

meas�2
�17�

nd magnetic data

fm ���i�1
Ns �mi � mi

meas�2

�i�1
Ns �mi

meas�2
, �18�

here gi and gi
meas represent the gravitational anomaly at the ith sta-

ion of the search agent �as computed by equation 11� and target ge-
metry, respectively, and mi and mi

meas represent the total magnetic
nomaly at the ith station. Because the magnetic field m is a vector,
ome combination of the magnetic field components mx, my, and mz

ust be used to obtain a scalar objective function. The total magnetic
eld is used and is given by �for 2D cases�

m � sin�� inc�mz � sin��str�cos�� inc�mx, �19�

here � inc is the inclination angle of the ambient magnetic field mea-
ured in degrees below horizontal and �str is the strike angle of the
tructure relative to magnetic north measured in degrees. In three di-
ensions, the total magnetic field is

m � �mx
2 � my

2 � mz
2. �20�

Finally, noise can be added to synthetic data to simulate a physical
ystem. Here, noise is defined as an additive Gaussian random vari-
ble with zero mean and a standard deviation given by some defined
ignal to noise ratio �S/N�, measured in decibels �dB�. The measured
ata is then given by

gi
meas � gi

sim � ��� , 	 �rms�gsim� ,

� � 0 , 	 � 10�S/N/20, �21�
here gi

sim is the simulated gravitational field at the ith station,
�� , 	 � is a Gaussian random variable with mean � and variance 	 ,

nd rms�·� indicates the root-mean-square average of the simulated
ata.Asimilar expression is defined for the magnetic data mi

meas.

FGS applied to geometry optimization

BFGS forms the basis of the proposed inversion scheme. It is used
o optimize different sets of geometric transformations and also
oint locations directly; however, the basic search method is the
ame regardless of the chosen optimization parameters. Again, most
teps shown in Figure 4 involve applying BFGS to the current geom-
try.

To reiterate, BFGS is a Newton-like local search method that uses
n approximation of the Hessian matrix of second-order partial de-
ivatives to avoid costly �and possibly inaccurate� second-derivative
omputations �Dennis and Schnabel, 1996�. The method iterates
hrough a number of search directions that are determined by solving
Downloaded 30 Apr 2009 to 128.175.13.10. Redistribution subject to S
Hksk � � � f�xk� �22�
or the kth search direction sk, where Hk is the approximated Hessian
atrix, xk is a vector of the independent variables used to compute

ither fg or fm, and the gradient � f is computed via finite difference.
The contents of the vector of independent variables depend on

hich type of optimization is being used because, as discussed
bove �equations 5–10�, scaling, translation, affine transformations,
r point locations can be optimized. An affine transformation ap-
lied to a single leaf node, for example, is represented by

x � 	sxx , sxz , szx , szz , tx , tz
T. �23�

In total, computing f�x� involves applying the given transforma-
ion to the current tree-based geometry �equations 5–8�, evaluating
he geometry �e.g., as in expression 2�, computing the gravitational
r magnetic anomaly �equations 12–16�, and computing the error
elative to the target as given in equations 17 and 18.

With a new search direction in hand, the next point, xk�1, can be
ound using a line search. The line search proceeds by finding an �k

hat minimizes the linear model

f*��k� � f�xk � �ksk� , �24�
iving a new point

xk�1 � xk � �ksk. �25�
iven a new vector, the Hessian matrix must be updated to find the
ext search direction. First, the gradient of the function at the new
oint is computed and the difference of the gradients at the new and
revious points is defined as

gk � � f�xk�1� � � f�xk� . �26�
he Hessian matrix is then updated using a rank-two approximation,
iven by

Hk�1 � Hk �
gkgk

T

gk
Tsk

�
Hksk�Hksk�T

sk
THksk

, �27�

hich is rank two because it is the combination of two rank-one ma-
rices �i.e., an outer product of two vectors�, each with a different ba-
is vector. Finally, the inverse of the Hessian matrix is required to
olve equation 22 and can be expressed as

Hk�1
�1 � Hk

�1 � gkgk
T�ksk

Tgk � gk
THk

�1gk

�sk
Tgk�2

�
Hk

�1gksk
T � skgk

THk
�1

sk
Tgk

. �28�

For the initial approximate Hessian matrix H0, a diagonal matrix
s formed using values corresponding to the inverse squared of the
xpected magnitude of the variables to be optimized. Expected mag-
itudes for A are chosen as one, and magnitudes for b can be chosen
s some fraction of the total region size, given by xmax and zmax. For an
ffine transformation, the initial Hessian matrix is

H0 � diag	1,1,1,1�cxmax��2	·
�czmax��2
 , �29�

here diag	·
 indicates a diagonal matrix with the argument placed
long the diagonal, and c is a constant typically chosen as 0.25. The
nitial guess x0 is chosen as the identity operation for the chosen geo-

etric transformation or, for direct point optimization, the set of
oints of the current geometry. In addition, a small random value
hosen from a zero mean Gaussian distribution is added to the initial
uess. The variance of the distributions is determined by the typical
agnitudes discussed above.
EG license or copyright; see Terms of Use at http://segdl.org/
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Gravity inversion using tree geometry I29
For an affine transformation, matrix A is chosen as the identity
atrix and the elements of vector b are set to zero, giving

x0 � 	��1 , 10�3� ��0 , 10�3� ��0 , 10�3� ��1 , 10�3�
���0 , cxmax10�3� ��0 , czmax10�3�
T �30�

here ��� , 	 � is a Gaussian random variable with mean � and vari-
nce 	 .

Finally, BFGS can be run for a given number of search directions
r until the objective function value or the magnitude of the gradient
alls below some tolerance. Here, a set number of search directions is
hosen with a low number �15� for scaling and translation and a
igher number �50� for affine transformations and point optimiza-
ion.

lgorithm example

Figure 6 shows the progress of the algorithm through an example.
Details of the parameters are given in the Results section.� The
ethod begins with a single rectangle �Figure 6a�. The set of points

hat make up the rectangle is labeled �1� �p�1� , . . . , p�8��. Al-
hough the initial guess is convex, the result �Figure 6a� is given by

P* � CH��1� . �31�

he matrix of point coordinates P* is used to compute the gravita-
ional anomaly �upper portion of Figure 6a� via equation 11, and the
bjective function value, given by equation 17, is 0.133. Initializa-
ion continues by applying a few scale and translate optimizations.A
caling operation �equation 6� is optimized first, given by

P* � A�sxx , szz�CH��1� . �32�

Here and below, the presentation is simplified by omitting the shift
f origin shown in equation 4.�
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igure 6. An example of the inversion process. �a� Rectangle. �b� Tran
ffine optimization. �f� Point optimization and final result.
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BFGS is applied to this two-parameter problem, fg�sxx , szz�, as dis-
ussed in the previous subsection. As shown in equation 22, BFGS
equires the gradient of the objective function. This is obtained using
finite-difference approximation; for the example above, it is given
y

� fg�sxx , szz� � � fg�sxx � h1 , szz� � fg�sxx , szz�

h1

,

fg�sxx , szz � h2� � fg�sxx , szz�

h2
� . �33�

he step size is given by hk�
mach
1/6 xk

exp, where 
mach is the machine
recision and xk

exp is the expected magnitude of the kth argument as
iscussed in the previous subsection.

Note that each gradient computation requires K�1 function
valuations if K is the number of arguments. As K grows, the finite-
ifference computations can require many function evaluations,
hough, fortunately, they are all independent and therefore easily
arallelizable. The 3D version of the algorithm takes advantage of
his as each function evaluation is more costly than in the 2D case.

Next, a translation optimization �equation 7� is performed, given
y

P* � CH��1� � B�tx , tz� . �34�
gain, this represents a two-parameter optimization problem in tx

nd tz. These optimizations are repeated three times, with the final re-
ult shown in Figure 6b. The objective function value at this step is
.062.

Finally, the result is optimized using a full affine transformation
equation 5� to check for convergence. This operation is given by

P* � A�sxx , sxz , szx , szz�CH��1� � B�tx , tz� , �35�
nd the result is shown in Figure 6c. The objective function value is
.04, which does not meet the termination criteria.
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I30 Wildman and Gazonas
After the initialization stage, the algorithm attempts to add more
onvex shapes as necessary. The result of the previous stage is split
nto two point sets, �1 and �2, and optimized twice, first after split-
ing at 0° and again at 90°. Each separate split is optimized using a
artial affine operation �equation 8�, now given by

P* � 	A1�sxx
�1� , szz

�1��CH��1� � B1�tx
�1� , tz

�1��

� 	A2�sxx

�2� , szz
�2��CH��2� � B2�tx

�2� , tz
�2��
 , �36�

hich is an eight-parameter optimization problem. In this example,
he better choice was 90° �Figure 6d�, the result of which had an ob-
ective function value of 0.01. Again, the result is optimized using a
ull affine transformation to check for convergence, the result of
hich is shown in Figure 6e. �The optimization problem here is com-
osed of 12 parameters and is similar to that given in equation 36.�
his result �Figure 6e� has a sufficiently low error �1.1 � 10�3� to
roceed to the optimize stage.

At this stage, two types of optimizations are run until a termina-
ion criterion is achieved. First, another full affine optimization is
erformed �not shown�. Next, new points can be added to either set
s described previously. In this example, no additional points were
dded by the algorithm. Finally, the point sets, �1� �p�1� ,
. . , p�6�� and �2� �q�1� , . . . , q�6��, are optimized directly. The
peration used by the optimizer is given by

P* � CH	�1�p�1� , . . . , p�6��


� CH	�2�q�1� , . . . , q�6��
 , �37�
nd a total of 24 parameters are required for optimization in this case
six points in both �1 and �2�. The final result, with an objective
unction value of 3.8 � 10�5, is shown in Figure 6f.

RESULTS

Several results, both 2D and 3D and synthetic and measured are
resented. The first subsection gives results for synthetic magnetic
nomalies and the second comprises synthetic gravitational anoma-
ies. The final subsection gives results for measured data sets of grav-
tational data. Finally, in each 2D figure, solid lines indicate the tar-
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igure 7. Inversion of a three-mass structure using gravitational
ata. The target is shown as the solid line and the inversion as the
ashed line.
Downloaded 30 Apr 2009 to 128.175.13.10. Redistribution subject to S
et structure and target data �or previously published result� and
ashed lines indicate the results of the inversion.

Each example gives the total number of function evaluations,
hich is a rough measure of the computation time. The 2D method
as implemented in MATLAB and the 3D method was implement-

d in C��. For the MATLAB version, typical run times on a 2-GHz
entium M laptop are around 7 minutes, though it is important to
ote that MATLAB is interpreted �not compiled� code and typically
s slower than any compiled code. The 3D version was run on a clus-
er, with the finite-difference computations run in parallel. Run times
or this code are on the order of an hour.

ravitational anomaly

As a synthetic example, a fault was simulated as shown in the ex-
mple given in the previous section. Twenty stations were spaced
qually over 5 km; the density contrast was assumed to be ��

0.276 g/cm3. Figure 6f shows the target as the solid line, the opti-
ized result as the dashed line, and the simulated and inverted gravi-

y anomalies at the top. This result required 5486 function evalua-
ions to achieve an error of 3.8 � 10�5.

Next, a synthetic structure made up of three masses — one large,
eep mass and two shallow, smaller masses as shown in Figure 7 —
as used as a target. Again, a set of 25 stations was placed over
0 km and the density contrast was the same as above. Figure 7
hows the results of the inversion, which achieved an error of 1.9

10�4 after 11,112 function evaluations.
Additionally, the structure was inverted in the presence of cor-

upted data. First, a noise level of 50 dB was used, corresponding to
noise level of approximately 0.14 mGal �rms average�. The algo-

ithm was run twice, each time with a different set of noisy data. The
esults are shown in Figure 8. Next, a noise level of 40 dB was used,
iving an rms noise level of approximately 0.48 mGal. Figure 9
hows the results for two separate runs.

As a 3D example, a two-body structure was simulated with two
andomly generated convex shapes placed at different depths. This
xample used 30 stations and profiles over a 30 � 30 km region and
density contrast of �� �0.5 g/cm3. Figure 10 shows the simulated
nd inverted gravity contours. The result shown in Figure 11 re-
uired 12,688 function evaluations to reach a final error of 1.3

10�3. In this figure �and other 3D plots�, depth is indicated by the
hading, i.e., the shallowest parts of the structure are shown in white
nd the deepest are shown in black.

agnetic anomaly

The three-mass structure from the previous subsection was also
maged using magnetic data. The structure covers approximately
0 km and is approximately 20 km deep. A magnetic anomaly was
enerated assuming a susceptibility of � �10�3 �in SI units�, a
trike angle of 60°, and an ambient magnetic field of 50 �T at an in-
lination angle of 0°. Data were measured at a set of 25 stations from
to 40 km. After 27,122 function evaluations, the result shown in
igure 12 was achieved; it has an error of 2.2 � 10�4.
Finally, a synthetic 3D example was inverted. The target structure

as composed of three randomly generated convex shapes as shown
n Figure 14a. The structure had a susceptibility of � �10�3 and the
mbient field was assumed to have a strength of 50 �T at an inclina-
ion angle of 60° and a declination angle of 0°. The final result, which
sed data from a 30 � 30 point grid over a 20 � 20 km area, had an
EG license or copyright; see Terms of Use at http://segdl.org/
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igure 8. Three-mass structure inverted in the presence of noisy data with an S/N of 50 dB. �a� Run 1. �b� Run 2.
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igure 9. Three-mass structure inverted in the presence of noisy data with an S/N of 40 dB. �a� Run 1. �b� Run 2.
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igure 10. Gravity anomaly contours �in milligals� over a synthetic structure. �a� Target. �b� Inversion.
Downloaded 30 Apr 2009 to 128.175.13.10. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



e
s

M

a

f
t
k
t
c
T

b
M
v
m
r
5
t
i
v
�

d

i
a
d
s
e
t
v

a

F

F
T

F

I32 Wildman and Gazonas
rror of 1.0 � 10�3 and required 29,901 function evaluations. Re-
ults of the inversion are shown in Figures 13 and 14.

easured data sets

Several measured data sets were also inverted, the first of which is
n aeromagnetic anomaly described in Murthy et al. �2001�. There, a

) b)

igure 11. �a� Target and �b� inverted structures.
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igure 12. Inversion of a three-mass structure using magnetic data.
arget is shown as the solid line and the inversion as the dashed line.
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igure 13. Magnetic anomaly contours �in nanoteslas� over a structur
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ault structure was assumed and several parameters, such as intensi-
y of magnetization, depth, and position, were found. Here, an un-
nown, linearly varying regional magnetic field is assumed and the
wo coefficients are found during the optimization. The two coeffi-
ients of the regional field were added to the vector x at each step.
he data set comprised 26 stations over flat terrain, between 0 and

50 km. The values found in Murthy et al. �2001�
are used: Remnant magnetization was assumed
with an intensity of magnetization of 148 nT at an
angle of �97°, a total field inclination angle of
35°, and a strike angle of 90°.

The final result, shown in Figure 15, required
3403 function evaluations to reach a minimum er-
ror of 4.2 � 10�3. The regional magnetic field
had a slope of �1.44 nT/km and an offset of
66 nT. Also, because a fault was being imaged,
the result in Figure 15 actually extends to approx-
imately 300 km, though only the relevant portion
of the fault is shown. Good agreement is seen
with the result in Murthy et al. �2001�, especially
the top of the fault. Both results are around 7 km.

The first gravity anomaly, observed over the Weardale granite
ody using 23 stations across 55 km of flat terrain and presented in
urthy and Rao �1993�, is shown in Figure 16. Again, a linearly

arying regional gravitational field was assumed and optimized si-
ultaneously with the geometry at each step. The optimization algo-

ithm required 16,380 function evaluations to achieve a final error of
.0 � 10�3. Figure 16 shows the final geometry, with a density con-
rast, as assumed in Murthy and Rao �1993�, of �� ��0.13 g/cm3;
t is similar to the result in Murthy and Rao �1993�. The regional field
ariation had a slope of 4.72 � 10�3 mgal/km and an offset of
0.133 mgal. As in Murthy and Rao �1993�, the top of the structure

oes not outcrop at the surface.
Next, a basin structure with a parabolic density distribution was

nverted. The Bouguer gravity anomaly data was taken from Rao et
l. �1994� and had an initial density of ��0��0.5206 g/cm3 and
ecay parameter � �0.0576 km�1. The data set was taken from 13
tations over 48 km of flat terrain. The final result �Figure 17� had an
rror of 6.0 � 10�4 �5688 function evaluations� and is compared to
he result shown in Rao et al. �1994� �solid line�. As a basin, the in-
erted structure should have a flat top across the entire region, as-
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igure 14. �a� Target and �b� inverted three-body structure.
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Figure 15. Inversion of aeromagnetic anomaly near Dehri, Bihar, In-
dia. Solution from Murthy et al. �2001� is shown as the solid line.
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igure 16. Inversion of Weardale granite body. Solution from Mur-
hy and Rao �1993� is shown as the solid line.
Downloaded 30 Apr 2009 to 128.175.13.10. Redistribution subject to S
0 10 20 30 40 50

0

5

10

x (km)

z
(k
m
)

0 10 20 30 40 50
−80

−60

−40

−20

0

g
(m

G
al

)

igure 17. Inversion of Los Angeles basin. Solution from Rao et al.
1994� is shown as the solid line.
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umed in Rao et al. �1994�. Here, although no assumptions were
ade, the top of the structure is mostly flat with some small devia-

ion toward the left side.
As a final example, a measured 3D data set was inverted. The Bou-

uer anomaly was adapted from Figure 12 in Albora et al. �2007�, as
hown in Figure 18a. In this inversion, 37 stations were used along
5 profiles over a flat area covering 18.5 � 17.5 km. The density
ontrast was assumed to be �� �0.276 g/cm3. The final result,
hose anomaly contour plot is shown in Figure 18b, required 42,465

unction evaluations and had an error of 1.56 � 10�2. Figure 19
hows three views of the interpreted structure: top down view �Fig-
re 19a�, perspective view perpendicular to the plane indicated by a
ashed line in the previous figure �Figure 19b�, and a contour taken
n the plane indicated by the dashed line �Figure 19c�. In Albora et al.
2007�, a fault structure was predicted along the dashed line on the
ight side of Figure 19a. This structure appears in the 3D result
hown here, verified in Figure 19c.

CONCLUSIONS

Our method for inverting gravitational and magnetic anomaly
ata uses a tree-based geometry description that combines arbitrary
onvex shapes using Boolean operations. This approach is flexible
n that no knowledge of the number, approximate location, or com-
lexity of the target geometry is required. A BFGS-based optimiza-
ion algorithm uses successive runs of the local optimizer applied to
eometric transforms and actual points. Separate stages in the algo-
ithm first determine approximate shape and complexity and finally
etails of the structure. Results showed that different types of geom-
tries, both two and three dimensions, could be reconstructed accu-
ately using both gravitational and magnetic information.

In its current form, the method has some limitations that could be
vercome. First, only homogeneous structures were treated here.
he method could be extended to inhomogeneous structures by al-

ering the operations of the tree structure. Material values would be
dded to the leaf nodes in the tree and optimized along with the ge-
metry. Also, as geometries become more complex, the method at-
empts to search larger spaces. This could be overcome by including
nly a few of the total number of leaf nodes in each optimization.An-
ther possibility is the use of optimizers other than BFGS to avoid
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igure 18. Gravity anomaly contours �in milligals� over the Gelibolu Penins
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igure 19. Interpreted structure at the Gelibolu Peninsula. �a� Top
iew. �b� Perspective view along dashed line. �c� Contour taken in
he plane indicated by the dashed line.
EG license or copyright; see Terms of Use at http://segdl.org/



c
m
j

g
L
S
t
w
r

A

A

B

d

D

E

F
G

H

K

L

M

M

M

M

M

O

O

—

R

R

S

W

—

W

Gravity inversion using tree geometry I35
ostly finite-difference computations. Stochastic, derivative-free
ethods could be used or even automated differentiation with ad-

oint formulations.
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