Effects of Fiberglass Poles on Radiation Patterns of Log-Periodic Antennas

by Christos E. Maragoudakis

ARL-TN-0357 July 2009

Approved for public release; distribution is unlimited.
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.
Effects of Fiberglass Poles on Radiation Patterns of Log-Periodic Antennas

Christos E. Maragoudakis
Survivability/Lethality Analysis Directorate, ARL
Effects of Fiberglass Poles on Radiation Patterns of Log-Periodic Antennas

The effects of fiberglass poles of various cross-section and chemical composition on the radiation pattern of log-periodic antennas are presented in this document. The antennas were mounted with the poles parallel to the antenna boom and vertical to the radiating elements. Normalized antenna patterns depicting the effects of the poles on the radiation pattern in the 100 megahertz (MHz) to 1 gigahertz (GHz) frequency range are included in the appendix of this document.

14. ABSTRACT
The effects of fiberglass poles of various cross-section and chemical composition on the radiation pattern of log-periodic antennas are presented in this document. The antennas were mounted with the poles parallel to the antenna boom and vertical to the radiating elements. Normalized antenna patterns depicting the effects of the poles on the radiation pattern in the 100 megahertz (MHz) to 1 gigahertz (GHz) frequency range are included in the appendix of this document.

15. SUBJECT TERMS
fiberglass, antenna pattern, log-periodic
Contents

List of Figures iv

1. Introduction 1

2. Experimental Set-up 1

3. Results 2

4. Conclusions 3

5. Recommendations 3

Appendix. Antenna Patterns 5

List of Symbols, Abbreviations, and Acronyms 9

Distribution 10
List of Figures

Figure 1. Experiment set-up...1
Figure 2. Log periodic antenna mounted with a tubular fiberglass pole.2
Figure 3. Antenna pattern for 200 MHz using tubular fiberglass pole 1.................................3
Figure A-1. Antenna pattern for 200 MHz using tubular fiberglass pole 1...........................5
Figure A-2. Antenna pattern for 900 MHz using tubular fiberglass pole 1...........................5
Figure A-3. Antenna pattern for 200 MHz using tubular fiberglass pole 2...........................6
Figure A-4. Antenna pattern for 900 MHz using tubular fiberglass pole 2...........................6
Figure A-5. Antenna pattern for 200 MHz using square fiberglass pole...............................7
Figure A-6. Antenna pattern for 900 MHz using square fiberglass pole...............................7
Figure A-7. Antenna pattern for 200 MHz using the PVC pole...8
Figure A-8. Antenna pattern for 900 MHz using the PVC pole...8
1. Introduction

Antennas are mounted in various ways depending on the antenna type and the intended application. The common method of mounting log periodic and Yagi antennas is by supporting them from the balance point on the boom using metal, wooden, or fiberglass poles. This technical note presents the results of an investigation that was performed to determine the effects of fiberglass poles on the radiation pattern of a log periodic antenna when the pole is parallel to the boom. The investigation was performed at the Electromagnetic Vulnerability Assessment Facility (EMVAF) of the U.S. Army Research Laboratory (ARL) Survivability/Lethality Analysis Directorate (SLAD) at White Sands Missile Range, NM.

2. Experimental Set-up

The test equipment used in the investigation included three fiberglass poles of different composition and cross-section, a Poly Vinyl Chloride (PVC) pole and two log periodic antennas. The transmit antenna was an Amplifier Research Log periodic, model AT-1080 while the receive antenna was a Creative Design Corp. model CLP 5130-2. The transmit antenna was mounted on the mast at the mezzine, while the receive antenna was mounted on the Howland antenna measurement tower at the end of the other end of the chamber. A diagram of the measurement set-up used is shown in figure 1.

![Figure 1. Experiment set-up.](image)

The receive antenna was mounted on the tower using either one of the fiberglass poles or the PVC pole. The poles were placed parallel to the boom (a beam that the radiating elements are
attached to) of the antenna and vertical relative to the antenna radiating elements. The two tubular fiberglass poles had a 2-inch outside diameter and a wall thickness was 0.25 inches, while the third fiberglass pole had a 3×3-inch cross-section and a 0.25-inch wall thickness. The last pole used was a schedule 40 PVC pole with an outside diameter of 1.875 inches. Figure 2 depicts the receive antenna mounted on the tower using one of the tubular poles.

![Log periodic antenna mounted with a tubular fiberglass pole.](image)

Figure 2. Log periodic antenna mounted with a tubular fiberglass pole.

3. Results

All measurements were made with both antennas vertically polarized. During the measurements the frequency was varied from 100 megahertz (MHz) to 1 gigahertz (GHz) in 100 MHz steps while the receive antenna was rotated from 0° to 360° in 2° steps in the azimuth plane. Figure 3 depicts the normalized antenna pattern measured at 200 MHz. Additional antenna patterns are shown in the appendix.
4. Conclusions

As seen from the antenna patterns measured, the patterns are being affected by the presence of the fiberglass pole. The amount of antenna pattern degradation is a function of carbon content in the fiberglass pole, frequency of operation and position of the antenna relative to the pole. Even though the effect is minimal, less than 2 decibels (dB), for the configuration tested, it may be critical for other applications.

5. Recommendations

Because preliminary results show that fiberglass poles could affect the antenna patterns, it is recommended that additional studies be made so that the effects of fiberglass on the antenna performance are better understood. The studies should include the placement of other commonly used antennas, such as vertical antennas, at various distances from the fiberglass poles.
INTENTIONALLY LEFT BLANK.
Appendix. Antenna Patterns

Figure A-1. Antenna pattern for 200 MHz using tubular fiberglass pole 1.

Figure A-2. Antenna pattern for 900 MHz using tubular fiberglass pole 1.
Figure A-3. Antenna pattern for 200 MHz using tubular fiberglass pole 2.

Figure A-4. Antenna pattern for 900 MHz using tubular fiberglass pole 2.
Figure A-5. Antenna pattern for 200 MHz using square fiberglass pole.

Figure A-6. Antenna pattern for 900 MHz using square fiberglass pole.
Figure A-7. Antenna pattern for 200 MHz using the PVC pole.

Figure A-8. Antenna pattern for 900 MHz using the PVC pole.
List of Symbols, Abbreviations, and Acronyms

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARL</td>
<td>U.S. Army Research Laboratory</td>
</tr>
<tr>
<td>dB</td>
<td>decibels</td>
</tr>
<tr>
<td>EMVAF</td>
<td>Electromagnetic Vulnerability Assessment Facility</td>
</tr>
<tr>
<td>GHz</td>
<td>Gigahertz</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz</td>
</tr>
<tr>
<td>PVC</td>
<td>Poly Vinyl Chloride</td>
</tr>
<tr>
<td>SLAD</td>
<td>Survivability/Lethality Analysis Directorate</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1 PDF</td>
<td>ADMNSTR DEFNS TECHL INFO CTR DTIC OCP 8725 JOHN J KINGMAN RD STE 0944 FT BELVOIR VA 22060-6218</td>
</tr>
<tr>
<td>3 HCs</td>
<td>US ARMY RSRCH LAB ATTN RDRL CIM P TECHL PUB ATTN RDRL CIM L TECHL LIB ATTN IMNE ALC HRR MAIL & RECORDS MGMT 2800 POWDER MILL ROAD ADELPHI MD 20783-1197</td>
</tr>
<tr>
<td>1 CD</td>
<td>US ARMY RSRCH LAB ATTN RDRL CIM G TECHL LIB T LANDFRIED APG MD 21005-5066</td>
</tr>
<tr>
<td>1 CD</td>
<td>US ARMY RSRCH LAB ATTN RDRL CIM G TECHL LIB T LANDFRIED APG MD 21005-5066</td>
</tr>
<tr>
<td>1 WORD VERSION</td>
<td>MELE ASSOCIATES INC ATTN RDRL SLE E M MORALES BLDG 1622 ROOM 216 WSMR NM 88002-5501</td>
</tr>
<tr>
<td>1 HC</td>
<td>US ARMY RSRCH LAB ATTN RDRL SLE S J GONZALEZ BLDG 1624 RM 204 WSMR NM 88002-5513</td>
</tr>
<tr>
<td>2 HCs</td>
<td>US ARMY RSRCH LAB ATTN RDRL SLE S C MARAGOUDAKIS BLDG 1628 RM 203 WSMR NM 88002-5513</td>
</tr>
<tr>
<td>Total:</td>
<td>10 (1 PDF, 2 CDs, 6 HCs, 1 Word Version)</td>
</tr>
</tbody>
</table>