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1. Introduction 

Wireless data transmission has become an essential part of many applications.  Whether it is a 
wireless internet connection, cell phone conversation, radio broadcast, or some military 
application, the need for data to be decoded error-free across a wireless medium is vital.  Over a 
channel characterized by Gaussian noise, a limit exists that tells us the maximum channel 
capacity, or error free transmission rate, possible for a given signal-to-noise ratio (SNR) and 
channel bandwidth.  Known as Shannon’s Limit, developed by Claude Shannon in his paper “A 
Mathematical Theory of Communication,” the equation is (1) 

  2log 1C B SNR    (1) 

The problem is that noise within the channel can cause errors in the data during transmission.  To 
combat this problem, we use forward error correcting (FEC) codes to detect and correct these 
potential errors at the receiver.  FECs add redundancy to data in the form of parity bits, and in 
general, the more parity pits generated per data bit, the more potential errors can be detected and 
corrected.  Different FECs use different methods to check and correct errors in an attempt to 
close in on the limit proposed by Shannon for data transmission.  Here, Hamming codes, Reed-
Solomon codes, and turbo codes are examined, and their differences are briefly discussed, along 
with the pros and cons of each approach.  

2. Linear Block Codes 

Linear block codes (LBC) are often referred to as (n,k) codes, where n is the length of the block, 
and k is the number of information bits in the case of a binary code.  This means that to transmit 
data, an LBC uses 2k codewords, which make up a subset of 2n possible codewords (1).  The 
general form of an LBC is 

 C DG  (2) 

where C is the codeword, D is the k-bit message, and G is the generator matrix that creates the 
parity check bits from the data bits (2).   

The code rate of a code is the ratio
n

k
R  , or the number of input bits over the number of output 

bits of an FEC encoder.  This ratio can be thought of as the percentage of time used to send 
actual information bits through a channel.  The code rate improves with larger data block 
lengths, but larger block lengths have a proportionally larger number of expected errors.  
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Improving the code rate increases the chance of decoding error because with more information 
bits and fewer parity bits, more undetectable errors are expected.   

The optimal detector for a block code, given a binary symmetric channel, finds the codeword 
that is closest to the received block of n bits.  The Hamming distance between two words 
measures the number of coordinates in which they differ.  For example, the distance between 
1110010 and 0110101 is four. 

Decoding errors will occur when noise in the channel changes the transmitted codeword so that 
its Hamming distance is closer to one of the other k2  codewords.  For this reason, the distance 
between codewords is relevant to the probability of a decoding error.  The minimum Hamming 
distance of a code is the smallest distance between any of its k2  codewords.  If a code consists 

of two codewords that are a distance of dmin apart, a word has to be within distance 
 min 1

2

d 
 of 

a codeword in order to guarantee that it is mapped to that codeword.  Therefore it follows that a 

code can correct up to 
 min 1

2

d
t


  errors (2). 

Since the number of errors a code can correct is directly related to dmin, it is advantageous to find 
the code of a given size with the largest dmin.  Such a code best utilizes the Hamming space, the 
total set of n2  possible words.  There is an inequality called the Hamming bound, which states 
that if there is an (n,k) code with an alphabet of q elements and dmin = 2t + 1 then (1), 

  i
t

i

kn q
i

n
qq 1

0









 



 (3) 

For each of the kq  codewords there are exactly  iiq
i

n









 codewords that are exactly distance i  

from it.  Therefore, the number on the right of the inequality is the total number of words that are 
at most a distance of t  from a codeword.  Since the total number of words cannot exceed nq , the 

inequality follows immediately.  For a binary code, (3) simplifies to (1) 

 













t

i

kn

i

n

0

2  (4) 

Codes that attain equality in the Hamming bound are called perfect codes.  A perfect t -error 
correcting code has the property that every word in the Hamming space lies within a distance of 
t  from exactly one codeword. 

2.1 Hamming Codes 

Hamming codes are the earliest codes capable of actually correcting an error detected at the 
receiver.  However, by definition they are limited so that they can detect and correct only a 
single error.  This arises from the fact that dmin = 3, so that if more than one bit is corrupted then 
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the erroneous word is the same as one of the other k2  codewords, and the decoding algorithm 
will assume no error (3).  The (7,4) Hamming code is a famous single error correcting code 
because it belongs to the class of perfect codes.   

The equations for block decoding error probability, Pe, and bit decoding error probability, Pb, are 
(4) 

   

2

1
n

n jj
e

j

n
P p p

j




 
  

 
  (6) 

   

2

1
1

n
n jj

b j
j

n
P p p

n j
 



     
   

  (7) 

where p is the probability a bit is received in error, and j is the average number of bit errors in 
the decoded words which is approximated as j.  Pe is the probability that two or more bits are 
received in error for a codeword of length, n , and Pb is a weighted version that translates block 
error into bit error for linear block codes. 

Hamming Codes use syndrome decoding such that  

 s H r
 

 (8) 

determines the syndrome where H  is a parity check matrix and 

 r b e 
  

 (9) 

is the received bit stream where e


 is an error vector created by the noisy channel, and b


 is the 
transmitted codeword.   

H  is created by a linear combination of the k  message bits.  For the (7,4) Hamming code, if 

1 2 3 4b b b b  are the information bits, then the parity bits are (3) 

 
5 1 3 4

6 1 2 4

7 2 3 4

b b b b

b b b b

b b b b

  

  

  

 (10) 

Then H  is generated by 

 
5 5 1 3 4 5

6 6 1 2 4 6

7 7 2 3 4 7

0

0

0

b b b b b b

b b b b b b

b b b b b b

     

     

     

 (11) 
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1011100

1101010

0111001

H

 
   
  

 (12) 

If 0s 


, then r


 is a known codeword, and the decoder determines there were no errors upon 

transmission.  If 0s 


, then the value of s


 gives the bit that is in error for a single error, and the 

decoder knows to flip this bit.  If there are two errors, then s


 gives the sum of the two rows that 

were in error.  Since 0s 


, the code can detect when two errors occur but there is no way to 
know which bits are in error (3). 

An advantage of Hamming codes is that encoding and decoding are easy to implement.  They 
would be effective as a simple and efficient code over a channel where it is known that errors are 
burst-free and tend to be widely dispersed.  Disadvantages of Hamming codes are that they are 
very ineffective for low SNR, where the received signal level is very low.  These types of 
conditions will tend to cause more frequent errors.  Also, Hamming codes do very poorly against 
the bursts of errors caused by fading over a channel.  

2.2 Reed Solomon Codes 

Reed-Solomon (RS) codes are non-binary codes; that is, a codeword is defined in terms of multi-
bit symbols rather than bits. Such codes can achieve a very large Hamming distance.  The RS 
decoder corrects the entire symbol, whether the error was caused by one bit being corrupted or 
by all of the bits being corrupted.  Thus, if a symbol is wrong, it might as well be wrong in all of 
its bit positions. This gives RS codes tremendous burst-noise advantages over binary codes. 
Burst-noise is relatively common in wireless communication due to fading.  The code minimum 
distance for RS code is given by 

 1min  knd  (13) 

where k  is now the number of data symbols being encoded, and n  is the length of the codeword. 
The code can correct up to t  symbol errors, where t  is given by 

 
2

kn
t


  (14) 

This equation shows that a codeword needs t2  parity symbols to correct t  errors (1).  

The RS bit error probability, PE, in terms of the channel bit-error probability, p , is given by (5) 

 
2 1

2 1

1

2 11
(1 )

2 1

m
j j

b m
j t

m
m

P j p p
j


 

 


 



 
 
 

  (15) 

where t  is the maximum number of symbol errors that can be corrected, and the symbols are 
made up of m  bits each.   
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In order to understand RS encoding and decoding, finite fields or Galois Fields (GF) must be 
used, and the following description of the encoding and decoding process is heavily based on 
those outlined in (6).  

For any prime number p  there exists a finite field, GF(pm), where m is a positive integer. There 

are numbers in the finite field denoted by the power of   other than 0 and 1. Finite fields only 
contain m2 elements, and the field is closed under multiplication. The condition that closes the set 
of field elements under multiplication is shown by the following irreducible polynomial 

   012 1  m . (16) 

Thus, any field element that has a power equal to or greater than 12 m can be reduced to a power 
less than 12 m  by the following equation 

 
    11122   nnmnm  . (17) 

RS codes are usually written in the following form 

    tkn mm 212,12,SR  , (18) 

where, k  is the number of data symbols being encoded, n  is the length of the codeword, t  is the 
maximum error correction capability, and the symbols are made up of m  bits each.  

The generator polynomial for an RS code takes the following form: 

   tt
t XXgXgXggXg 212

12
2

210  
 . (19) 

The degree of the generator polynomial is the number of parity symbols, which is 2t.  Therefore, 
there are exactly 2t   roots of the polynomial.  

The above process follows the multiplication and addition rules of the finite field.  Also, in a 
binary field 11  , so we can express g(X) as 

   4332013 XXXXXg    (20) 

Thus, the resulting codeword polynomial U(X) can be written as 

      XmXXpXU kn  (21) 

where m(X) is the message polynomial, multiplying by knX   right shifts the polynomial by kn   
positions, and the parity polynomial is 

      XgXmXXp kn mod  (22) 

Consider a (7,3) codeword for the message polynomial given by equation 23.  To generate a 
codeword for the following three symbol message, multiply m(X) by 4XX kn   giving  
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   
51 3

( ) 010 110 111m x
 

  

 1 4 3 5 5 6( ) n km x X X X X       (23) 

Divide the shifted message by the generator polynomial to get the parity polynomial 

   362420 XXXXp    (24) 

Adding the shifted message with the parity polynomial yields the codeword 

   655341362420 XXXXXXXU    (25) 

If U(X) gets corrupted by two errors due to channel noise, then the error polynomial for this 
example is shown by  

   



6

0n

n
n XeXe  (26) 

The received bit stream becomes 

      XeXUXr   (27) 

In RS codes, there are twice as many unknowns than in binary coding. In binary coding, one only 
needs to find the error location and then flip the bit. In non-binary coding, one must know the 
error value to correct the error. 

To decode the received bit stream, a syndrome S  will be made of kn   symbols.  Since the 
codeword is made by multiplying the message polynomial by the generator polynomial, the roots 
of the generator polynomial must be the roots of the transmitted codeword.  Evaluating r(X) at 
the roots of the generator polynomial should yield a syndrome of zero with no errors and a 
nonzero syndrome if errors exist.  The calculation of syndrome is shown by  

     knirXrS i

Xi i 


,,1


 (28) 

The error polynomial can be written as  

   jv
jv

j
j

j
j XeXeXeXe  2

2
1

1  (29) 

where, ejl is the error value, jlX  is the error location, and v  is the number of errors. The 
syndrome calculation provides the t2  error polynomial equations. We have t  error values and t  
error locations, which create t2  simultaneous equations.  The error locator polynomial is needed 
to find the location of errors, and is given by 

       1 21 1 1 vX X X X        (30) 
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   2
1 21 v

vX X X X         (31) 

The roots of (X) are inverses of the error location numbers of the error pattern, e(X).  

To find the error locations, use the autoregressive technique. Autoregressive means using the 
first t  syndromes to predict the next syndrome. Test the roots of this equation with the field 
elements. Any element X that yields (X) = 0 is a root, which reveals the error.  

The elements of the error vector are given as 

 
 
' ( )

i
i

i
E

 

 



  (32) 

where (x) is the evaluator polynomial and '( )x  is the inverse of the thi  root of the locator 

polynomial such that 

 ( ) ( ) ( )(mod )rx S x x x   (33) 

where r is the length of the syndrome. 

Now that the error locations and their corresponding error values are known, the codeword can 
be corrected as 

 i i iC r E   (34) 

RS codes are mainly non-binary block codes that are especially effective against burst-errors. 
The coding efficiency mainly increases with code length. RS codes can be used for long block 
lengths with less decoding time than other codes because RS codes work with symbol-based 
arithmetic. This makes RS coding harder to implement, but it provides better throughput.   

3. Turbo Codes 

Turbo codes are part of a class known as convolutional codes.  Convolutional codes generate 
codewords as the convolution of the incoming message data with the impulse response of a shift 
register.  As an incoming bit propagates through the shift register, it influences several output 
bits thereby spreading the information over several adjacent output bits.  This means an error in 
any one bit can be overcome at the receiver without any information being lost (2). 

Turbo Codes are well suited for long distance and low power wireless communications because 
they achieve a very low bit error rate (BER) at very low SNR.  This means that data is still 
transmitted nearly error-free with a low energy signal, and this characteristic has lead turbo 
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codes to be implemented in applications such as deep space communications and third-
generation cellular standards. 

The encoding process is what helps turbo codes achieve such dramatic results, and the following 
description of both the encoding and decoding of turbo codes is heavily based on that in (7).  By 
using two independent encoders separated by an interleaver, as shown in figure 1, turbo codes 
actually use two unique codewords instead of just one to encode data.  The interleaver scrambles 
the data bits prior to input into the second encoder in order to generate a second codeword that 
differs from the first.  By generating two distinct codewords, turbo encoding increases the 
probability of generating a codeword of high Hamming weight.  This means that the codeword 
has a large number of ones relative to the number of zeros, making it more distinctive to the 
decoder.  Although both codewords are not guaranteed to have high Hamming weight, by 
generating two codewords, one of them is likely be of high Hamming weight.  This is one of the 
main features that make turbo codes so powerful. 

 

Figure 1.  Block diagram of a generic encoding process for turbo codes (7). 

Turbo encoding uses Recursive Systematic Convolutional (RSC) encoders.  These encoders are 
systematic because they regenerate an input bit as one of the outputs, and recursive because they 
feed one of the two parity outputs back to the input.  The RSC encoder depicted in figure 2 
works by performing an exclusive OR of the input, with a subset of the bits stored in the D flip-
flop registers.  Since this RSC encoder has a code rate of one-half, the amount of information 
bits per second transmitted over a Gaussian channel will be half the size of the total codeword.   

The decoding process for turbo codes must also be more complex to decode the codewords 
generated by the encoder.  A turbo decoder uses an iterative decoding algorithm that requires two 
parallel Soft-Input Soft-Output (SISO) processors.  The upper SISO functions on the received 
output from first encoder and the lower SISO functions on the received output from the second 
encoder of figure 1.  A soft input or output is one that can take any value, and is not limited only 
to integers like the codeword input stream.  The lower SISO processor takes the interleaved 
output from SISO one, as well as the output from the second encoder shown in figure 3. This 
information sharing makes the decoding process iterative and improves the decoder’s overall 
performance.     
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Data Output

      Parity Output

Data Input D D D

 

Figure 2.  Block diagram for a 
1

2
 rate RSC encoder (7). 

 

Figure 3.  Block diagram of the decoding process for turbo codes (7). 

The inputs and outputs of the SISO processors take the form of Log Likelihood Ratios (LLR), 
which is a ratio of probabilities.  The LLR of the inputs will be 

 
 
 

| 1
( ) ln

| 0
i i

i
i i

P Y U
R U

P Y U

 
    

 (35) 

where U represents the transmitted bit and Y represents the received bit.  The numerator is the 
conditional probability that the input bit is received if the output bit from the transmitter was a 
one, and the denominator is the conditional probability that the input bit is received if the output 
bit was a zero.   

The LLR at the output of the SISO processors will be 

 
 
 

1

1

|
( ) ln

|
i n

i
i n

P X Y Y
X

P X Y Y


 
   

 




 (36) 

where X is the information bit and Y is the received bit.  The numerator is the conditional 
probability that the information bit is a one, given all the received inputs from the codeword, and 
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the denominator is the conditional probability that the information bit is a zero, given all the 
received inputs from the codeword.  The deinterleaver will reorganize the SISO outputs into the 
right order, and the bit generator can determine whether the input bit is a one or zero based on 
the value of Λ2 (Xi).  If Λ2 (Xi) > 0, then the input bit is a one, and if Λ2 (Xi) < 0, then the input 
bit is a zero. 

The superior performance of turbo codes is due mainly to the unique encoding process, but also 
to the fact that the decoding process is iterative.  However, the increase in iterations follows a 
law of diminishing returns.  Every time the number of iterations is increased, the improvement 
over the BER achieved decreases.  Also, continually increasing the number of iterations causes 
decoder delay, and this in turn decreases the throughput that turbo codes are able to achieve; 
because with this added delay, fewer bits can be decoded per second (7).   

Another way to improve the BER is to add more parity bits to each input bit.  As the code rate 
decreases, the BER decreases at an even lower SNR because more errors can be corrected by 
adding more parity bits.  However, decreasing the code rate by too much will significantly 
decrease the number of information bits a channel can transmit per second because the channel 
will now be filled with more parity bits.  In short, there will always be a tradeoff between BER 
and data throughput (7). 

Though turbo codes seem to be an immensely powerful FEC code, there are issues that make 
them non-ideal in certain situations.  The presence of two turbo codes increases the probability of 
high Hamming weight codewords, but will also double the number of low Hamming weight 
codewords present.  Although the BER decreases dramatically for low SNR, the presence of low-
weight codewords begins to dominate the performance of turbo codes at higher SNR, causing the 
BER curve to flatten out at these values. Though the encoding and decoding processes outlined 
previously lowers the BER, implementing these practices is costly, and may not be desirable.  
Furthermore, the decoding algorithm is complex, and more iterations require greater amounts of 
memory, causing the implementation of turbo codes to be more expensive than linear block 
codes.  Lastly, in order to calculate the LLRs necessary for the decoder, the channel’s 
characteristics must be known, which means that you must be familiar with the channel over 
which the data is being transmitted (7). 

4. Bit Error Rate Analysis 

So far the encoding and decoding process for Hamming, RS, and turbo codes has been presented, 
along with the advantages and disadvantages of each approach.  Now the performance of each 
code in terms of BER for different levels of SNR will be examined.  Equations 7 and 15 are used 
in order to calculate BER performance for Hamming and RS codes equations, respectively.  The 
probability that a bit is flipped during transmission, p , in equations 7 and 15, is determined by 
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the type of modulation used on the channel.  The following probability of error for BPSK, 
QPSK, and 8QAM modulations assume a binary symmetric additive white Gaussian noise 
(AWGN) channel.  The following are derived by John Proakis in (8) and make use of the 
following relationship 
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 is the SNR ratio per bit. 

QPSK: 
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8QAM: 
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 2
8

1 (1 )eP P    (41) 

For equations 7 and 15, use the substitution eP p  to calculate the BER versus SNR curves. 

Figure 4 shows the improvement in bit error probability between an uncoded message and a 
message using the (7,4) Hamming code.  Even this very rudimentary code shows a significant 
improvement in the achievable BER for a given SNR for all three types of modulation.  For a 
BER of 10–6, the improvement of SNR is roughly 3.5 dB, which means less than half the signal 
strength is needed to achieve the same reliability in decoding error.  This factor of improvement 
means less transmission power is needed over a given distance, or that the transmission range 
can be increased and still achieves the same BER as at a much closer range without the code. 
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Figure 4.  BER vs. SNR for the (7,4) Hamming code modulated by BPSK, QPSK,  
and 8QAM modulations. 

Figure 5 shows an even greater improvement in SNR for the (31,16) RS code in comparison to a 
message transmitted without any form of FEC code.  For a BER of 10–6, the improvement in 
SNR is 6.5 dB.  This almost doubles the improvement seen by the (7,4) Hamming code.  Since 
RS codes are extremely effective against burst-errors and offer significant improvements in the 
SNR needed to achieve a given BER, the code is very powerful yet still relatively simple to 
implement in terms of hardware.  RS codes may not compare to turbo codes in their performance 
in the very low SNR values encountered—in deep space missions, for example—but for many 
other applications such as data storage and internet data transmission, they are a very attractive 
option. 
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Figure 5.  BER vs. SNR for the (31,16) Reed-Solomon code modulated by BPSK,  
QPSK, and 8QAM modulations. 

Figure 6 shows achievable BER for turbo codes using different numbers of decoding iterations.  
By performing more iterations during decoding, the BER drops dramatically, even for extremely 
low SNR values.  However, the law of diminishing returns is clearly evident, as the number of 
iterations is increased. Figure 6 shows that a bit error rate (BER) of 10–5 can be achieved for an 
SNR of 0.8 after 10 iterations by the decoder.  This is a very good BER for a signal level that is, 
in fact, weaker than the noise over an AWGN channel.  In fact, to achieve a BER of 10–6, a SNR 
of 1 dB is all that is needed for 10 iterations, where even the (31,16) RS code needed a SNR of 
4.5 dB.  The ability to achieve such low BER for extremely low SNR is what makes turbo codes 
so attractive for applications such as deep space satellites.  This type of application also provides 
the liberty to introduce as much delay as is needed at the decoder because it is not a real-time 
data application.  Therefore, more iterations could be performed to achieve a low BER for 
signals coming in under 1 dB SNR. 
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Figure 6.  BER vs. SNR for multiple iterations of the turbo code  
decoding process using BPSK modulation (7). 

Another way to improve the achievable BER for low SNR is to decrease the code rate.  This 
means using more parity bits and less information bits in a codeword.  When the code rate is 
decreased, the information throughput is sacrificed because there are less information bits being 
sent per transmission.  But in an application like deep space satellites, this may be an acceptable 
tradeoff to increase BER at astronomical distances.  Figure 7 shows how decreasing the code rate 
can achieve even better results for turbo codes than are depicted in figure 6.  At a code rate of 
one-fifth a BER of 10–6 is achievable at an SNR of 0.6 dB for 14 decoding iterations.  At this 
point a receiver can receive a transmission whose power is far below the noise floor and still 
achieve an acceptable BER. 
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Figure 7.  BER performance of turbo codes for various code rates  
modulated with BPSK.  Fourteen iterations were used (7). 

 

5. Conclusions 

FEC codes are a powerful tool in combating transmission errors caused by a noisy channel.  
Using FEC codes allows communications to achieve the same level of transmission reliability, 
quantified by the BER, at lower output power levels.  This could potentially give a large cost 
benefit because it reduces the amount of power needed for the transmission of data. 

There are tradeoffs for every code that have to be weighed against the application they are being 
used for.  This report investigated Hamming Codes, RS codes, and turbo codes, in the areas of 
both implementation and performance.  There is no single FEC code that is an optimum solution 
for every application, and many factors must be weighed before a decision is made on which 
code to use.  In general, the more effective a FEC code is at combating transmission errors, the 
more expensive it is to implement in terms of hardware, and the more complicated its encoding 
and decoding process become.  Things like decoding delay and decreased throughput must also 
be considered when choosing between the different FEC codes that are available. 
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List of Symbols, Abbreviations, and Acronyms 

AWGN additive white Gaussian noise 

BER bit error rate 

FEC forward error correcting 

GF Galois Fields 

LBC Linear block codes 

LLR Log Likelihood Ratios 

RS Reed-Solomon 

RSC Recursive Systematic Convolutional 

SISO Soft-Input Soft-Output 

SNR signal to noise ratio 
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