

Investigation of Hamming, Reed-Solomon, and Turbo

Forward Error Correcting Codes

by Gregory Mitchell

ARL-TR-4901 July 2009

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or
approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Adelphi, MD 20783-1197

ARL-TR-4901 July 2009

Investigation of Hamming, Reed-Solomon, and Turbo
Forward Error Correcting Codes

Gregory Mitchell

Sensors and Electron Devices Directorate, ARL

Approved for public release; distribution unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

July 2009
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

FY09
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Investigation of Hamming, Reed-Solomon, and Turbo Forward Error Correcting
Codes

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Gregory Mitchell

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: RDRL-SER-E
2800 Powder Mill Road
Adelphi, MD 20783-1197

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-4901

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

As data rate requirements for communications applications continue to increase and power requirements continue to fall, it
becomes increasingly difficult to provide error-free communications over a noisy channel. Shannon’s Limit provides the
maximum error-free data rate achievable over an additive white Gaussian noise (AWGN) channel for a given signal to noise
ratio (SNR). Forward error correcting (FEC) codes provide algorithms for encoding and decoding data bits, and help achieve
data rates closer to Shannon’s Limit. Three FEC codes are presented and their improvements in data rate are compared to
tradeoffs in complexity and decoding lag. Different types of modulation are used to make comparisons in the performance of
each FEC code.

15. SUBJECT TERMS

Hamming codes, RS codes, turbo codes, bit error rate, signal to noise ratio

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON

Gregory Mitchell
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified

17. LIMITATION
 OF

 ABSTRACT

UU

18. NUMBER
 OF

 PAGES

24 19b. TELEPHONE NUMBER (Include area code)

(301) 394-2322

 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

1. Introduction 1

2. Linear Block Codes 1

2.1 Hamming Codes ..2

2.2 Reed Solomon Codes ..4

3. Turbo Codes 7

4. Bit Error Rate Analysis 10

5. Conclusions 15

6. References 16

List of Symbols, Abbreviations, and Acronyms 17

Distribution List 18

iv

List of Figures

Figure 1. Block diagram of a generic encoding process for turbo codes (7).8

Figure 2. Block diagram for a
1

2
 rate RSC encoder (7). ..9

Figure 3. Block diagram of the decoding process for turbo codes (7)..9

Figure 4. BER vs. SNR for the (7,4) Hamming code modulated by BPSK, QPSK, and
8QAM modulations. ..12

Figure 5. BER vs. SNR for the (31,16) Reed-Solomon code modulated by BPSK, QPSK,
and 8QAM modulations...13

Figure 6. BER vs. SNR for multiple iterations of the turbo code decoding process using
BPSK modulation (7)...14

Figure 7. BER performance of turbo codes for various code rates modulated with BPSK.
Fourteen iterations were used (7)...15

1

1. Introduction

Wireless data transmission has become an essential part of many applications. Whether it is a
wireless internet connection, cell phone conversation, radio broadcast, or some military
application, the need for data to be decoded error-free across a wireless medium is vital. Over a
channel characterized by Gaussian noise, a limit exists that tells us the maximum channel
capacity, or error free transmission rate, possible for a given signal-to-noise ratio (SNR) and
channel bandwidth. Known as Shannon’s Limit, developed by Claude Shannon in his paper “A
Mathematical Theory of Communication,” the equation is (1)

  2log 1C B SNR  (1)

The problem is that noise within the channel can cause errors in the data during transmission. To
combat this problem, we use forward error correcting (FEC) codes to detect and correct these
potential errors at the receiver. FECs add redundancy to data in the form of parity bits, and in
general, the more parity pits generated per data bit, the more potential errors can be detected and
corrected. Different FECs use different methods to check and correct errors in an attempt to
close in on the limit proposed by Shannon for data transmission. Here, Hamming codes, Reed-
Solomon codes, and turbo codes are examined, and their differences are briefly discussed, along
with the pros and cons of each approach.

2. Linear Block Codes

Linear block codes (LBC) are often referred to as (n,k) codes, where n is the length of the block,
and k is the number of information bits in the case of a binary code. This means that to transmit
data, an LBC uses 2k codewords, which make up a subset of 2n possible codewords (1). The
general form of an LBC is

 C DG (2)

where C is the codeword, D is the k-bit message, and G is the generator matrix that creates the
parity check bits from the data bits (2).

The code rate of a code is the ratio
n

k
R  , or the number of input bits over the number of output

bits of an FEC encoder. This ratio can be thought of as the percentage of time used to send
actual information bits through a channel. The code rate improves with larger data block
lengths, but larger block lengths have a proportionally larger number of expected errors.

2

Improving the code rate increases the chance of decoding error because with more information
bits and fewer parity bits, more undetectable errors are expected.

The optimal detector for a block code, given a binary symmetric channel, finds the codeword
that is closest to the received block of n bits. The Hamming distance between two words
measures the number of coordinates in which they differ. For example, the distance between
1110010 and 0110101 is four.

Decoding errors will occur when noise in the channel changes the transmitted codeword so that
its Hamming distance is closer to one of the other k2 codewords. For this reason, the distance
between codewords is relevant to the probability of a decoding error. The minimum Hamming
distance of a code is the smallest distance between any of its k2 codewords. If a code consists

of two codewords that are a distance of dmin apart, a word has to be within distance
 min 1

2

d 
 of

a codeword in order to guarantee that it is mapped to that codeword. Therefore it follows that a

code can correct up to
 min 1

2

d
t


 errors (2).

Since the number of errors a code can correct is directly related to dmin, it is advantageous to find
the code of a given size with the largest dmin. Such a code best utilizes the Hamming space, the
total set of n2 possible words. There is an inequality called the Hamming bound, which states
that if there is an (n,k) code with an alphabet of q elements and dmin = 2t + 1 then (1),

  i
t

i

kn q
i

n
qq 1

0









 



 (3)

For each of the kq codewords there are exactly  iiq
i

n









 codewords that are exactly distance i

from it. Therefore, the number on the right of the inequality is the total number of words that are
at most a distance of t from a codeword. Since the total number of words cannot exceed nq , the

inequality follows immediately. For a binary code, (3) simplifies to (1)

 













t

i

kn

i

n

0

2 (4)

Codes that attain equality in the Hamming bound are called perfect codes. A perfect t -error
correcting code has the property that every word in the Hamming space lies within a distance of
t from exactly one codeword.

2.1 Hamming Codes

Hamming codes are the earliest codes capable of actually correcting an error detected at the
receiver. However, by definition they are limited so that they can detect and correct only a
single error. This arises from the fact that dmin = 3, so that if more than one bit is corrupted then

3

the erroneous word is the same as one of the other k2 codewords, and the decoding algorithm
will assume no error (3). The (7,4) Hamming code is a famous single error correcting code
because it belongs to the class of perfect codes.

The equations for block decoding error probability, Pe, and bit decoding error probability, Pb, are
(4)

   

2

1
n

n jj
e

j

n
P p p

j




 
  

 
 (6)

   

2

1
1

n
n jj

b j
j

n
P p p

n j
 



     
   

 (7)

where p is the probability a bit is received in error, and j is the average number of bit errors in
the decoded words which is approximated as j. Pe is the probability that two or more bits are
received in error for a codeword of length, n , and Pb is a weighted version that translates block
error into bit error for linear block codes.

Hamming Codes use syndrome decoding such that

 s H r
 

 (8)

determines the syndrome where H is a parity check matrix and

 r b e 
  

 (9)

is the received bit stream where e


 is an error vector created by the noisy channel, and b


 is the
transmitted codeword.

H is created by a linear combination of the k message bits. For the (7,4) Hamming code, if

1 2 3 4b b b b are the information bits, then the parity bits are (3)

5 1 3 4

6 1 2 4

7 2 3 4

b b b b

b b b b

b b b b

  

  

  

 (10)

Then H is generated by

5 5 1 3 4 5

6 6 1 2 4 6

7 7 2 3 4 7

0

0

0

b b b b b b

b b b b b b

b b b b b b

     

     

     

 (11)

4

1011100

1101010

0111001

H

 
   
  

 (12)

If 0s 


, then r


 is a known codeword, and the decoder determines there were no errors upon

transmission. If 0s 


, then the value of s


 gives the bit that is in error for a single error, and the

decoder knows to flip this bit. If there are two errors, then s


 gives the sum of the two rows that

were in error. Since 0s 


, the code can detect when two errors occur but there is no way to
know which bits are in error (3).

An advantage of Hamming codes is that encoding and decoding are easy to implement. They
would be effective as a simple and efficient code over a channel where it is known that errors are
burst-free and tend to be widely dispersed. Disadvantages of Hamming codes are that they are
very ineffective for low SNR, where the received signal level is very low. These types of
conditions will tend to cause more frequent errors. Also, Hamming codes do very poorly against
the bursts of errors caused by fading over a channel.

2.2 Reed Solomon Codes

Reed-Solomon (RS) codes are non-binary codes; that is, a codeword is defined in terms of multi-
bit symbols rather than bits. Such codes can achieve a very large Hamming distance. The RS
decoder corrects the entire symbol, whether the error was caused by one bit being corrupted or
by all of the bits being corrupted. Thus, if a symbol is wrong, it might as well be wrong in all of
its bit positions. This gives RS codes tremendous burst-noise advantages over binary codes.
Burst-noise is relatively common in wireless communication due to fading. The code minimum
distance for RS code is given by

 1min  knd (13)

where k is now the number of data symbols being encoded, and n is the length of the codeword.
The code can correct up to t symbol errors, where t is given by

2

kn
t


 (14)

This equation shows that a codeword needs t2 parity symbols to correct t errors (1).

The RS bit error probability, PE, in terms of the channel bit-error probability, p , is given by (5)

2 1

2 1

1

2 11
(1)

2 1

m
j j

b m
j t

m
m

P j p p
j


 

 


 



 
 
 

 (15)

where t is the maximum number of symbol errors that can be corrected, and the symbols are
made up of m bits each.

5

In order to understand RS encoding and decoding, finite fields or Galois Fields (GF) must be
used, and the following description of the encoding and decoding process is heavily based on
those outlined in (6).

For any prime number p there exists a finite field, GF(pm), where m is a positive integer. There

are numbers in the finite field denoted by the power of  other than 0 and 1. Finite fields only
contain m2 elements, and the field is closed under multiplication. The condition that closes the set
of field elements under multiplication is shown by the following irreducible polynomial

   012 1  m . (16)

Thus, any field element that has a power equal to or greater than 12 m can be reduced to a power
less than 12 m by the following equation

    11122   nnmnm  . (17)

RS codes are usually written in the following form

    tkn mm 212,12,SR  , (18)

where, k is the number of data symbols being encoded, n is the length of the codeword, t is the
maximum error correction capability, and the symbols are made up of m bits each.

The generator polynomial for an RS code takes the following form:

   tt
t XXgXgXggXg 212

12
2

210  
 . (19)

The degree of the generator polynomial is the number of parity symbols, which is 2t. Therefore,
there are exactly 2t  roots of the polynomial.

The above process follows the multiplication and addition rules of the finite field. Also, in a
binary field 11  , so we can express g(X) as

   4332013 XXXXXg   (20)

Thus, the resulting codeword polynomial U(X) can be written as

      XmXXpXU kn (21)

where m(X) is the message polynomial, multiplying by knX  right shifts the polynomial by kn 
positions, and the parity polynomial is

      XgXmXXp kn mod (22)

Consider a (7,3) codeword for the message polynomial given by equation 23. To generate a
codeword for the following three symbol message, multiply m(X) by 4XX kn  giving

6

   
51 3

() 010 110 111m x
 



 1 4 3 5 5 6() n km x X X X X      (23)

Divide the shifted message by the generator polynomial to get the parity polynomial

   362420 XXXXp   (24)

Adding the shifted message with the parity polynomial yields the codeword

   655341362420 XXXXXXXU   (25)

If U(X) gets corrupted by two errors due to channel noise, then the error polynomial for this
example is shown by

   



6

0n

n
n XeXe (26)

The received bit stream becomes

      XeXUXr  (27)

In RS codes, there are twice as many unknowns than in binary coding. In binary coding, one only
needs to find the error location and then flip the bit. In non-binary coding, one must know the
error value to correct the error.

To decode the received bit stream, a syndrome S will be made of kn  symbols. Since the
codeword is made by multiplying the message polynomial by the generator polynomial, the roots
of the generator polynomial must be the roots of the transmitted codeword. Evaluating r(X) at
the roots of the generator polynomial should yield a syndrome of zero with no errors and a
nonzero syndrome if errors exist. The calculation of syndrome is shown by

     knirXrS i

Xi i 


,,1


 (28)

The error polynomial can be written as

   jv
jv

j
j

j
j XeXeXeXe  2

2
1

1 (29)

where, ejl is the error value, jlX is the error location, and v is the number of errors. The
syndrome calculation provides the t2 error polynomial equations. We have t error values and t
error locations, which create t2 simultaneous equations. The error locator polynomial is needed
to find the location of errors, and is given by

       1 21 1 1 vX X X X       (30)

7

   2
1 21 v

vX X X X        (31)

The roots of (X) are inverses of the error location numbers of the error pattern, e(X).

To find the error locations, use the autoregressive technique. Autoregressive means using the
first t syndromes to predict the next syndrome. Test the roots of this equation with the field
elements. Any element X that yields (X) = 0 is a root, which reveals the error.

The elements of the error vector are given as

 
' ()

i
i

i
E

 

 



 (32)

where (x) is the evaluator polynomial and '()x is the inverse of the thi root of the locator

polynomial such that

 () () ()(mod)rx S x x x  (33)

where r is the length of the syndrome.

Now that the error locations and their corresponding error values are known, the codeword can
be corrected as

 i i iC r E  (34)

RS codes are mainly non-binary block codes that are especially effective against burst-errors.
The coding efficiency mainly increases with code length. RS codes can be used for long block
lengths with less decoding time than other codes because RS codes work with symbol-based
arithmetic. This makes RS coding harder to implement, but it provides better throughput.

3. Turbo Codes

Turbo codes are part of a class known as convolutional codes. Convolutional codes generate
codewords as the convolution of the incoming message data with the impulse response of a shift
register. As an incoming bit propagates through the shift register, it influences several output
bits thereby spreading the information over several adjacent output bits. This means an error in
any one bit can be overcome at the receiver without any information being lost (2).

Turbo Codes are well suited for long distance and low power wireless communications because
they achieve a very low bit error rate (BER) at very low SNR. This means that data is still
transmitted nearly error-free with a low energy signal, and this characteristic has lead turbo

8

codes to be implemented in applications such as deep space communications and third-
generation cellular standards.

The encoding process is what helps turbo codes achieve such dramatic results, and the following
description of both the encoding and decoding of turbo codes is heavily based on that in (7). By
using two independent encoders separated by an interleaver, as shown in figure 1, turbo codes
actually use two unique codewords instead of just one to encode data. The interleaver scrambles
the data bits prior to input into the second encoder in order to generate a second codeword that
differs from the first. By generating two distinct codewords, turbo encoding increases the
probability of generating a codeword of high Hamming weight. This means that the codeword
has a large number of ones relative to the number of zeros, making it more distinctive to the
decoder. Although both codewords are not guaranteed to have high Hamming weight, by
generating two codewords, one of them is likely be of high Hamming weight. This is one of the
main features that make turbo codes so powerful.

Figure 1. Block diagram of a generic encoding process for turbo codes (7).

Turbo encoding uses Recursive Systematic Convolutional (RSC) encoders. These encoders are
systematic because they regenerate an input bit as one of the outputs, and recursive because they
feed one of the two parity outputs back to the input. The RSC encoder depicted in figure 2
works by performing an exclusive OR of the input, with a subset of the bits stored in the D flip-
flop registers. Since this RSC encoder has a code rate of one-half, the amount of information
bits per second transmitted over a Gaussian channel will be half the size of the total codeword.

The decoding process for turbo codes must also be more complex to decode the codewords
generated by the encoder. A turbo decoder uses an iterative decoding algorithm that requires two
parallel Soft-Input Soft-Output (SISO) processors. The upper SISO functions on the received
output from first encoder and the lower SISO functions on the received output from the second
encoder of figure 1. A soft input or output is one that can take any value, and is not limited only
to integers like the codeword input stream. The lower SISO processor takes the interleaved
output from SISO one, as well as the output from the second encoder shown in figure 3. This
information sharing makes the decoding process iterative and improves the decoder’s overall
performance.

9

Data Output

 Parity Output

Data Input D D D

Figure 2. Block diagram for a
1

2
 rate RSC encoder (7).

Figure 3. Block diagram of the decoding process for turbo codes (7).

The inputs and outputs of the SISO processors take the form of Log Likelihood Ratios (LLR),
which is a ratio of probabilities. The LLR of the inputs will be

 
 

| 1
() ln

| 0
i i

i
i i

P Y U
R U

P Y U

 
    

 (35)

where U represents the transmitted bit and Y represents the received bit. The numerator is the
conditional probability that the input bit is received if the output bit from the transmitter was a
one, and the denominator is the conditional probability that the input bit is received if the output
bit was a zero.

The LLR at the output of the SISO processors will be

 
 

1

1

|
() ln

|
i n

i
i n

P X Y Y
X

P X Y Y


 
   

 




 (36)

where X is the information bit and Y is the received bit. The numerator is the conditional
probability that the information bit is a one, given all the received inputs from the codeword, and

10

the denominator is the conditional probability that the information bit is a zero, given all the
received inputs from the codeword. The deinterleaver will reorganize the SISO outputs into the
right order, and the bit generator can determine whether the input bit is a one or zero based on
the value of Λ2 (Xi). If Λ2 (Xi) > 0, then the input bit is a one, and if Λ2 (Xi) < 0, then the input
bit is a zero.

The superior performance of turbo codes is due mainly to the unique encoding process, but also
to the fact that the decoding process is iterative. However, the increase in iterations follows a
law of diminishing returns. Every time the number of iterations is increased, the improvement
over the BER achieved decreases. Also, continually increasing the number of iterations causes
decoder delay, and this in turn decreases the throughput that turbo codes are able to achieve;
because with this added delay, fewer bits can be decoded per second (7).

Another way to improve the BER is to add more parity bits to each input bit. As the code rate
decreases, the BER decreases at an even lower SNR because more errors can be corrected by
adding more parity bits. However, decreasing the code rate by too much will significantly
decrease the number of information bits a channel can transmit per second because the channel
will now be filled with more parity bits. In short, there will always be a tradeoff between BER
and data throughput (7).

Though turbo codes seem to be an immensely powerful FEC code, there are issues that make
them non-ideal in certain situations. The presence of two turbo codes increases the probability of
high Hamming weight codewords, but will also double the number of low Hamming weight
codewords present. Although the BER decreases dramatically for low SNR, the presence of low-
weight codewords begins to dominate the performance of turbo codes at higher SNR, causing the
BER curve to flatten out at these values. Though the encoding and decoding processes outlined
previously lowers the BER, implementing these practices is costly, and may not be desirable.
Furthermore, the decoding algorithm is complex, and more iterations require greater amounts of
memory, causing the implementation of turbo codes to be more expensive than linear block
codes. Lastly, in order to calculate the LLRs necessary for the decoder, the channel’s
characteristics must be known, which means that you must be familiar with the channel over
which the data is being transmitted (7).

4. Bit Error Rate Analysis

So far the encoding and decoding process for Hamming, RS, and turbo codes has been presented,
along with the advantages and disadvantages of each approach. Now the performance of each
code in terms of BER for different levels of SNR will be examined. Equations 7 and 15 are used
in order to calculate BER performance for Hamming and RS codes equations, respectively. The
probability that a bit is flipped during transmission, p , in equations 7 and 15, is determined by

11

the type of modulation used on the channel. The following probability of error for BPSK,
QPSK, and 8QAM modulations assume a binary symmetric additive white Gaussian noise
(AWGN) channel. The following are derived by John Proakis in (8) and make use of the
following relationship

2

21
()

2

t

x

Q x e dt


 
  (37)

BPSK:

2 b
e

o

P Q
N

 
   

  (38)

where b

oN


 is the SNR ratio per bit.

QPSK:

2 21
2 1

2
b b

e
o o

P Q Q
N N

     
              (39)

8QAM:

 8

31
2(1)

8 18
b

o

P Q
N

 
     

 (40)

 2
8

1 (1)eP P   (41)

For equations 7 and 15, use the substitution eP p to calculate the BER versus SNR curves.

Figure 4 shows the improvement in bit error probability between an uncoded message and a
message using the (7,4) Hamming code. Even this very rudimentary code shows a significant
improvement in the achievable BER for a given SNR for all three types of modulation. For a
BER of 10–6, the improvement of SNR is roughly 3.5 dB, which means less than half the signal
strength is needed to achieve the same reliability in decoding error. This factor of improvement
means less transmission power is needed over a given distance, or that the transmission range
can be increased and still achieves the same BER as at a much closer range without the code.

12

0 5 10 15
10

-8

10
-6

10
-4

10
-2

10
0

Eb/No (dB)

P
ro

ba
bi

lit
y

of
 b

it
er

ro
r,

 P
b

Probability of Bit Error vs. Eb/No

for Hamming (7,4) Codes

Uncoded BPSK
Hamming (7,4)

Uncoded QPSK

Hamming (7,4)

Uncoded 8QAM

Hamming (7,4)
RS (31,16)

Figure 4. BER vs. SNR for the (7,4) Hamming code modulated by BPSK, QPSK,
and 8QAM modulations.

Figure 5 shows an even greater improvement in SNR for the (31,16) RS code in comparison to a
message transmitted without any form of FEC code. For a BER of 10–6, the improvement in
SNR is 6.5 dB. This almost doubles the improvement seen by the (7,4) Hamming code. Since
RS codes are extremely effective against burst-errors and offer significant improvements in the
SNR needed to achieve a given BER, the code is very powerful yet still relatively simple to
implement in terms of hardware. RS codes may not compare to turbo codes in their performance
in the very low SNR values encountered—in deep space missions, for example—but for many
other applications such as data storage and internet data transmission, they are a very attractive
option.

13

0 5 10 15
10

-8

10
-6

10
-4

10
-2

10
0

E
b
/N

o
 (dB)

P
ro

ba
bi

lit
y

of
 b

it
er

ro
r,

 P
b

Probability of Bit Error vs. E
b
/N

o

for Reed-Solomon (31,16) Codes

Uncoded BPSK
RS (31,16)

Uncoded QPSK

RS (31,16)

Uncoded 8QAM
RS (31,16)

Figure 5. BER vs. SNR for the (31,16) Reed-Solomon code modulated by BPSK,
QPSK, and 8QAM modulations.

Figure 6 shows achievable BER for turbo codes using different numbers of decoding iterations.
By performing more iterations during decoding, the BER drops dramatically, even for extremely
low SNR values. However, the law of diminishing returns is clearly evident, as the number of
iterations is increased. Figure 6 shows that a bit error rate (BER) of 10–5 can be achieved for an
SNR of 0.8 after 10 iterations by the decoder. This is a very good BER for a signal level that is,
in fact, weaker than the noise over an AWGN channel. In fact, to achieve a BER of 10–6, a SNR
of 1 dB is all that is needed for 10 iterations, where even the (31,16) RS code needed a SNR of
4.5 dB. The ability to achieve such low BER for extremely low SNR is what makes turbo codes
so attractive for applications such as deep space satellites. This type of application also provides
the liberty to introduce as much delay as is needed at the decoder because it is not a real-time
data application. Therefore, more iterations could be performed to achieve a low BER for
signals coming in under 1 dB SNR.

14

Figure 6. BER vs. SNR for multiple iterations of the turbo code
decoding process using BPSK modulation (7).

Another way to improve the achievable BER for low SNR is to decrease the code rate. This
means using more parity bits and less information bits in a codeword. When the code rate is
decreased, the information throughput is sacrificed because there are less information bits being
sent per transmission. But in an application like deep space satellites, this may be an acceptable
tradeoff to increase BER at astronomical distances. Figure 7 shows how decreasing the code rate
can achieve even better results for turbo codes than are depicted in figure 6. At a code rate of
one-fifth a BER of 10–6 is achievable at an SNR of 0.6 dB for 14 decoding iterations. At this
point a receiver can receive a transmission whose power is far below the noise floor and still
achieve an acceptable BER.

15

Figure 7. BER performance of turbo codes for various code rates
modulated with BPSK. Fourteen iterations were used (7).

5. Conclusions

FEC codes are a powerful tool in combating transmission errors caused by a noisy channel.
Using FEC codes allows communications to achieve the same level of transmission reliability,
quantified by the BER, at lower output power levels. This could potentially give a large cost
benefit because it reduces the amount of power needed for the transmission of data.

There are tradeoffs for every code that have to be weighed against the application they are being
used for. This report investigated Hamming Codes, RS codes, and turbo codes, in the areas of
both implementation and performance. There is no single FEC code that is an optimum solution
for every application, and many factors must be weighed before a decision is made on which
code to use. In general, the more effective a FEC code is at combating transmission errors, the
more expensive it is to implement in terms of hardware, and the more complicated its encoding
and decoding process become. Things like decoding delay and decreased throughput must also
be considered when choosing between the different FEC codes that are available.

16

6. References

1. McEliece, Robert. The Theory of Information and Coding; Student edition; Cambridge
University Press, 2004.

2. Pratt, Timothy; Bostian, Charles; Allnutt, Jeremy. Satellite Communications; 2nd ed.; John
Wiley and Son, Inc., 2003.

3. Leon-Gracia, Alberto; Widjaja, Indra. Communication Networks; McGraw-Hill, 2004.

4. Xiong, Wenhui; Matolak, David. Performance of Hamming Codes in Systems Employing
Different Code Symbol Energies. IEEE Wireless Communications and Networking
Conference, 2005.

5. “Block FEC Coding for Broadcast Applications.” 6 May 2005.
http://www.digitalradiotech.co.uk/fec_coding.htm (accessed 2009).

6. Wicker, Stephen; Bhargava, Vijay K. Reed-Solomon Codes and Their Applications; IEEE
Press, 1994.

7. Dowla, Farid. Handbook of RF and Wireless Technologies; Butterworth-Heinemann,
October 2003.

8. Proakis, John. Digital Communications; 4th ed.; McGraw-Hill, 2001.

17

List of Symbols, Abbreviations, and Acronyms

AWGN additive white Gaussian noise

BER bit error rate

FEC forward error correcting

GF Galois Fields

LBC Linear block codes

LLR Log Likelihood Ratios

RS Reed-Solomon

RSC Recursive Systematic Convolutional

SISO Soft-Input Soft-Output

SNR signal to noise ratio

18

NO OF.
COPIES ORGANIZATION

 1 ADMNSTR
 ELEC DEFNS TECHL INFO CTR
 ATTN DTIC OCP
 8725 JOHN J KINGMAN RD STE 0944
 FT BELVOIR VA 22060-6218

 1 DARPA
 ATTN IXO S WELBY
 3701 N FAIRFAX DR
 ARLINGTON VA 22203-1714

 1 CD OFC OF THE SECY OF DEFNS
 ATTN ODDRE (R&AT)
 THE PENTAGON
 WASHINGTON DC 20301-3080

 1 US ARMY RSRCH DEV AND ENGRG
 CMND
 ARMAMENT RSRCH DEV AND
 ENGRG CTR
 ARMAMENT ENGRG AND
 TECHNLGY CTR
 ATTN AMSRD AAR AEF T
 J MATTS
 BLDG 305
 ABERDEEN PROVING GROUND MD
 21005-5001

 1 PM TIMS, PROFILER (MMS-P)
 AN/TMQ-52
 ATTN B GRIFFIES
 BUILDING 563
 FT MONMOUTH NJ 07703

 1 US ARMY INFO SYS ENGRG CMND
 ATTN AMSEL IE TD A RIVERA
 FT HUACHUCA AZ 85613-5300

 1 COMMANDER
 US ARMY RDECOM
 ATTN AMSRD AMR
 W C MCCORKLE
 5400 FOWLER RD
 REDSTONE ARSENAL AL 35898-5000

 1 US GOVERNMENT PRINT OFF
 DEPOSITORY RECEIVING SECTION
 ATTN MAIL STOP IDAD J TATE
 732 NORTH CAPITOL ST NW
 WASHINGTON DC 20402

NO OF.
COPIES ORGANIZATION

 1 US ARMY RSRCH LAB
 ATTN RDRL CIM G T LANDFRIED
 BLDG 4600
 ABERDEEN PROVING GROUND MD
 21005-5066

 7 US ARMY RSRCH LAB
 ATTN IMNE ALC HRR
 MAIL & RECORDS MGMT
 ATTN RDRL CIM L TECHL LIB
 ATTN RDRL CIM P TECHL PUB
 ATTN RDRL SER E
 R DEL ROSARIO
 ATTN RDRL SER E
 G MITCHELL (3 COPIES)
 ADELPHI MD 20783-1197

TOTAL: 16 (1 ELEC, 1 CD, 14 HCS)

