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1. Introduction 

A nozzle is typically used to control the flow of a fluid exiting some region (e.g., a pipe) and 
moving into another fluid.  In aerosol science and its applications, nozzles are often used to 
generate particles (as in a nebulizer where the nozzle helps control the flow of a liquid into a 
gas), or, as in the applications discussed here, to control the motion of the particles in the flowing 
gas.  An aerosol is a suspension of particles in a gas.  The particles may be solid, liquid, or a 
mixture of both.  “Aerosol” is often used to refer to the particles in the suspension.  Ambient 
aerosol particles commonly have sizes ranging from a few nanometers to a few hundred 
micrometers.  They can be composed of a wide variety of materials.  For these applications, the 
particles, because of their inertia, can take different trajectories depending upon their size, shape, 
density, and velocity, and upon the density and viscosity of the gas.   

A nozzle may be used to aerodynamically focus aerosol particles so that particles in a size range 
can be concentrated in air (1–6), or used to separate and/or measure particles of different sizes 
based on their inertial properties (7–10).  Also, the nozzle may be used to increase the speed of 
particles so that they can be impacted upon a surface (9–12).  Furthermore, for the application 
emphasized here, the nozzles may be used to focus particles into a relatively small-diameter jet 
(13–19) so that the particles can be analyzed using mass spectrometry (8), laser-induced 
fluorescence (20–29), light scattering (30–34), or laser induced breakdown spectroscopy (35).   

For the applications in which we are most interested, collimating particles from ambient air, the 
jet of air moves into a region where the pressure is close to atmospheric pressure, and so there 
are significant interactions between the rapidly flowing jet and the gas already in the chamber.  
As a point of interest, for mass spectrometry applications (8) the particles are typically drawn 
into the region of high vacuum, the interactions between the jet of gas and the gas in the chamber 
are negligible, and the trajectories of particles are simpler.  Also, in order to achieve high sample 
rates for the particles, we use high particle velocities (e.g., 10 m/s), and so we avoid the 
aerodynamic lens technologies (17, 18, 35) that work well at low gas velocities (~0.5 L/min).   

Here we report our development of several nozzles designed to aerodynamically focus aerosol 
particles into a small-diameter jet, so that individual particles can be illuminated by a laser beam 
and their light scattering and/or laser-induced fluorescence (LIF) spectra can be measured well.  
We also mention an additional nozzle that can aerodynamically puff selected particles out of the 
air stream so that they can be sorted and collected (25). 

The design specifications for the aerodynamic focusing nozzles depend upon the application.  
For our applications in single-particle LIF and elastic scattering measurements (20–34), we want 
the particles to be focused into as narrow a stream as possible (as small as 20 µm diameter would 
be excellent), and for the particles to remain collimated for a distance of a few millimeters.   
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Also, we want particles having different sizes and shapes to flow at the same speed and the same 
trajectory in the particle stream as it moves away from the nozzle. To help the particles flow in a 
collimated stream, we used an eduction tube a short distance (e.g., about 1 cm) below the nozzle.   

In general, nozzles can be divided into single-piece nozzles, double-sheath nozzles, and multiple-
stage nozzles (aerodynamic lenses).  In this report, we briefly present the development of two 
different single-piece aerodynamically focusing nozzles, and then one nozzle that has a sheath 
flow.  

2. First-generation Single-piece Nozzle 

The first of our aerodynamic focusing nozzles was designed and machined by Yong-Le Pan in 
1998.  It was a single-piece nozzle that looks similar to a 30° cone (figure 1).  Originally, plastic 
glass was used to make the nozzle, but it did not work well, possibly because of static charges.  
The first nozzle that worked well was machined from aluminum.  Subsequently, several versions 
of this nozzle were remachined by the Yale Gibbs machine shop and used in various laboratories.  
This nozzle produces a laminar aerosol flow with an aerosol jet diameter of a few hundred 
micron at a flow rate of 0.6 to 2.1 L/min.  Individual aerosol particles (1 to 10 m size) within 
the jet move at about 10 m/s when the flow is nominally 1 L/min.  These nozzles have been used 
for Single Particle Fluorescence Spectrometer (SPFS) and Two-Dimensional Angular Optical 
Scattering (TAOS) measurements and have been used with a variety of bioaerosol simulants and 
interferent aerosol particles (15–18, 25–26). 

 

Figure 1.  The design of the first-generation aerodynamic focusing nozzle for aerosol 
particles used for SPFS and TAOS instrument prototypes.  The first nozzle 
that worked well was machined from aluminum. 
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3. Second-generation Nozzle 

The primary reason we designed and built the second-generation nozzle was that we wanted to 
measure TAOS over very large angles using an elliptical mirror (27).  In this setup, the laser and 
particle interrogation region (located at the mirror focal point) is located well below (more than 
1 in) the nozzle exit.  At this distance, the aerosol stream is no longer well focused.  We modified 
the nozzle assembly so that it could be inserted into the relatively small (0.40 in) opening of the 
mirror and close to the mirror focal point (figure 2).  This second-generation nozzle was 
designed and machined around 2003.  Because this nozzle had much smaller dimensions and 
required more complicated internal curves, it was too difficult to make using elementary 
machining techniques.  Eventually, it was fabricated by John Bowersett at the U.S. Army 
Research Laboratory (ARL) by electrical discharge machining (EDM).  This second-generation 
nozzle functions similarly to the first-generation nozzle but with a better focusing capability.  It 
has been used for a variety of SPFS and TAOS prototypes in various laboratories and field tests.  
One of the SPFS-puffer systems was operated 24 hours per day, 7 days per week in the San 
Francisco International Airport, CA, for several months by Sandia National Laboratories (SNL) 
(19–21, 27). 

 
Figure 2.  The design of the second-generation nozzle for aerodynamically focusing 1–10 µm diameter 

aerosol particles into an aerosol jet.  Some nozzles were fabricated in aluminum and some in 
steel.  It has been used for SPFS and TAOS measurement technologies both in the laboratory 
and various test fields. 
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4. Third-generation Nozzle—With Sheath Flow 

Although the second-generation nozzle functions well and performed successfully in various 
applications, it had shortcomings.  We found that particles of different size move at slightly 
different speeds within the aerosol jet.  This is a problem because particles of different sizes 
arrive at the sampling region (where they are illuminated by the ultraviolet [UV] laser and where 
their fluorescence and/or TAOS are measured) at different times.  Further, the aerosol stream did 
not remain well-collimated very far from the tip of the nozzle, limiting the region over which 
particles could be interrogated reliably with pulsed laser sources.  So we decided to develop a 
new third-generation nozzle assembly with a sheath flow.  Sheath nozzles have been employed 
previously in aerosol counting instruments such as the Particle Measuring Systems models, 
ASASP-X and LAS-X, and in the TSI Aerosol Particle Sizer Spectrometer.  The inner nozzle of 
our assembly has similar design to the second-generation nozzle, but with a separate outer nozzle 
for a clean-air sheath flow (figure 3).  This nozzle can produce a tightly focused aerosol jet of 
particles having relatively uniform speed over distances of more than 5 mm. 
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Figure 3.  Design of the third-generation nozzle assembly for aerodynamic focusing of 
1–10 µm diameter particles into an aerosol jet.  The outer nozzle of the 
assembly provides for a clean-air sheath resulting in a tightly focused of 
particles having nearly uniform speed and similar trajectories over a distance 
of about 5 mm.  The nozzles are made from stainless steel. 

This nozzle provides for a well-defined interrogation region and also prevents the contamination 
of optics by preventing sampled aerosol from circulating in the optical cell.   

The nozzle was EDM-machined by John Bowertsett of the ARL machine shop in 2006.  The 
machining process posed a particular challenge, because the inner surfaces needed to be joined 
smoothly, with no abrupt changes in curvature, and the exit hole needed to be small (0.9-mm 
diameter).  The external portions of the nozzles were machined in a more conventional manner 
using computer numerical control (CNC) lathes and milling machines running programs written 
by computer aided machining (CAM) software.  The close tolerance of concentricity of the two 
nozzles was achieved by placing a perforated ring at the end of the inner nozzle.  This ring 
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formed a close sliding fit to the outer nozzle.  Fabrication of the nozzle with the desired shape 
was accomplished using EDM technology.  First, a copper tungsten electrode was turned on a 
CNC lathe.  The geometry of the electrode matched that of the inner surface to be machined.  
Next, the electrode was precisely aligned over the nozzle and the EDM process initiated.  
Roughing and finishing electrodes were used to produce the desired finish on the inside surface.  
A high degree of precision is accomplished using this method.      

The nozzle assembly was tested before it was used in the TAOS and SPFS prototype detection 
systems.  Figure 4 shows the test setup and some test results.  A pulsed 532-nm laser sheet was 
focused by a cylindrical lens to illuminate the aerosol stream that was formed by the nozzle 
within a small airtight chamber.  The scattering image from a 300-m diameter fiber was used 
for size calibration.  Test titanium oxide (TiO2) particles with mean sizes of 2, 4.3, 7.2, and 
9.6 m were used. The aerosol sample rates were 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, and 
1.5 L/min (through the inner nozzle), with or without a matched sheath flow through the outer 
nozzle. The photos reveal that this nozzle assembly has the best focusing capability around 
1.0 L/min (through the inner nozzle) and can focus the aerosol particles into a stream less than 
300-m diameter and keep the stream collimated for a distance longer than 5 mm for particles 
larger than 3-m diameter.  The focusing is less tight for the smaller particles.  This third-
generation nozzle has been used for the recent SPFS and TAOS prototypes, particularly for the 
sampling aerosol particles directly from atmosphere and the dual-wavelength excitation UV-LIF 
experiments (22–24, 28–29). 

The third-generation nozzle was slightly modified in 2008 for installation into a new SPFS-
puffer system.  There were no changes at the nozzle tips of the sheath nozzle combination, but 
the nozzle assembly is modified for easier machining and connection to the chamber (figure 5). 
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Figure 4.  (Left) Testing setup for the third-generation sheath nozzle, and (right) the scattering images of 
flowing aerosol particles at different flow rates with and without the sheath flow.   

 

 

Figure 5.  The latest version of the third-generation nozzle connects to the “top 
cover” of a SPFS-puffer system. 
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5.  Use of these Nozzles in Army, DoD, DTRA, DARPA, DOE, and DHS 
Programs  

These nozzles have been used for bioaerosol detection and characterization in our SPFS (15–24) 
and TAOS technologies (25–29). The nozzles have found application in various programs 
carried out by the ARL/Yale research team, such as the Defense Threat Reduction Agency 
(DTRA) Rapid Aerosol Agent Detection (RAAD)  program, the DTRA Basic Science 
Atmospheric Organic Carbon Aerosol Study, the Air Force Research Laboratory (AFRL) 
Scattering Pattern Measurements program, the U.S. Army Medical Institute for Infectious 
Disease BL-3 Detector Development program, the Department of Homeland Security (DHS) 
Enhanced Biological Agents Detection (EBAD) and Particle Penetration programs, the Defense 
Advanced Research Projects Agency (DARPA) Spectral Sensor for Biological Agents (SSBA) 
program, the DARPA Semiconductor UV Optical Source (SUVOS) program, and the 
Department of Energy (DOE) Selection of Hazardous Particles program. 
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HUNTSVILLE AL 35807 

 
1  CHIEF OF NAV OPS DEPT OF THE 

NAVY 
ATTN OP 03EG 
WASHINGTON DC 20350 

 
1  AIR FORCE RESEARCH LAB 

ATTN AMSSB-RRTAFRL/RHPC 
B BRONK 
WRIGHT PATTERSON AIR FORCE 
BASE 
DAYTON OH 45433 

 
 
 

NO. OF 
COPIES ORGANIZATION 

 
2  US AIR FORCE TECH APPL CTR 

ATTN HQ AFTAC/TCC 
ATTN S GOTOFF 
1030 SOUTH HIGHWAY A1A 
PATRICK AFB FL 32925-3002 

 
1  CENTRAL INTLLGNC AGCY DIR DB 

STANDARD 
ATTN OSS/KPG/DHRT 
1E15 OHB 
WASHINGTON DC 20505 

 
1  US DEPT OF ENERGY 

ATTN TECHL LIB 
WASHINGTON DC 20585 

 
1  UNIV COLLEGE GALWAY 

DEPART OF EXPERIMENTAL PHSICS 
ATTN S G JENNINGS 
IRELAND 

 
1 NEW MEXICO STATE UNIV 

DEPART OF PHYSICS 
ATTN R ARMSTRONG 
ROOM 256 GARDINER HALL 
LAS CRUCES NM 88003 

 
1  DIRECTOR 

US ARMY RSRCH LAB 
ATTN AMSRD ARL RO EV 
W D BACH 
PO BOX 12211 

RESEARCH TRIANGLE PARK NC 
27709 

 
1  US ARMY RSRCH LAB 

ATTN AMSRL-RO-EN B MANN 
PO BOX 12211 
RESEARCH TRIANGLE PARK NC 
27709-2211 
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NO. OF 
COPIES ORGANIZATION 

 
45 US ARMY RSRCH LAB 

ATTN RDRL CIM P 
TECHL PUB 
ATTN RDRL CIM L  
TECHL LIB 
ATTN RDRL CIE P CLARK 
ATTN RDRL CIE S A WETMORE 
ATTN RDRL CIE S R PINNICK (10 
COPIES) 

ATTN RDRL CIE S S HILL (10 COPIES) 
ATTN RDRL CIE S YONG-LE PAN (10 
COPIES) 

ATTN RDRL CES S J BOWERSETT (10 
COPIES) 

ATTN IMNE ALC IMS MAIL & 
RECORDS MGMT 
ADELPHI MD 20783-1197 

 
1  CHAIRMAN JOINT CHIEFS OF STAFF 
 ATTN J5 R&D DIV 
 WASHINGTON DC 20301 
 
2  DIR OF DEFNS RSRCH & ENGRG 
 ATTN DD TWP 
 ATTN ENGRG 
 WASHINGTON DC 20301 
 
1  COMMANDING OFFICER 
 ATTN NMCB23 
 6205 STUART RD STE 101 
 FT BELVOIR VA 22060-5275 
 
1  DIR OF CHEM & NUC OPS DA 
 DCSOPS 
 ATTN TECHL LIB 
 WASHINGTON DC 20301 
 
1  NATL GROUND INTLLGNC CTR 
 ATTN RSRCH & DATA BRANCH 
 220 7TH STRET NE 
 CHARLOTTESVILLE VA 22901-5396 
 
 

NO. OF 
COPIES ORGANIZATION 

 
1  TECOM 
 ATTN AMSTE CL 
 ABERDEEN PROVING GROUND MD 
 21005-5057 
 
1  US ARMY ENGRG DIV 
 ATTN HNDED FD 
 PO BOX 1500 
 HUNTSVILLE AL 35807 
 
6  US ARMY ERDEC 
 ATTN SCBRD RTE A SAMUELS 
 ATTN SCBRD RTE I SINDONI 
 ATTN SCBRD RTE S CHRISTESEN 
 ATTN SCBRD RTE W FOUNTAIN 
 ATTN SCBRD RTE E STUEBING 
 ATTN SCBRD RTE J R BOTTIGER 
 ABERDEEN PROVING GROUND MD 
 21005-5423 
   
1  US ARMY MIS & SPC INTLLGNC CTR 
 ATTN AIAMS YDL 
 REDSTONE ARSENAL AL 35898-5500 
 
1  US ARMY NATICK RDEC ACTING 
 TECHL DIR 
 ATTN SBCN-TP P BRANDLER 
 KANSAS STREET BLDG 78 
 NATICK MA 01760-5056 
 
1  US ARMY NUC & CHEML AGCY 
 7150 HELLER LOOP STE 101 
 SPRINGFIELD VA 22150-3198 
 
10 YALE UNIVERSITY 
 DEPART OF APPLIED PHYSICS 
 ATTN  R K CHANG  
 15 PROSPECT ST  
 NEW HAVEN, CT 06520 

 
TOTAL:  89 (87 HC, 1 ELEC, 1 CD)

 
 

 


