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Preface 

This report contains reprints of four papers related to use of the generalized self-consistent 
method (GSCM) for determining the homogenized constitutive response of microcracked media 
for the development of multiscale constitutive models.  In “The Effect of Crack Face Contact on 
the Anisotropic Effective Moduli of Microcrack Damaged Media,”1 the GSCM is used in 
conjunction with a finite-element method to determine the anisotropic effective moduli of a 
medium containing damage consisting of microcracks with an arbitrary degree of alignment.  
The moduli of the medium subjected to tension, compression, and an initially stress-free state are 
evaluated and shown to be significantly different, affecting the wave speed (illustrated using 
slowness surfaces) in the damaged medium.  In “An Effective Medium Model for Elastic Waves 
in Microcrack Damaged Media,”2 direct numerical simulations of waves traveling in microcrack 
damaged media are compared to results using a homogenized effective medium calculation.  For 
incident waves with large wavelengths (1/ka), where k is the wavenumber and a is the half-crack 
length, the scattered elastic energy approaches 0 and the wave does not “see” the obstacle; for 
crack systems modeled using the finite-element approach, this occurs for 1/ka > 60 for media in 
tension and 1/ka > 10 for those in compression.  In “Anisotropic Effective Moduli of 
Microcracked Materials Under Antiplane Loading,”3 the anisotropic effective moduli of a 
cracked solid subjected to antiplane shear deformation are analytically determined.  When the 
undamaged solid is isotropic, the GSCM can be realized exactly; however, when the undamaged 
solid is anisotropic, coupled nonlinear equations for the unknown effective moduli are 
determined through numerical iteration.  Finally, in “On the Effective Electroelastic Properties of 
Microcracked Generally Anisotropic Solids,”4 concise expressions are derived for the effective 
electroelastic properties of a piezoelectric solid containing insulating, permeable, or conducting 
microcracks. 

                                                 
1Su, D.; Santare, M. H.; Gazonas, G. A.  The Effect of Crack Face Contact on the Anisotropic Effective Moduli of 

Microcrack Damaged Media.  Engineering Fracture Mechanics 2007. 
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Loading.  Engineering Fracture Mechanics 2009. 
4Wang, X.; Gazonas, G. A.; Santare, M. H.  On the Effective Electroelastic Properties of Microcracked Generally Anisotropic 
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Abstract

The generalized self-consistent method (GSCM) in conjunction with a computational finite element method is used to
calculate the anisotropic effective moduli of a medium containing damage consisting of microcracks with an arbitrary
degree of alignment. Since cracks respond differently under different external loads, the moduli of the medium subjected
to tension, compression and an initially stress-free state are evaluated and shown to be significantly different, which will
further affect the wave speed inside the damaged media. There are four independent material moduli for a 2-D plane stress
orthotropic medium in tension or compression, and seven independent material moduli for a 2-D plane stress orthotropic
cracked medium, which is initially stress free. When friction exists, it further changes the effective moduli. Numerical meth-
ods are used to take into account crack face contact and friction. The wave slowness profiles for microcrack damaged
media are plotted using the predicted effective material moduli.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Anisotropic damage; Effective moduli; Generalized self-consistent method; Microcracks
1. Introduction

Microcracking is a major cause of damage in brittle material systems, which reduces the material’s effective
moduli by allowing an increase in the large-scale, average deformation resulting from a given external load. As
the number or size of the microcracks increase, there is a commensurate reduction in the effective stiffness,
until the damage reaches a critical value causing the material to fail. A convenient way to quantify the crack
density in 2-D is the parameter g [1].
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where M is the number of cracks per unit area A, and c is the average half crack length. In the general case, an
ensemble of microcracks can be characterized by a distribution function, which includes the average orienta-
tion of the cracks and a description of how the crack angles are distributed around the average. This will result
in anisotropic effective moduli, even when the undamaged material behaves isotropically. Since microcracks
respond differently under tension and compression, damage growth and the resulting anisotropic effective
moduli of microcracked media will differ depending upon the magnitude and direction of the boundary loads.

The crack-induced changes in the anisotropic effective moduli will have a profound effect on the overall
structural response to loads. The prediction of these changes will help in the understanding of the anisotropic
damage evolution process in brittle materials such as concrete, rock and ceramics. Indeed, continuum damage
finite element modeling of the dynamic response of such brittle materials often requires, at the very least, an
orthotropic description of damage in terms of three orthogonal arrays of interacting cracks [2]. The aniso-
tropic response, is in part, a load-induced effect [3], but can also be attributed to a pre-existing preferred ori-
entation of microcracks. In addition, the mechanical properties of microcracked media have a significant effect
on wave propagation even in cases where the wavelengths are large enough to ignore wave reflection from the
crack faces (see e.g. [4–6]).

Sayers et al. [7,8] used the effective moduli of the damaged media with perfectly aligned or randomly ori-
ented cracks to study the elastic wave propagation. Schubnel and Guéguen [9] and Guéguen and Schubnel [10]
calculated the elastic wave velocities and permeabilities in microcracked rocks. However, because the interac-
tions of arbitrary orientations of cracks were not fully characterized, these authors only focused on the prob-
lems of aligned, perfectly random or specially distributed cracks, and did not consider the difference between
the tensile and compressive behavior of microcracks. Therefore, further work is needed to understand the
complex relationships among microcrack orientation distributions, external loads and the resulting effective
moduli.

Many researchers have proposed methods to calculate the effective moduli for solids with inhomogeneities,
voids or cracks. Without attempting to review the vast literature on the subject, we will focus on the studies
that had the largest direct impact on the current work; the interested reader is referred to a comprehensive
review of the literature provided by Kachanov [11,12]. The first solution that considered the elastic interaction
of elliptically shaped cracks was by Budiansky and O’Connell [13]. In that landmark paper, they used the self-
consistent method (SCM) to calculate the 3-D elastic moduli of a cracked solid, where the distribution of
microcracks was assumed to be isotropic and homogeneous. In the SCM, a crack is embedded directly into
an effective medium and the energy associated with opening the crack under a given load is calculated. By
equating the strain energy associated with the opening of a distribution of such cracks, with the difference
in strain energy between the undamaged and the effective medium, the effective moduli for the cracked med-
ium can be calculated.

Gottesman et al. [14] used variational principles to calculate the effective elastic moduli for materials with
both interacting and non-interacting parallel cracks using the SCM. These two solutions provided upper
and lower bounds for the effective moduli of a medium with aligned cracks, resulting in an orthotropic effective
medium as opposed to the randomly oriented cracks, which results in an isotropic effective medium. Horii and
Nemat-Nasser [3] extended the Budiansky and O’Connell [13] solution, to account for crack closure and crack
face friction effects. They considered load cases in which some cracks opened and some closed, and showed that
when crack closure and friction are considered, the overall material response depends on load history.

Kachanov [11] provided a comprehensive review of earlier results, and compared them to analytical solu-
tions he derived for non-interacting cracks. He noted that there are several drawbacks in the use of the SCM
for determining effective moduli of cracked solids: (1) Because this method inserts the cracks directly into the
effective media, the SCM over estimates the interaction between the cracks. (2) The SCM has a limiting value
for crack density for randomly distributed cracks: it gives zero stiffness when the 2-D crack density g is larger
than 1/p.

In order to overcome these difficulties, several researchers have developed different methods for determining
the effective moduli of microcracked media. Benveniste [15] extended the effective field or Mori–Tanaka
method (MTM) [16] to calculate the effective moduli of 2-D cracked media. This MTM has some similarities
to the SCM, but the energy is calculated based on a model of a crack in an undamaged medium subjected to
an effective far-field stress or strain. The MTM predicts higher moduli than the SCM and does not predict a
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limiting value for the crack density. Hashin [17] developed a differential scheme method (DSM) for elastic
properties of a cracked material by following a limiting process on the DSM for porous materials. Kachanov
[11] points out that the DSM is an incremental version of the SCM, which does not have a limiting crack den-
sity value, but still under-predicts the effective moduli, although not as severely as the SCM. At the same time,
he notes that the DSM is path dependent, since it depends on the order in which the cracks are added to the
formulation.

Aboudi and Benveniste [1] used a generalized self-consistent method (GSCM) to evaluate the 2-D effective
moduli of a material with randomly oriented cracks. This method assumes that each crack resides in a region
of undamaged material, which in turn is surrounded by the effective medium. The general solution for a crack
inside a circular inclusion was used as the basis for this work (see Fig. 1). By using this assumption, the GSCM
gives higher effective moduli than the SCM and gives non-zero stiffness at crack density g = 1/p. However,
because of the use of a circular inclusion, the crack tip touches the inclusion-effective medium interface at
g = 1/p. Therefore, this method can only be used for crack densities less than 1/p and becomes increasingly
less accurate as the crack tip approaches the interface g! 1/p. Huang et al. [18] provided a crack-elliptical
matrix-composite model for the GSCM; in this improved GSCM, an elliptical inclusion is used instead of a
circular inclusion, which extends the crack density limit seen in Aboudi and Benveniste [1] to a higher limiting
value. The solution, however, is still only presented for a randomly oriented distribution of cracks.

The GSCM accounts for the interactions between cracks in an average sense under the assumption that
each crack is surrounded by a region of intact material. Therefore, in physical situations when cracks are close
together, the strong interactions between them cannot be accounted for within the framework of the GSCM.
For example, Kachanov [11,12] shows that in some pre-arranged crack configurations, the crack density could
become increasingly large, while having very little impact on the effective moduli. For another configuration
with a very low crack density, the effective modulus can approach zero. Kachanov [11,12] points out that the
limitations of the GSCM stem from the fact that this method does not permit overlap of the inclusions con-
taining cracks. This does not preclude modeling of randomly located cracks, so long as the inclusions do not
overlap, yet the maximum crack density is limited to g ’ 0.3. In this statement, Kachanov refers to Aboudi
and Benveniste [1], where the authors use a circular inclusion, which geometrically limits the crack density
E*,  μ*

E , μ

2a

Fig. 1. GSCM model from Aboudi and Benveniste [1].

E1
*, E 2

*, μ12
* ,  K*

θ

E, μ x

Fig. 2. Model of the crack problem from Santare et al. [19].
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to g = 1/p as discussed above. At this density, the crack tips touch the inclusion-matrix interface. In Huang
et al. [18] and Santare et al. [19], the authors use an elliptical rather than a circular inclusion. With the elliptical
inclusion this geometric limitation is eliminated and any g value can be used in the calculations. However the
assumption of no overlapping between the inclusions is still present, so the model cannot account for cracks
which nearly touch. Because of this, there is still a practical limitation on the value for g.

In cases where there is strong interaction among multiple cracks, the GSCM is not useful and one would
need other techniques to calculate the effective moduli. Such techniques have been developed. For example,
Greengard and Helsing [20] employ the fast multipole method (FMM) to evaluate the stress field of the elastic
media with different inclusions; Helsing [21] applies FMM in calculating the interactions among large numbers
of cracks; Wang and Chau [22] use a boundary element approach to study the effective stress intensity factor
and the interaction between cracks and holes; Pan [23] derives the single domain BEM formulation to study
the effect of different cracks in different size of domains; Wang and Feng [24] discuss the interaction between
multiple rows of periodical cracks; Dong and Lee [25] apply the boundary integral equation method to eval-
uate the interaction between the doubly periodic array of cracks and their effect on the mechanical properties.
These methods may be used to account for strong crack interactions resulting from high crack densities and
presumably, from randomly located cracks. But the example solutions in the referenced literature still do not
account for randomly located cracks. In the current paper, we show the results for crack density up to g = 0.4,
which as described in Kachanov [11] ‘‘can be considered as quite high’’ for a 2-D problem, but seems a rea-
sonable upper limit in light of the considerations discussed above.

In most of the above studies, the authors consider either randomly oriented cracks or aligned cracks. For
randomly oriented cracks, the effective medium will be isotropic, since there is no preferred crack orientation.
In the case of aligned cracks, the effective moduli will clearly be anisotropic, since the material behaves differ-
ently when the cracks are open than when they are not. In real applications, however, the orientation distri-
bution of the cracks will be neither random nor aligned. For example, the cracks shown in Fig. 3 have an
average orientation parallel to the x-axis and are distributed within ±h0 relative to the x-axis. In this case,
crack opening will influence the moduli in all directions, but not equally. Santare et al. [19] extended Aboudi
and Benveniste’s [1] GSCM to study the 2-D anisotropic case where the cracks have a prescribed orientation
distribution /(h) (Fig. 3). They used the solution for a crack, inside an elliptical inclusion surrounded by an
anisotropic effective medium (Fig. 2). Feltman and Santare [26] extended the Santare et al. [19] work to study
the problem of arbitrarily oriented cracks in a material that is originally anisotropic before damage occurs.

In recent years, the research in this field has continued. Zheng and Du [27] proposed the effective self-con-
sistent method (ESCM) and its simplified explicit version, the interaction direct derivative method (IDDM).
These methods are based on an effective stress/strain field as in the MTM mentioned earlier. Feng et al. [28]
proposed a quasi-micromechanical method (QMM) to calculate the overall constitutive relations for brittle
materials with interacting and growing microcracks. They combined phenomenological observations with
micromechanical models to realize some of the benefits from both approaches. They built the model from
a micromechanical analysis while using the orientation domain of microcrack growth (DMG) from continuum
damage mechanics together with the crack density parameter, to characterize the microcrack damage. In
addition to these quasi-analytical studies, several authors, (see for e.g., [11,29–32]), have provided numerical
solutions to determine the effective moduli in 2-D cracked media.

It is clear that a microcracked medium will behave differently in tension and compression, hence the
effective anisotropic moduli of such a medium should reflect this load-induced anisotropy. Horii and
Nemat-Nasser [3] discuss the response of a medium with randomly distributed cracks under overall
Fig. 3. Cracks distributed within ±h0. h is the angle between the crack and x-axis (label the x-axis in Fig. 2).
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compressive forces using the SCM. In this solution, some of the pre-existing cracks close, some open, which
lead to the anisotropic response. They show the effective moduli under several different loading conditions.
However, the results are limited to randomly distributed cracks and the limitations of the SCM, such as under
estimating the moduli and predicting zero moduli, are still present in the results.

The problem of crack face overlap has also been recently addressed by Wang and Sun [33] in their work
using boundary element methods. In the present work, we extend the GSCM developed in Santare et al.
[19] and use computational finite element methods to calculate the anisotropic effective moduli for 2-D
cracked media in plane stress, by considering the different behaviors of cracks in tension and compression.

2. Generalized self-consistent method for anisotropic effective media

To begin the discussion, consider the application of the GSCM to the determination of the effective moduli
in a microcrack damaged solid. For a solid body containing discontinuities or voids, the total strain will be the
sum of the deformation of the material itself plus the changes in the void volume. For a specific, external load,
the average deformation of the material is related to the average stress and therefore can easily be found
through the undamaged material’s constitutive relations. To determine the change in void volume, one needs
to know the initial shape and distribution of the voids. In the current model, the voids are assumed to be
homogeneously distributed microcracks and the strain associated with them is therefore related to the crack
opening displacements. Assuming homogeneous loading and elastic material response, the strain relationship
described above can be written in terms of strain energies ([1]; see also Walsh [34] who derives a similar expres-
sion for isotropic solids using the reciprocal theorem),
1
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In this expression, S�ijk‘ is the effective compliance of the damaged material, and Sijk‘ is the compliance of the
undamaged material, r0

ij is the homogeneous, applied Cauchy stress field, and
t0
i ¼ r0

ijnj ð3Þ
is the traction that would be present along the crack faces if the material were not damaged. The term in
brackets [ui] is the crack opening displacement so that the integral in the expression, taken over the crack sur-
face Ck of each of the M cracks in the volume V, gives the total work associated with crack opening. This
integral is evaluated to take into account the crack distribution, by considering all the existing microcrack ori-
entations, appropriately weighted. To determine ‘‘N’’ distinct effective moduli, ‘‘N’’ different homogeneous
stress fields r0

ij are applied to Eq. (2), and the different forms of the equation are solved simultaneously to
determine the ‘‘N’’ effective elastic constants (see for example [19]).

3. Crack face contact

The crack-opening energy integrals used in the previous studies are based on linear elastic fracture mechan-
ics (LEFM), which does not explicitly account for crack face contact. Therefore, the strain energy associated
with compressive loading is the same as that associated with the tensile loading due to the fact that in LEFM
the crack faces overlap in compression. In reality, the crack faces will open or close depending on the applied
loads, resulting in very different strain energies in tension and compression. Consider a two-dimensional plane
stress orthotropic elastic material with cracks, under bi-axial loads P and P* (Fig. 4a) and a small load incre-
ment Dq, which is not necessarily a bi-axial load.

We will discuss the following three different cases as shown in Fig. 4b. The r1 and r2 in Fig. 4b represent the
principle stresses in the 2-D plane.

Case 1: P > 0, P* > 0 and jPj � jDqj, jP*j � jDqj
In this case, the pre-existing bi-axial tensile loads P and P* are much larger than the load increment Dq.

Because of this, all cracks are open and there is no crack face contact. The results in Santare et al. [19] are
valid in this case.
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Case 2: P < 0,P* < 0 and jPj � jDqj, jP*j � jDqj
In this case, the pre-existing bi-axial loads P and P* are compressive and much larger than the load increment

Dq. Therefore, all cracks remain closed in mode I (normal). However the cracks may still open in mode II (shear).

Case 3: P = P* = 0
The medium is initially stress free before the load increment is applied. In this case, the cracks may either

open or close in both mode I and II depending on the direction of the load increments Dq.

Fig. 4c shows schematically the cracks’ response to these three cases under a pure shear load increment as
an example of the Dq. In Case 1, all the cracks open; in Case 2, all the cracks close in mode I; and in Case 3,
some cracks open and some close.

For Cases 1 and 2, four independent material constants are required to fully characterize S�ijk‘ in the plane
(plane stress); thus four independent load cases are needed as shown schematically in Fig. 5 (for Case 1) and
Fig. 6 (for Case 2). Taking each load case separately and assuming that the undamaged material is isotropic,
the following equations result [19]:
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In these equations, p1, p2, q and h are the homogeneous load increments as shown in Figs. 5 and 6. E�1; E�2; l�

and K* are the effective moduli of the damaged material. E�1 and E�2 are the elastic moduli in the principal direc-
tions, l*, is the shear modulus, and K* is the effective 2-D plane stress bulk modulus. These moduli are related
to Poisson’s ratio through the equation [19],
K� ¼ E�1E�2
E�1 þ E�2ð1� 2v�1Þ

; ð8Þ
where v�1 is one of the effective Poisson’s ratios of the damaged material. E, l and K are the undamaged mate-
rial moduli where K is analogous to K* for the case of an isotropic material.

In Case 3, the cracked medium responds differently under tensile and compressive loads, hence there will be
different Young’s moduli, and bulk moduli under tension and compression (Fig. 7). We assume the crack dis-
tribution is symmetric with respect to the x-axis. Therefore, when we shear the medium relative to this axis,
half of the cracks will open and half will close in mode I (as depicted in Fig. 4c), so there is only one effective
shear modulus l* in Case 3. Seven independent material constants are thus required to describe this 2-D ortho-
tropic plane stress model
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In these equations, p1T, p1C, p2T, p2C, q, hT, hC represent the homogeneous load increments shown in Fig. 7.
E�1T and E�2T are the effective Young’s moduli under tensile load, and E�1C; E�2C are the effective Young’s moduli
under compressive load. K�T; K�C are the effective 2-D plane stress bulk moduli under tensile and compressive
loads. By generalizing the results of Taya and Mura [35] and Feltman and Santare [26], they can be written as
K�T ¼
E�1TE�2T

E�1T þ E�2Tð1� 2v�12TÞ
; ð16Þ

K�C ¼
E�1CE�2C

E�1C þ E�2Cð1� 2v�12CÞ
; ð17Þ
where v�12T represents the effective Poisson’s ratios of the damaged material under tensile loads, and v�12C is for
compressive loads.
4. Finite element model

The results in Santare et al. [19] are valid only for Case 1, as discussed in the previous section. In that case,
the crack surfaces will never overlap due to the applied bi-axial tensile loads. In order to prevent the unphys-
ical crack face overlap under compression loads in LEFM, and discuss other cases mentioned in previous sec-
tion, we have developed a finite element model to calculate the energy associated with the crack opening
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displacements. Nonlinear contact elements are used along the crack surfaces, so that overlap is eliminated, and
crack face friction can be added easily.

The finite element model was designed to mimic as closely as possible the analytical boundary value prob-
lem used in the GSCM. This model is shown schematically in Fig. 8. The use of finite elements introduces sev-
eral new issues. For example, the analytical solution domain used in GSCM is an infinite medium. To simulate
this using an FE model we need a large enough domain so that the embedded crack does not interact with the
external boundary. However, the larger the model, the more calculation time needed to converge to a set of
effective moduli. A second issue is the interface between the ellipse and the surrounding medium. In the FE
model, the mesh needs to be sufficiently refined to simulate the smooth elliptical interface in the analytical
solution. A comprehensive meshing study was undertaken and the numerical results were compared to known
analytical solutions [36] to resolve these domain size and finite element mesh refinement issues.

The resulting FE model is constructed with 2-D plane stress, isoparametric elements. As in the analytical
solution, the material inside the ellipse is isotropic and homogeneous and the material outside is a homogeneous
orthotropic effective material with a known principal axis orientation. Note that in Fig. 8, the crack shown is
horizontal. In order to calculate the crack opening displacement for cracks at other angles, we simply modify
the externally applied loads as calculated from Mohr’s circle. The external boundary length of the FE model is
L = 500 and the focal length of the ellipse equals the half crack length c = 30. In order to model a specific crack
density g, the crack length is kept constant, and the size of the ellipse is varied. By using Eq. (1), together with
the geometrical relations for an ellipse, A = pab and c2 = a2 � b2, we can determine a unique a and b, the semi-
major and semi-minor axes of the ellipse for a given g. For the results that follow, the FE model has 31,882
elements in the entire 2-D plane stress model, with 4054 elements inside the ellipse when g = 0.4.

The effective moduli for the cracked media are obtained using the FE solutions for the crack energies in the
method described in Section 2 and 3. We use ABAQUS 6.4.4 [37] as the FE solver and the program is written
in the ABAQUS script language Python. For the initially stress-free case (Case 3), we wrote a user subroutine
to define a new 2-D material with seven material constants. On a PC with a Pentium 4 2.0 GHz cpu and 1 GB
RAM, it took from 30 min to 3 h for a single iteration with a specific g and h0, depending on the number of
unknown material properties (4 for Cases 1 and 2 and 7 for Case 3), whether the friction existed and whether
we used the user defined material. There are about 5–15 iterations in a ‘‘typical’’ solution, when we use the
virgin material properties as the initial guess.

To describe the algorithm of the FE script, consider the medium in tension (Case 1) as an example. Let us
assume that the crack distribution function is /(h) and the individual crack angles are distributed in the inter-
val [�h0,h0] relative to the x-axis. With this, we can replace the summations in Eqs. (4)–(7) with the following
integrals (adapted from [19]):
1

2E�1
p2

1 ¼
1

2E
p2

1 þ
1

4

g
c2h0

Z h0

�h0

/ðhÞ
Z

Ck

½ui�p1 tp1
i dCk dh; ð18Þ

1

2E�2
p2

2 ¼
1

2E
p2

2 þ
1

4

g
c2h0

Z h0

�h0

/ðhÞ
Z

Ck

½ui�p2 tp2
i dCk dh; ð19Þ

1

2l�
q2 ¼ 1

2l
q2 þ 1

4

g
c2h0

Z h0

�h0

/ðhÞ
Z

Ck

½ui�qtq
i dCk dh; ð20Þ
L 

L 
2c

2a

Crack

Fig. 8. FEM model for single crack inside an elliptical inclusion.



Fig. 9. Flow chart for calculating effective moduli of the medium in tension.
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i dCk dh: ð21Þ
Fig. 9 is a flow chart of the algorithm used for calculating the effective moduli of the medium in tension. The
quantities assumed known, are the crack density, g (hence the elliptical geometry and crack length) the undam-
aged material moduli E, l and K and the crack orientation distribution, /(h), and range [�h0,h0]. An initial
guess is made for the four effective moduli in the surrounding matrix. By applying these and the traction
boundary conditions to the model as shown in Fig. 5, we calculate the crack opening displacement [ui] in each
load case for the full range of crack orientations considered. These displacements allow us to approximate the
double integrals in Eqs. (18)–(21). We can then use these four equations to calculate a new set of the four effec-
tive moduli E�1; E�2; l� and K*. These new moduli are then compared to the initial estimates to determine if
another iteration is necessary to converge within a user-defined level of accuracy.

5. Computational results

As discussed before, different crack distribution functions /(h) will result in different orthotropic effective
moduli. In the following solutions, we choose /(h) to be a constant distribution between [�h0,h0] as shown in
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Fig. 10. Constant distribution of cracks.
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Fig. 10. This is chosen so that when h0 = 90, the cracks are randomly distributed as is the case in most of the
literature. Other distributions could be used simply by inputting the proper function into Eqs. (18)–(21). We
assume that the intact Poisson’s ratio is 1/3 and that the crack tips are placed at the foci of the ellipse in Fig. 8.

In the tables, we list the results for the effective moduli for all three load cases described in Section 3. The
effective moduli for the medium in tension (Case 1) are all within 4% relative error when compared to the
results in Santare et al. [19]. This verifies that the FE model developed approximates the analytical solution
to within an acceptable level of accuracy when all the cracks are open. In Figs. 11 and 12, we compare our
current results with several classic results for the effective moduli of cracked media in 2-D plane stress models.
Fig. 11 is the effective Young’s modulus for the medium with randomly distributed cracks (h0 = 90) and
Fig. 12 shows the effective Young’s modulus in the direction perpendicular to an aligned array of cracks
(h0 = 0).

As discussed above, in a 2-D orthotropic plane stress model, four material moduli (Cases 1 and 2) or seven
material moduli (Case 3) are required to fully define the material compliance. In plane stress, the mechanical
properties in the out-of-plane direction are uncoupled from those in the in-plane directions and are therefore
completely arbitrary.

However, in the literature, many authors predict the effective moduli for the cracked medium using a 2-D
plane strain model. In plane strain, the out-of-plane compliances affect the in-plane moduli. Yet, many
authors do not report the mechanical properties in the out-of-plane direction, and this makes it difficult to
compare our result to theirs. Alternatively, it is possible to use the current procedure, along with an assumed
set of out-of-plane properties, to generate an analogous set of plane strain results.
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The data in Tables 1–4 are plotted in a series of contour plots (Figs. 13–15) to facilitate visualization and
comparison. In each contour plot, the horizontal axes are the limits of the orientation distribution, h0 from 0�
to 90� and the crack density, g from 0 to 0.4. The vertical axis is the effective modulus normalized by the cor-
responding undamaged modulus. Figs. 13 and 14 show the moduli for the medium in tension (Case 1) and
compression (Case 2). Comparing Fig. 13 with Fig. 14, we see that the medium is generally stiffer under com-
pressive loads than under tensile loads. This is because the cracks can only experience mode II (shear) opening
under compressive loads and therefore the energy dissipated through crack opening is smaller than that under
tensile loads where modes I and II are both possible. As shown in Fig. 14, the 2-D effective bulk modulus is
unchanged under compressive loads. This is due to the fact that when the medium is loaded in bi-axial com-
pression, all the cracks will be closed (in both normal and shear modes).

Fig. 15 shows how the effective moduli of the initially stress-free medium (Case 3) vary with h0 and g. In this
figure, when h0 = 90�, the crack orientations are random and therefore the medium is isotropic. The classical
relationship among isotropic material moduli is shown as
l ¼ E
2ð1þ vÞ : ð22Þ
However, the effective properties in Fig. 15 do not satisfy Eq. (22). In an isotropic medium, where the tensile
properties are different from the compressive properties, the following relationship can be easily derived:
l ¼ ECET

ECð1þ vTÞ þ ETð1þ vCÞ
; ð23Þ
where EC, ET are Young’s moduli under tensile and compressive loads and vT, vC are Poisson’s ratios in these
two load cases. In this case, the Poisson’s ratios in Eq. (23) can be calculated from the 2-D bulk moduli and
Young’s moduli through the following relations:
KT ¼
ET

2ð1� vTÞ
; ð24Þ

KC ¼
EC

2ð1� vCÞ
; ð25Þ
Eqs. (24) and (25) are the isotropic versions of Eqs. (16) and (17).



Table 1
Effective moduli of a medium in tension

h0 E�1=E E�2=E l�12=l K*/K h0 E�1=E E�2=E l�12=l K*/K

g = 0.1 g = 0.2

0 1.000 0.553 0.796 0.623 0 1.000 0.316 0.633 0.381
10 0.993 0.556 0.795 0.623 10 0.985 0.319 0.632 0.382
20 0.974 0.566 0.795 0.625 20 0.944 0.328 0.630 0.384
30 0.944 0.581 0.794 0.627 30 0.883 0.344 0.628 0.388
40 0.907 0.601 0.794 0.629 40 0.812 0.366 0.626 0.391
50 0.866 0.626 0.793 0.631 50 0.739 0.393 0.624 0.395
60 0.826 0.653 0.793 0.633 60 0.670 0.424 0.624 0.397
70 0.789 0.681 0.793 0.634 70 0.611 0.459 0.624 0.399
80 0.758 0.708 0.794 0.634 80 0.562 0.494 0.625 0.400
90 0.732 0.732 0.794 0.634 90 0.526 0.526 0.626 0.400

g = 0.3 g = 0.4

0 1.000 0.182 0.502 0.228 0 1.000 0.106 0.398 0.137
10 0.976 0.184 0.500 0.229 10 0.965 0.108 0.395 0.138
20 0.910 0.191 0.496 0.231 20 0.870 0.113 0.388 0.139
30 0.816 0.203 0.491 0.234 30 0.740 0.120 0.380 0.140
40 0.711 0.220 0.486 0.237 40 0.611 0.131 0.372 0.140
50 0.611 0.242 0.482 0.239 50 0.484 0.145 0.366 0.139
60 0.523 0.268 0.481 0.240 60 0.387 0.163 0.364 0.138
70 0.452 0.298 0.481 0.240 70 0.316 0.184 0.364 0.137
80 0.399 0.330 0.483 0.241 80 0.266 0.208 0.366 0.136
90 0.361 0.361 0.485 0.241 90 0.234 0.234 0.368 0.136

Table 2
Effective moduli of a medium in compression

h0 E�1=E E�2=E l�12=l K*/K h0 E�1=E E�2=E l�12=l K*/K

g = 0.1 g = 0.2

0 1.000 1.000 0.797 1.000 0 1.000 1.000 0.639 1.000
10 0.994 0.994 0.804 1.000 10 0.987 0.987 0.650 1.000
20 0.977 0.977 0.823 1.000 20 0.953 0.953 0.680 1.000
30 0.955 0.955 0.850 1.000 30 0.909 0.909 0.724 1.000
40 0.933 0.933 0.878 1.000 40 0.868 0.868 0.772 1.000
50 0.917 0.917 0.900 1.000 50 0.838 0.838 0.810 1.000
60 0.909 0.909 0.911 1.000 60 0.824 0.824 0.830 1.000
70 0.910 0.910 0.911 1.000 70 0.825 0.825 0.828 1.000
80 0.916 0.916 0.902 1.000 80 0.836 0.836 0.813 1.000
90 0.924 0.924 0.890 1.000 90 0.851 0.851 0.793 1.000

g = 0.3 g = 0.4

0 1.000 1.000 0.516 1.000 0 1.000 1.000 0.418 1.000
10 0.980 0.980 0.528 1.000 10 0.973 0.973 0.432 1.000
20 0.929 0.929 0.564 1.000 20 0.903 0.903 0.470 1.000
30 0.864 0.864 0.618 1.000 30 0.819 0.819 0.528 1.000
40 0.805 0.805 0.677 1.000 40 0.745 0.745 0.595 1.000
50 0.764 0.764 0.728 1.000 50 0.693 0.693 0.653 1.000
60 0.744 0.744 0.754 1.000 60 0.670 0.670 0.684 1.000
70 0.745 0.745 0.752 1.000 70 0.671 0.671 0.682 1.000
80 0.761 0.761 0.731 1.000 80 0.690 0.690 0.657 1.000
90 0.782 0.782 0.705 1.000 90 0.715 0.715 0.626 1.000
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When friction is present on the crack surfaces, the moduli become path and load dependent. This is because
the friction force is a non-conservative force, and therefore the work of friction depends on the sequence of



Table 3
Effective moduli of initially stress-free media

h0 E�1T=E E�1C=E E�2T=E E�2C=E l�12=l K�t =K K�c=K h0 E�1T=E E�1C=E E�2T=E E�2C=E l�12=l K�t =K K�c=K

g = 0.1 g = 0.2

0 1.000 1.000 0.553 1.000 0.796 0.623 1.000 0 1.000 1.000 0.316 1.000 0.634 0.381 1.000
10 0.993 0.994 0.556 0.994 0.799 0.623 1.000 10 0.986 0.987 0.319 0.987 0.640 0.382 1.000
20 0.975 0.977 0.565 0.977 0.809 0.625 1.000 20 0.947 0.953 0.328 0.953 0.654 0.385 1.000
30 0.946 0.954 0.580 0.954 0.821 0.627 1.000 30 0.889 0.909 0.344 0.909 0.673 0.389 1.000
40 0.910 0.933 0.600 0.933 0.834 0.629 1.000 40 0.821 0.867 0.366 0.867 0.693 0.394 1.000
50 0.871 0.917 0.624 0.917 0.844 0.632 1.000 50 0.749 0.837 0.393 0.837 0.708 0.398 1.000
60 0.831 0.909 0.651 0.909 0.849 0.633 1.000 60 0.681 0.823 0.424 0.823 0.716 0.401 1.000
70 0.793 0.910 0.679 0.910 0.849 0.635 1.000 70 0.620 0.823 0.459 0.823 0.715 0.403 1.000
80 0.760 0.916 0.707 0.916 0.845 0.635 1.000 80 0.570 0.835 0.496 0.835 0.709 0.404 1.000
90 0.733 0.924 0.733 0.924 0.840 0.635 1.000 90 0.530 0.850 0.530 0.850 0.701 0.404 1.000

g = 0.3 g = 0.4

0 1.000 1.000 0.182 1.000 0.505 0.228 1.000 0 1.000 1.000 0.107 1.000 0.402 0.137 1.000
10 0.978 0.980 0.184 0.980 0.511 0.230 1.000 10 0.968 0.973 0.108 0.973 0.408 0.138 1.000
20 0.916 0.928 0.192 0.928 0.526 0.233 1.000 20 0.880 0.902 0.114 0.902 0.423 0.141 1.000
30 0.828 0.863 0.205 0.863 0.547 0.237 1.000 30 0.761 0.816 0.122 0.816 0.443 0.144 1.000
40 0.728 0.803 0.222 0.803 0.569 0.241 1.000 40 0.632 0.739 0.134 0.739 0.463 0.146 1.000
50 0.630 0.760 0.244 0.760 0.586 0.245 1.000 50 0.514 0.686 0.149 0.686 0.478 0.147 1.000
60 0.542 0.740 0.271 0.740 0.595 0.247 1.000 60 0.415 0.661 0.168 0.661 0.486 0.146 1.000
70 0.469 0.741 0.302 0.741 0.594 0.248 1.000 70 0.339 0.662 0.191 0.662 0.485 0.145 1.000
80 0.412 0.756 0.336 0.756 0.587 0.248 1.000 80 0.283 0.680 0.217 0.680 0.479 0.144 1.000
90 0.370 0.777 0.370 0.777 0.578 0.248 1.000 90 0.246 0.706 0.245 0.706 0.470 0.143 1.000

Table 4
Effective moduli of initially stress-free media with friction coefficient equal to 0.2

h0 E�1T=E E�1C=E E�2T=E E�2C=E l�12=l K�t =K K�c=K h0 E�1T=E E�1C=E E�2T=E E�2C=E l�12=l K�t =K K�c=K

g = 0.1 g = 0.2

0 1.000 1.000 0.553 1.000 0.796 0.623 1.000 0 1.000 1.000 0.316 1.000 0.634 0.381 1.000
10 0.993 0.994 0.556 1.000 0.802 0.623 1.000 10 0.986 0.987 0.319 1.000 0.644 0.382 1.000
20 0.975 0.978 0.565 0.994 0.814 0.625 1.000 20 0.947 0.955 0.329 0.988 0.661 0.385 1.000
30 0.946 0.958 0.580 0.978 0.828 0.627 1.000 30 0.890 0.915 0.344 0.955 0.683 0.390 1.000
40 0.910 0.940 0.600 0.959 0.841 0.629 1.000 40 0.821 0.880 0.366 0.917 0.703 0.394 1.000
50 0.871 0.928 0.624 0.943 0.850 0.632 1.000 50 0.750 0.857 0.393 0.886 0.717 0.399 1.000
60 0.831 0.924 0.651 0.934 0.855 0.634 1.000 60 0.681 0.850 0.425 0.868 0.725 0.402 1.000
70 0.793 0.928 0.680 0.932 0.855 0.635 1.000 70 0.621 0.856 0.460 0.864 0.725 0.404 1.000
80 0.760 0.935 0.708 0.936 0.851 0.635 1.000 80 0.570 0.869 0.496 0.871 0.720 0.405 1.000
90 0.733 0.942 0.733 0.942 0.846 0.635 1.000 90 0.531 0.883 0.531 0.883 0.711 0.405 1.000

g = 0.3 g = 0.4

0 1.000 1.000 0.182 1.000 0.505 0.229 1.000 0 1.000 1.000 0.107 1.000 0.413 0.138 1.000
10 0.978 0.980 0.184 1.000 0.515 0.230 1.000 10 0.968 0.972 0.109 1.000 0.418 0.139 1.000
20 0.916 0.930 0.192 0.981 0.535 0.233 1.000 20 0.881 0.904 0.114 0.974 0.436 0.141 1.000
30 0.828 0.871 0.205 0.931 0.559 0.238 1.000 30 0.762 0.824 0.123 0.905 0.458 0.144 1.000
40 0.729 0.819 0.222 0.874 0.581 0.242 1.000 40 0.634 0.758 0.135 0.828 0.479 0.147 1.000
50 0.631 0.786 0.245 0.827 0.597 0.245 1.000 50 0.515 0.716 0.150 0.768 0.493 0.147 1.000
60 0.543 0.775 0.272 0.801 0.606 0.248 1.000 60 0.417 0.703 0.169 0.735 0.501 0.147 1.000
70 0.470 0.784 0.303 0.796 0.606 0.249 1.000 70 0.340 0.713 0.192 0.728 0.501 0.146 1.000
80 0.413 0.804 0.337 0.806 0.600 0.249 1.000 80 0.285 0.738 0.219 0.742 0.495 0.145 1.000
90 0.371 0.824 0.371 0.824 0.589 0.248 1.000 90 0.247 0.764 0.247 0.764 0.486 0.144 1.000
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loading. To simplify the current discussion, here we will only consider the initially stress-free medium with the
external loads applied proportionally.



Fig. 13. Effective moduli of a medium in tension.

Fig. 14. Effective moduli of a medium in compression.
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Fig. 16 shows the comparison of normalized effective Young’s moduli for the initially stress-free media with
and without friction under compressive load. The crack density g = 0.4, and in the friction case, the friction



Fig. 15. Effective moduli of an initially stress-free medium.
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coefficient is equal to 0.2. We can see that the friction affects to the Young’s moduli under compressive loads.
When g = 0.4, E�1C and E�2C increase about 8% when the friction exists. Also, we see that there is a clear ‘‘flat
zone’’ ðE�2C=E ¼ 1Þ for E�2C when h0 < 11�. This is because the friction prevents the cracks from opening in any
mode under this situation. The maximum extent of the ‘‘flat zone’’ is determined by the friction coefficient.
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Fig. 17. Normalized slowness of cracked media under tension and compression. Crack density g = 0.4. Outside lines: quasi-transverse
wave; inside lines: quasi-longitudinal wave. All the lines are normalized by the slowness of transverse wave in virgin material.
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6. Wave propagation in microcrack damaged media

When applying the predicted effective moduli to the wave equation, we can predict the elastic wave speed
within the cracked media. To find out the wave speed of a plane harmonic wave in the L direction, we need to
solve the following eigenvalue equation [38]:
detfAij � dijqv2g ¼ 0; ð26Þ
in which, A = LTCL is the acoustic tensor, C is the elastic tensor and L is a 3 · 2 direction cosine matrix.
½L� ¼
l1 0

0 l2

l2 l1

2
64

3
75: ð27Þ
The slowness is the inverse of wave speed
SðiÞðlÞ ¼ l

vðiÞ
: ð28Þ
Fig. 17 shows the normalized slowness (inverse of the wave speed) in the media with cracks in tension and
compression. The outside lines depict curves of maximum slowness (quasi-transverse wave) and the inside lines
depict curves of minimum slowness (quasi-longitudinal wave). The figures on the first line are the media under
tensile loads (Case 1 in Fig. 4b) and the figures on the second line are the media under compressive loads (Case
2 in Fig. 4b). Comparing the figures in the same column, we can see that for identical crack distributions and
densities, the wave speed (slowness) profiles are very different under different loads.

7. Conclusions

In this study, a finite element model was used to solve the analytical crack-inclusion anisotropic boundary
value problem used in the GSCM. The analytical results of Santare et al. [19] were used to validate the finite
element model within a 4% relative error (Case 1), which confirms the accuracy of the model. Using the same
basic FE model, contact elements were introduced to eliminate the crack surface overlap, which occurs under
compression in linear elastic fracture mechanics. With this model, we calculated effective moduli for a dam-
aged medium under tensile, compressive, and initially stress-free conditions. Base on the effective moduli,
we also predict the elastic wave slowness within the 2-D cracked media.

Generally speaking, the results show that the existence of microcracks decreases the effective stiffness of the
medium and the effective moduli further decrease as the microcrack density is increased. The crack orientation
distribution also has a significant effect on the anisotropy of the effective moduli which can vary from highly
anisotropic when the cracks are unidirectional (h0 = 0�) to isotropic when they are randomly distributed
(h0 = 90�). Furthermore, we see that the damaged medium responds quite differently depending on whether
the external loads are tension, compression or initially zero. And we see that the medium is much stiffer when
the overall external loads are compressive.

We have described how, in an initially stress-free medium under 2-D plane stress loading, there are seven
independent orthotropic effective material properties for the microcracked medium (Case 3); for randomly dis-
tributed microcracks, the number of independent moduli are reduced to four, and satisfy Eq. (23). We have
also shown how friction can be introduced into the model, and that in general, friction makes the medium
stiffer particularly under compression loads. From the literature [3] we know that the moduli become path
and load dependent when crack face friction is included in the analysis, and to adequately account for these
effects, further study is required.

Finally, we plot wave slowness profiles for microcrack damaged media and show that for media with iden-
tical microcrack densities and distributions the wave speeds are very different under tensile and compressive
loads, because of the different effective moduli for these two load cases.
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[10] Guéguen Y, Schubnel A. Elastic wave velocities and permeability of cracked rocks. Tectonophysics 2003;370:163–76.
[11] Kachanov M. Effective elastic properties of cracked solids: critical review of some basic concepts. Appl Mech Rev 1992;45(8):

304–35.
[12] Kachanov M. Elastic solids with many cracks and related problems. In: Hutchinson JW, Wu T, editors. Advances in applied

mechanics, vol. 30. Academic Press; 1993. p. 259–445.
[13] Budiansky B, O’Connell RJ. Elastic moduli of a cracked solid. Int J Solids Struct 1976;12:81–97.
[14] Gottesman T, Hanshin Z, Brull MA. Effective elastic moduli of cracked fiber composites. In: Bussell AR, editor. Adv Compos Mater

1980:749–58.
[15] Benveniste Y. On the Mori–Tanaka’s method in cracked bodies. Mech Res Commun 1986;13:193–201.
[16] Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall

1973;21:571–4.
[17] Hashin Z. The differential scheme and its application to cracked materials. J Mech Phys Solids 1988;36(6):719–34.
[18] Huang Y, Hu KX, Chandra A. A generalized self-consistent mechanics method for microcracked solids. J Mech Phys Solids

1994;42(8):1273–91.
[19] Santare MH, Crocombe AD, Anlas G. Anisotropic effective moduli of materials with microcracks. Engng Fract Mech

1995;52(5):833–42.
[20] Greengard L, Helsing J. On the numerical evaluation of elastostatic fields in locally isotropic two-dimensional composites. J Mech

Phys Solids 1998;46(8):1441–62.
[21] Helsing Johan. Fast and accurate numerical solution to an elastostatic problem involving ten thousand randomly oriented cracks. Int

J Fracture 1999;100:321–7.
[22] Wang YB, Chau KT. A new boundary element for plane elastic problems involving cracks and holes. Int J Fracture 1997;87(1):

1–20.
[23] Pan EN. A general boundary element analysis of 2-D linear elastic fracture mechanics. Int J Fracture 1997;88(1):41–59.
[24] Wang GS, Feng XT. The interaction of multiple rows of periodical cracks. Int J Fracture 2001;110(1):73–100.
[25] Dong CY, Lee Kangyong. Numerical analysis of doubly periodic array of cracks/rigid-line inclusions in an infinite isotropic medium

using the boundary integral equation method. Int J Fracture 2005;133:389–405.
[26] Feltman RS, Santare MH. Anisotropic effective moduli of cracked short-fiber reinforced composites. J Appl Mech 1999;66:1–5.
[27] Zheng Q-S, Du D-X. An explicit and universally applicable estimate for the effective properties of multiphase composites which

accounts for inclusion distribution. J Mech Phys Solids 2001;49:2765–88.
[28] Feng X-Q, Qin Q-H, Yu S-W. Quasi-micromechanical damage model for brittle solids with interacting microcracks. Mech Mater

2004;36:261–73.
[29] Kachanov M. Elastic solids with many cracks: a simple method of analysis. Int J Solids Struct 1987;23(1):23–43.
[30] Huang Y, Chandra A, Jiang ZQ, Wei X, Hu KX. The Numerical calculation of two-dimensional effective moduli for microcracked

solids. Int J Solids Struct 1996;33(11):1575–86.
[31] Shen L, Yi S. An effective inclusion model for effective moduli of heterogeneous materials with ellipsoidal inhomogeneities. Int J

Solids Struct 2001;38:5789–805.
[32] Shen L, Li J. A numerical simulation for effective elastic moduli of plates with various distributions and sizes of cracks. Int J Solids

Struct 2004;41:7471–92.
[33] Wang YB, Sun YZ. A new boundary integral equation method for cracked 2-D anisotropic bodies. Engng Fract Mech 2005;72:

2128–43.



D. Su et al. / Engineering Fracture Mechanics 74 (2007) 1436–1455 1455
[34] Walsh JB. The effect of cracks on the uniaxial elastic compression of rocks. J Geophys Res 1965;70:399–411.
[35] Taya M, Mura T. On the stiffness and strength of aligned short fiber reinforced composites containing fiber end cracks under uniaxial

applied stress. ASME J Appl Mech 1981;48:361–7.
[36] Anlas G, Santare MH. An arbitrarily oriented crack inside an elliptical inclusion. J Appl Mech 1993;60:589–94.
[37] ABAQUS analysis user’s manual, 2003. ABAQUS, INC.
[38] Auld BA. Acoustic fields and waves in solids, vol. I. Malabar, FL: Krieger Publ. Co.; 1990. 435 pp.



Engineering Fracture Mechanics 75 (2008) 4104–4116
Contents lists available at ScienceDirect

Engineering Fracture Mechanics

journal homepage: www.elsevier .com/locate /engfracmech
An effective medium model for elastic waves in microcrack damaged media

Dan Su a, Michael H. Santare a,*, George A. Gazonas b

a Department of Mechanical Engineering and Center for Composite Materials, University of Delaware, Newark, DE 19716, USA
b US Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, MD 21005, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 29 June 2007
Received in revised form 3 April 2008
Accepted 7 April 2008
Available online 14 April 2008

Keywords:
Waves
Anisotropic damage
Numerical experiment
Effective moduli
Microcracks
0013-7944/$ - see front matter � 2008 Elsevier Ltd
doi:10.1016/j.engfracmech.2008.04.003

* Corresponding author. Tel.: +1 302 831 2246; fa
E-mail address: santare@me.udel.edu (M.H. Sant
Direct numerical simulations of waves traveling through microcrack-damaged media are
conducted and the results are compared to effective medium calculations to determine
the applicability of the latter for studying wave propagation. Both tensile and compressive
waves and various angular distributions of randomly-located cracks are considered. The
relationships between the input wavelength and the output wave speed and output signal
strength are studied. The numerical simulations show that the wave speed is nearly con-
stant when 1/ka > 60 for tensile waves and 1/ka > 10 for compressive waves, where k is
the wave number and a is the average half-crack length. The direct simulations also show
that when the input wavelength is much longer than the crack length, 1/ka > 60, the wave
can pass through the damaged medium relatively unattenuated. On the other hand, when
the input wavelength is shorter than a ‘‘cut off” wave length, the output wave magnitude
decreases linearly with the input wavelength. The effective medium wave speed and mag-
nitude calculations are not dependent on the input wavelength and therefore the results
correspond well with the numerical simulations for large 1/ka. This suggests a minimum
wavelength for which the homogenized methods can be used for studying these problems.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

For many brittle materials, the most common damage mechanism is microcracking. As microcracks develop, they change
the local mechanical response to input loads. One way, commonly used to evaluate the quasi-static response of the damaged
medium is by directly simulating an actual array of cracks. Solutions of this type include the fast multipole method (FMM,
[1,2]), boundary element method (BEM [3,4]) and many other numerical solutions, such as described in [5–9]. The major
advantage of these methods is that they take into account the actual crack–crack interactions. There is no theoretical lim-
itation to the crack density or crack distribution and these direct methods can give highly accurate results if the model is
an accurate representation of the damaged medium. However, the detailed calculation of the interaction between the cracks
is also the major disadvantage of the direct methods. As the crack density increases, the modeling time and computational
demands can increase dramatically.

To address this increase in computational demand, effective medium methods can be used. In these methods, one models
the quasi-static response of a medium with diffuse microcrack damage by replacing the damaged material with an effective
medium, possessing the same local mechanical properties. Many such effective medium models have been developed, such
as the self consistent method (SCM) [10–12], Generalized self consistent method (GSCM) [13–17], Mori–Tanaka method
(MTM) [18,19], and the differential scheme method (DSM) [20]. For a comprehensive review of the literature in effective
mechanical properties prediction, readers can refer to [6,21].
. All rights reserved.

x: +1 302 831 3619.
are).

mailto:santare@me.udel.edu
http://www.sciencedirect.com/science/journal/00137944
http://www.elsevier.com/locate/engfracmech


D. Su et al. / Engineering Fracture Mechanics 75 (2008) 4104–4116 4105
While the above-cited literature primarily discusses the quasi-static response of microcrack-damaged media, several
researchers have addressed elastic wave propagation behavior in these materials. In 1995 Sayers and Kachanov [22] used
the effective moduli of a cracked medium to study microcrack-induced elastic wave anisotropy. In that paper, the authors
used second-rank and fourth-rank crack density tensors to evaluate the effective elastic moduli. They calculated the effective
moduli for the (randomly-oriented) isotropic distribution of cracks and the perfectly aligned cracks. For the isotropic cracked
medium, they also back-calculated the crack density from experimental data of the ultrasonic wave speed. Following Sayers
and Kachanov’s results, Schubnel and Gueguen [23,24] used micromechanical and statistical physics to evaluate the elastic
wave velocities and permeability of cracked rocks. They calculated the velocity for high and low frequency waves for both
wet and dry cracks for an aligned array of cracks and an array composed of ±60� cracks under an external confining pressure.
Maurel et al. [25] studied the elastic wave propagation through a random array of dislocations. Markov [26] used the Frenkel–
Biot theory to study the longitudinal harmonic wave propagation in an isotropic porous matrix with inclusions. Levin and
Markov [27] used an effective medium approximation (EMA), based on the self-consistent method, to determine the effective
elastic moduli and elastic wave propagation velocities in a transversely isotropic solid containing aligned inclusions.

Yet, with all this literature, there are several questions which remain. For example, under what conditions can we model
an actual damaged material with an equivalent effective medium? How accurate is the effective medium representation?
What factors affect the accuracy?

Several researchers have performed studies to address some of these topics. Zhang and Gross [28] studied the propagation
of an elastic wave through a medium with randomly distributed cracks. The cracks are treated as finite length lines with dis-
placement discontinuity and the crack surfaces are assumed to be frictionless. They studied the scattering function for a sin-
gle crack and expanded this using a numerical approach to study the response of multiple cracks. They used both the theory
of Foldy and the causal approach based on K–K relations to compute the attenuation coefficient and the effective wave veloc-
ity. Littles et al. [29] performed an experimental and theoretical investigation to study how longitudinal waves are scattered
by a distribution of cracks. The results show that the transmission coefficients are a function of the incident wave number,
the crack size and crack density. Kawahara and Yamashita [30] studied the scattering of P, SV and SH waves by a zonal dis-
tribution of uniaxial cracks using a theoretical analysis. They showed that the attenuation coefficient peaks around ka � 1,
the phase velocity is almost independent of k in the range of ka < 1 and increases monotonically when k is in the range of
ka > 1. They also found that the effect of crack-face friction is to shift the peak of the attenuation coefficient toward the lower
wave number range. Kelner et al. [31] used the boundary element method to simulate P wave propagation in media with
uniaxial cracks. The authors conclude that when the wavelength of the incident wave is close to, or shorter than, the crack
length, the scattered waves are efficiently excited. They also observed that the attenuation factor of the direct P wave peaks
at around ka = 2, where k is the incident wave number and a is the crack length, and decreases proportionally with (ka)�1 in
the high wave number range.

Most of the above papers focus on low crack densities and high frequency input waves, a combination which corresponds
to high attenuation. Also, the crack orientations in most of the papers are limited to aligned or randomly-oriented distribu-
tions. Additionally, in most of the literature cited, the authors assume the crack surfaces are stress free, which means the
cracks are opened under all loads. In our previous paper [16], we use the generalized self consistent method (GSCM) to pre-
dict the anisotropic effective moduli of a medium containing an arbitrarily-oriented distribution of cracks. In that paper, we
show that because the cracks open or close under different external loads, the effective moduli under different loading con-
ditions are quite different. In that paper, we discussed three different loading conditions: (1) overall applied tensile loads; (2)
overall compressive loads; (3) initially stress free media. The effective moduli under these three different loading conditions
are evaluated taking into account the effects of crack-face contact. In that paper we also mentioned that tensile and com-
pressive wave propagation in the same medium behave very differently. In this paper, we study under what conditions
one may use the calculated effective moduli to simulate wave propagation in the microcrack damaged medium. We conduct
direct numerical simulations to relate input wavelength to propagating wave speed and output signal strength, and compare
these results to those obtained via the effective medium models. Once these comparisons are established, we can establish
guidelines for the use of effective medium calculations to analyze ultrasound data for determining the internal state of
microcrack damage.
2. FEM model

In the following numerical experiments, we use the definition of crack density and crack orientation distribution function
/(h) described in [15,16]. We define the crack density as
g ¼ Ma2

A
; ð1Þ
where M is the number of cracks per unit area A, and a is the average half-crack length. We assume the crack orientation can
be described by an orientation distribution function /(h), where h is the angle of the individual crack with respect to the
average crack orientation, assigned to be the x-axis. In the following analysis, we assume that the cracks are evenly
distributed between the angles �h0 and +h0, as shown in Fig. 1. A more detailed description of the crack distribution function
/(h), and crack density function g, can be found in [16].



0θ− 0θ+

)(θφ

x

θ

crack

Fig. 1. Even distribution of crack orientation.
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To simulate uni-directional plane wave propagation, we assume an infinite half plate, and apply a time-dependent load
uniformly along the top surface (Fig. 2a). Because the plate is infinitely extended in the x-direction, we can pick a strip from
anywhere in the half plane as a representative sample (Fig. 2b) by applying symmetry boundary conditions to the left and
right edges of the strip. The location of each crack within the strip was generated by a random number generator as was the
crack angle h chosen to be in the interval +h0 and �h0. If the randomly generated location of a crack caused it to overlap with
an already existing crack, that crack was eliminated from the model and the process was continued until the desired crack
density was reached. Cracks that contacted the left or right boundaries were kept in the model, but because of the symmetry
conditions imposed on these boundaries, their lengths could be quite different from the average. Building the model in this
manner, the array is not completely random, but represents a relatively homogeneous approximation to randomly distrib-
uted cracks. Contact elements are placed along the cracks to prevent crack-face interpenetration. Fig. 2b is a representation
of the models used in the numerical experiments. A number of trial models were run to determine an appropriate length and
width for the strips and the chosen dimensions represent a compromise between a model large enough to eliminate edge
effects and one small enough to allow for efficient computations. All lengths are normalized with respect to the average crack
length (2a) and the resulting width of each model is 4, and the length is 80. In all the results that follow, the crack density
parameter is chosen to be g = 0.4. (Most of the previously reviewed literature studies crack densities in the range of 0.1–0.2
when defined by the term g, in Eq. (1)) Larger densities proved difficult to model, due to interference between individual
cracks and smaller densities show the same overall trends, but to a lesser extent. Since the cracks are randomly located
and oriented, we constructed four or five models for each orientation distribution to show the variability introduced by
the randomness.

In the simulation, we use ABAQUS 6.4.4 as the finite element solver. In Figs. 3–6, we show the finite element models for
samples 1–14. As shown in Fig. 3d, each crack is represented by two crack surfaces with zero distance between them. There-
fore, in the stress free state, all the cracks are closed.

In order to study the relationship between the input wavelength and the output signal, we apply a single frequency time-
dependent load, uniformly along the top of the strip. Fig. 7 shows a sample input load with the function
Fig. 2.
the fini
PðtÞ ¼ A
1� cosðxtÞ

2

� �
; for 0 6

xt
2p
6 1; ð2Þ
where, P(t) is the time-dependent load, A is the maximum load amplitude, x is the circular frequency of the input and t is the
time. We can apply positive or negative pressure in order to generate a compressive or tensile wave inside the sample.

In the numerical experiments, we use the dimensionless number 1/ka as the effective wave length parameter, where a is
the average half-crack length, k = x/cp, x is the input wave frequency and cpis the plane-stress longitudinal wave velocity in
the un-damaged medium [32], which is defined as
b

Distance
from the 

top

a

y

x

Model schematics. (a) Time-dependent load is applied along the top boundary of the half plane. (b) A representative strip from the plane is used in
te element simulation.



Fig. 3. Finite element model of sample 06 (h0 = 30�). (a) Whole model without mesh detail. (b1, b2) Zoom in for the top part with and without mesh detail.
(c1, c2) Further zoom in with and without mesh detail. (d1, d2) Zoom in for a single crack with and without mesh detail.

Fig. 4. The top part of finite element model of samples 01–05 (h0 = 0�).
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cp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E
ð1� m2Þq

s
: ð3Þ
This effective wave number 1/ka, therefore represents the ratio between the input wave length in the undamaged media and
the average half crack length.



Fig. 5. The top part of finite element model of samples 06–09 (h0 = 30�).

Fig. 6. The top part of finite element model of samples 10–14 (h0 = 60�).
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3. Wave speed calculation

In this section we determine the wave speeds in the direct numerical simulations and compare these to the speeds in the
effective media models. The properties of the effective media, and the generalized-self-consistent method used to calculate
them, are shown in [16]. All the wave speeds are normalized by the plane-stress wave speed in the intact material cp, shown
in Eq. (3). We trigger the wave from the top of the models with time dependent pressure loads and trace the stress compo-
nent ry. We chose 1% of the maximum input as the threshold value for the stress at the wave front. This means that we as-
sume that the wave arrives at a particular cross section when the average stress ry in that cross section reaches 1% of the
maximum input stress.

In Figs. 8–10, we show the wave speed in each of the direct numerical simulation models as a function of the input wave
length number 1/ka, as well as the effective medium predictions and an analytical solution. The analytical solution is the
uniaxial longitudinal wave speed, which can be derived from [33], for an anisotropic plane stress medium calculated from
N
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cp2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2

ð1� m12m21Þq

s
; ð4Þ
where E2, m12, m21 are the corresponding effective Young’s moduli in y direction, and the effective Poisson’s ratios, which are
shown in [16] and q is the corresponding mass density. Fig. 8 shows results for the five different models with an aligned
array of cracks h0 = 0�. Fig. 9 contains the models with crack orientations evenly distributed between the values h0 = ±30�
and Fig. 10, the models with angles between h0 = ±60�. The left column in each figure shows the tensile wave speed, while
the right column shows the speed of compressive waves.
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Fig. 8. Normalized wave speed vs. 1/ka for h0 = 0�. Left : speed of tensile waves. Right : speed of compressive wave.



ο300 =θ

0 20 40 60 80 100 120 140
0.0

0.1

0.2

0.3

0.4

0.5

N
o

rm
al

iz
ed

 S
p

ee
d

1/ka

 Average Speed (Experiments)
 Effective Media (FEM)
 Analytical Solution
 Sample 06
 Sample 07
 Sample 08
 Sample 09

0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
al

iz
ed

 S
p

ee
d

1/ka

 Average Speed (Experiments)
 Effective Media (FEM)
 Analytical Solution
 Sample 06
 Sample 07
 Sample 08
 Sample 09

Fig. 9. Normalized wave speed vs. 1/ka for h0 = 30�. Left figure: speed of tensile waves. Right figure: speed of compressive wave.
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Fig. 10. Normalized wave speed vs. 1/ka for h0 = 60�. Left : speed of tensile waves. Right : speed of compressive wave.
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From the results, we can see that in all cases, the compressive waves travel much faster than the tensile waves. This is
because under compression, the cracks can only open in mode II (shear opening) (As we discuss in Section 2, in the
stress-free state, the distance between the cracks surfaces is zero. Therefore, the crack surfaces cannot move closer to each
other under compression.) while in tension, the cracks can open in both mode I (normal opening) and mode II. Therefore for a
given medium, the material is much less stiff when tensile waves pass through, than when compressive waves pass through.
For a detailed discussion regarding the different effective material properties under different loads, the reader is referred to
[16]. The figures also show that the effective medium models correspond well with the numerical experiments in the cases
considered. For the case of tensile wave speed when h0 = 0�, the analytical equations and the effective media model give
higher wave speed predictions than the direct numerical simulations. This is because for tensile waves, when h0 = 0�, the
cracks in the numerical simulations cause significant energy dispersion as the wave travels along the strip. Therefore, for
the same input magnitude, it takes longer for the average stress across the strip to reach the 1% threshold value, resulting
in a slightly lower calculated speed for the direct simulations.

Kawahara and Yamashita [30] found analytical solutions for a similar problem containing randomly distributed, aligned
cracks under confining pressure. They found that when the crack surfaces are friction free, the phase velocity is nearly inde-
pendent of k when 1/ka > 1 and increases monotonically with k when 1/ka < 1. From the right column of Figs. 8–10 we can
see that the wave speed in our numerical experiments follows this same trend and are completely consistent with the ana-



Fig. 11. Tensile waves with different effective wave number traveling in sample 05, g = 0.4, h0 = 0�. Normalized ry is the average stress ry in the specific
cross session normalized by the maximum average stress ry at distance equal to zero (the top boundary). The distance from the top is shown in Fig. 2b.

Fig. 12. Compressive waves with different effective wave number traveling in sample 05, g = 0.4,h0 = 0�. Normalized ry is the average stress ry in the specific
cross session normalized by the maximum average stress ry at distance equal to zero (the top boundary). The distance from the top is shown in Fig. 2b.
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lytical results in Kawahara and Yamasita’s paper for cracks under compression. At the same time, from the left column in
Figs. 8–10 we see that the tensile wave speed is nearly constant when 1/ka > 60 and increases monotonically when 1/
ka < 60. Therefore, we can see that the Kawahara and Yamasita’s general conclusion still applies to tensile wave propagation
in our current study, although the cut off ka (or 1/ka) value is much different for tensile waves than compressive waves.

4. Signal strength

In the direct numerical simulations, we applied a uniform, time varying load along the top boundary of the finite element
models, as shown in Fig. 2b. For a specific time and a specific cross section in the model, we record the average stress com-
ponent ry through this cross section (Fig. 2b) then normalize this value by the maximum average stress ry calculated at the
top boundary of the model. (Recall that the crack length 2a equals 1, except for the cracks that touch the boundary.) The
properties of the intact material are E/l = 8/3, m = 1/3, where E is Young’s modulus, l is shear modulus and m is Poisson’s ratio.
The normalized time is defined as t

_

¼ t
2a=cp
¼ tcp=ð2aÞ.

Fig. 11 shows the results for the tensile waves with different effective wave numbers traveling in sample 05. We can see
that for tensile waves, when the input wavelength is much larger than the crack length, (1/ka > 10), the input signal passes
through the damaged medium relatively unattenuated (the first row of the figures). When the input wavelength is smaller,
(1/ka = 8.24 and 3.53) the cracks show a larger ‘‘blocking” effect and the transmitted wave shows smaller stress amplitude.
When the input wavelength is about the same as the crack length, (1/ka = 0.706) the signal is almost completed blocked by
the damage.
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Fig. 13. Output signal strength vs. input effective wave number (1/ka) for the models with g = 0.4, h0 = 0� and 2a = 1. Left column: Tensile waves output.
Right column: Compressive waves output. First row: The normalized peak averaged stress measured at distance equal to 10. Second row: The normalized
peak averaged stress measured at distance equal to 20.
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Fig. 12 shows the compressive wave propagation through the same model sample 05. Comparing Fig. 11 with Fig. 12, we
can see that the compressive wave signal does not decrease appreciably, even when the input wavelength (1/ka) is relatively
small. This is because when tensile waves pass through the sample, the cracks are opened and parts of the waves are re-
flected by the open crack surfaces, causing the output signal to decrease. Yet, when compressive waves travel in the model,
all the cracks remain closed and therefore have almost no effect on the wave propagation in this situation.

5. Output signal strength

5.1. Uniform crack length

In this section, we show how the peak stress values at different cross sections change with varying input wavelength. In
Figs. 13–15, A0, A10 and A20 represent the peak average stress ry at cross sections with normalized distances of 0, 10 and 20,
respectively from the top of the model. Fig. 13 shows results for the models with an aligned array of cracks h0 = 0� and Figs.
14 and 15 contain the models with cracks oriented between the values h0 = ± 30� and h0 = ± 60� respectively. As before, the
left column in each figure shows the results for the tensile waves, while the right column shows the results for the compres-
sive waves.

In Figs. 13–15, the individual lines represent the different model samples. In all of these models g = 0.4 and 2a = 1 (except
for the cracks that touch the boundaries). All of these models show the same phenomenon observed in the previous section
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when we discussed the results of sample 05. What these figures bring out, is the variability from the different arrays of cracks
(different experimental samples) as well as more clearly delineating the signal strength–wavelength relationship.

For tensile waves, when the input wave length is much larger than the crack length (1/ka > 20), the input signal passes
through the microcrack damaged medium relatively easily. The output signal strength remains nearly constant for all input
wavelengths above (1/ka > 20), and the output signal strengths are usually more than 80% of the input signal strength. On the
other hand, the cracks show larger ‘‘blocking” effect when the input wave length decreases. In the area where 1/ka < 15, the
output signal strength decreases almost linearly with the input 1/ka decreases. Therefore, we can think of 1/ka = 15 as a ‘‘cut
off” wave length below which tensile waves will not travel through a microcrack damaged medium. When the input wave-
length is close to or smaller than the crack length (1/ka � 1), almost no signal can pass through the medium.

For compressive waves, we can see the similar phenomenon but there are two differences that distinguish the compres-
sive wave output from the tensile wave output. First, when the 1/ka number is large, the output signal of the compressive
waves is much more uniform than that of the tensile waves. Secondly, the ‘‘cut off” wave length for the compressive waves is
much smaller than that for the tensile waves. In this study we see that for compressive waves, the output signal decreases
only when 1/ka < 5.

These results suggest that there is a ‘‘safe range” for modeling microcrack-damaged media with homogenized effective
medium approximations. When the input wavelength is larger than the ‘‘cut off” wavelength, the signal can travel relatively
unattenuated through the medium. In this range, the effective medium FE models give a very good approximation to the
actual medium with damage. On the other hand, applying the homogenized methods in the range with input wavelength
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below the ‘‘cut off” wavelength is inappropriate, unless we modify the homogenized methods to take the wave length depen-
dent energy dissipation into account.

We also expect the ‘‘cut off” 1/ka to decrease when the crack density decreases. This is because when the crack density
decreases, there are fewer cracks per unit area. Therefore, less energy will be dissipated by the cracks when the wave passes
through the media.

On a PC with a Pentium 4, 2.0 GHz CPU and 1GB RAM, it took from 3 to 30 h for a single point in the tensile Figs. 13–16
depending on the crack distribution and the time frame of simulation for the wave propagation. For the compressive cases,
the time varied from 2 to 5 h.

5.2. Distributed crack lengths

Fig. 16 shows the output signal strength as a function of 1/ka for a set of models with h0 = 0� and average crack length 2a.
These are different than the previous models however, because the individual crack length is variable. For simplicity, we
choose an even distribution of crack lengths between 0.6 and 1.4 with the average of 1.0, (again, except for the cracks that
touch the boundaries). Comparing Fig. 13 with Fig. 16, we can see that for the models with distributed crack lengths, the
signal strength values have a wider band for the range of 10 <1/ka< 60. Outside of this region, the results in Figs. 13 and
16 are quite similar to each other. We can conclude from this result, that a distributed crack length will not have a large
effect on the ‘‘cut off” wavelength and the ‘‘safe range” for using the homogenized effective medium calculations.

From the above figures we can see that in most of the cases the output signal strength is weaker than the input signal
strength. The reason is obvious: the reflection and diffusion between the cracks reduce the average signal strength. However,
in some regions of several samples, we see that the output signal is actually stronger than the input signal. This can be ex-
plained by the random distribution of the cracks. When the wave travels through a field of cracks in the direct numerical
simulations, part of the wave is reflected by the crack surfaces and interferes with other components of the wave which fol-
low. Therefore, the local distributions of the cracks in the models can actually increase the local stress wave amplitude in
some regions.

6. Conclusions and discussion

In this paper, we performed direct numerical simulations of waves traveling in micro-crack damaged media and com-
pared these to results using a homogenized effective medium calculation. For the numerical simulations, we built several
models with different crack distributions for each of three angular distributions; h0 = 0�, h0 = 30� and h0 = 60�. We studied
the wave speed variation as a function of the input wavelength in each model for both tensile waves and compressive waves.
The results for wave speed in the effective medium models are close to the numerical simulation results.

When a plane wave approaches an obstacle, the obstacle will reflect (or block) a portion of the advancing wave energy. If
the obstacle is small with respect to the wavelength of the advancing wave, there will be a small disturbance in the wave
front, but the majority of the energy will pass. Essentially, the wave travels around the obstacle. However, if the obstacle
is large with respect to the wavelength, it will reflect a significant portion of the wave, detracting from the energy remaining
in the transmitted wave. These observations are supported by Eringen’s [34] analytical solutions of scattering of a plane
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wave with a single cylindrical obstacle. Eringen found that the total scattered power increases with decreasing wavelength
(ka = 2pa/k) of the incident plane wave. Here, a is the radius of the cylinder and k is the wavelength of the incident plane
wave. For incident waves with large wavelengths (large 1/ka) the scattered elastic energy approaches zero and the wave does
not ‘‘see” the obstacle; we have determined that for crack systems modeled using our finite element approach this occurs for
1/ka > 60 for media in tension, and 1/ka > 10 for those in compression. In the case of distributed obstacles (such as the micro-
cracks in the present study), the effect is more evident since the plane wave energy that passes by the obstacles (cracks), will
be further blocked by other obstacles behind the first ones.

We also studied the relationships between the input wavelength and output signal strength. These results show that for
both tensile and compressive waves, there is a ‘‘cut off” wavelength above which the wave can easily pass through the dam-
aged medium and that this ‘‘cut off” is different in tension and compression. When the input wavelength is shorter than the
‘‘cut off” wave length, the output wave strength decreases linearly with the input wavelength. When the input wavelength is
close to average crack length, (1/ka = 1) the wave is highly diffused. This suggests a ‘‘safe range” for using the homogenized
effective media methods in studying these problems without considering the wave length dependent energy diffusion.
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This study focuses on the prediction of the anisotropic effective elastic moduli of a solid
containing microcracks with an arbitrary degree of alignment by using the generalized
self-consistent method (GSCM). The effective elastic moduli pertaining to anti-plane shear
deformation are discussed in detail. The undamaged solid can be isotropic as well as aniso-
tropic. When the undamaged solid is isotropic, the GSCM can be realized exactly. When the
undamaged solid is anisotropic it is difficult to provide an analytical solution for the crack
opening displacement to be used in the GSCM, thus an approximation of the GSCM is pur-
sued in this case. The explicit expressions of coupled nonlinear equations for the unknown
effective moduli are obtained. The coupled nonlinear equations are easily solved through
iteration.
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1. Introduction

Microcracks are common defects in solids and multiple microcracks usually coexist in a single solid. The prediction of the
effective elastic properties of a microcracked solid is technically challenging and can find many practical applications.
The major methods developed so far to predict the effective elastic moduli of a microcracked solid include the following:
the self-consistent method (SCM) in which a crack is embedded directly into an effective medium [1]; the generalized
self-consistent method (GSCM) in which a crack is surrounded by an undamaged matrix region, and then embedded in
the effective medium [2,3]; the Mori-Tanaka method (MTM) [4]; the differential scheme method (DS) [5–7]; and the mod-
ified differential scheme (MDS) [8]. Recently the GSCM in conjunction with a finite element method (FEM) was developed to
take into account crack face contact and friction [9]. Most recently the representative unit cell approach was proposed by
Kushch et al. [10] to calculate effective elastic properties of a microcracked solid. Here it shall be noted that the effect of crack
orientation statistics on the anisotropic effective moduli of a microcracked solid was in fact first investigated by Santare et al.
[3] through the introduction of the crack orientation distribution function /(h) which was later adopted in [11] within the
framework of the SCM to study the problem of cracks with an arbitrarily degree of alignment in a material that is originally
anisotropic before the damage occurs.

In this research we analytically study the anisotropic effective elastic moduli of a solid containing microcracks with an
arbitrary degree of alignment by using the GSCM. Our model is in principle based on the GSCM developed by Santare
et al. [3]. In [3] the GSCM was used to predict the anisotropic moduli under plane stress loading. Here we are concerned with
the effective elastic moduli pertaining to anti-plane shear deformation. In our model the undamaged material can be isotro-
pic as well as anisotropic. An exact solution to the cracked elliptical inclusion problem, which is essential in the realization of
. All rights reserved.

x: +1 302 831 3619.
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GSCM, can be derived when the undamaged material is isotropic. On the other hand an approximate analytical solution can
still be derived when the undamaged material is anisotropic and when the crack density is not very high.

2. The effective moduli of a microcracked solid

For a microcracked solid, the strain energy relationship between the effective medium and the actual microcracked solid
can be expressed as [2,3]
1
2

S�ijklr
0
klr

0
ij ¼

1
2

Sijklr0
klr

0
ij þ

1
2V

XM

k¼1

Z
Ck

½ui�t0
i dCk; ð1Þ
where S�ijkl is the effective compliance of the damaged material, Sijkl is the compliance of the undamaged material and V is the
sample volume. The above integral is the energy dissipated through the opening of each microcrack, summed over all M
cracks, and r0

ij is the applied homogeneous stress field while t0
i ¼ r0

ijnj is the traction along the crack face if the crack did
not exist and [ui] is the crack opening displacement. In this research we focus on the two dimensional case in which all
the cracks penetrate the solid through the x3-direction. In addition we only discuss the effective elastic moduli pertaining
to anti-plane shear deformation. In the following we will address two cases: (i) the undamaged material is isotropic; (ii)
the undamaged material is anisotropic.

2.1. Isotropic undamaged material

The degree of crack alignment can be described by the crack orientation distribution function /(h) with h, (|h| < p/2) being
the angle between an individual crack and the positive x1-axis [3]. Without losing generality, /(h) can be taken as an even
function of h since we have assumed that the undamaged solid is isotropic. For simplicity, /(h) is specifically given by [3,9]
/ðhÞ ¼
1

2h0
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(
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where h0 6 p/2. The two special cases of perfectly aligned cracks and randomly oriented cracks correspond to h0 = 0 and
h0 = p/2, respectively, in Eq. (2).

Once we have introduced /(h), the summation in the energy relationship Eq. (1) can be written as an integral over ori-
entation angle h,
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where A is a representative area of the sample.
In this study, we assume that the material is under anti-plane shear deformation. As a result the above energy relation-

ship Eq. (3) can be simplified as
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where r0
31 and r0

32 are the anti-plane, far-field stresses, C�44 and C�55 are the two relevant effective moduli of the damaged
material, l is the shear modulus of the undamaged material, c is the average half crack length and g = Mc2/A is the crack
density parameter.

If the crack did not exist, the uniform traction due to the far-field stresses, t0
3, along the line of the crack face is given by
t0
3 ¼ cos hr0

32 � sin hr0
31: ð5Þ
Next we introduce the GSCM [3] to approximately take into account the interaction between the cracks, as shown in
Fig. 1. The inclusion is assumed to have the properties of the undamaged material with known elastic moduli. The surround-
ing matrix is composed of the effective orthotropic, damaged material with the principal directions along the x1 and x2 axes.
The half-length of the crack is c, the semi-major and semi-minor axes of the ellipse are a and b, respectively. The crack den-
sity parameter g relates average crack length to the area of the ellipse, but in general, this leaves one of the three parameters
a, b and c, unspecified. Therefore, as an additional condition, we will require a2 � b2 = c2 to be satisfied. This is the same rela-
tionship that was used in [3] for convenience, but here it is necessary in order to make analytical solutions possible. The two-
phase composite is subjected to uniform anti-plane shearing r0

31 and r0
32 at infinity.

By using the complex variable method [12,13], the crack opening displacement for the elliptical domain, depicted in
Fig. 1, [u3] can be obtained exactly as
½u3� ¼
4
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Fig. 1. The generalized self-consistent method.
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where a ¼ c
2 ðRþ R�1Þ; b ¼ c

2 ðR� R�1Þ, (R > 1), C = l*/l with l� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
. Here the parameter R, which is introduced during

the analysis by using the complex variable method and conformal mapping, can be expressed in terms of a and b as R ¼
ffiffiffiffiffiffi
aþb
a�b

q
.

A detailed derivation can be found in the Appendix.
Consequently the integral in Eq. (4) can also be carried out exactly to arrive at the following expression
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which immediately leads to the following two coupled nonlinear equations for C�44 and C�55 by observing the fact that r0
31 and

r0
32 are arbitrary
l
C�55
¼ 1þ al� þ bC�44

ðaþ bÞl�
pg½2h0 � sinð2h0Þ�

2h0½1þ C� R�2ð1� CÞ�
;

l
C�44
¼ 1þ al� þ bC�55

ðaþ bÞl�
pg½2h0 þ sinð2h0Þ�

2h0½1þ C� R�2ð1� CÞ�
;

ð8Þ
where g ¼ c2

pab ¼ 4
pðR2�R�2Þ. The above set of nonlinear equations can be solved easily through iteration.

In the following we discuss in more detail some special cases for the above solution.

2.1.1. Aligned cracks (h0 = 0)
In the case of aligned cracks, it follows from Eq. (8) that
C�55 ¼ l;
1
C2 ¼ 1þ aCþ b

ðaþ bÞC
2pg

1þ C� R�2ð1� CÞ
;

ð9Þ
which means that there is no reduction in stiffness along the x1-direction for aligned cracks.
When the crack density parameter is extremely low, i.e., g� 1, Eq. (9)2 further reduces to
C�44 ¼ l=ð1þ pgÞ; ð10Þ
which is exactly the non-interaction approximation (NIA) for aligned cracks described by Kachanov [14].
Fig. 2 illustrates C�44 calculated by using Eq. (9). The dashed line is the result of NIA. We see that the predictions of the

GSCM are lower than that of NIA, especially when g is large.

2.1.2. Randomly oriented cracks (h0 = p/2)
In the case of randomly oriented cracks, it follows from Eq. (8) that
C�44 ¼ C�55 ¼ l�;
1
C
¼ 1þ pg

1þ C� R�2ð1� CÞ
;

ð11Þ



Fig. 2. The calculated C�44 for an isotropic solid with perfectly aligned cracks.
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through which C can be exactly determined as
C ¼
�ðpg� 2R�2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2g2 þ 4ð1� pgR�2Þ

q

2ð1þ R�2Þ
: ð12Þ
Eq. (11)1 shows that the effective material properties are still isotropic when the cracks are randomly oriented. In addition
when the crack density parameter is extremely low, i.e., g� 1, Eq. (11)2 further reduces to
l� ¼ l=ð1þ 0:5pgÞ; ð13Þ
which is again, the NIA described by Kachanov, this time for randomly oriented cracks [14].
Fig. 3 shows l* calculated by using Eq. (12). The dashed line is the result of NIA. We observe a similar behavior here to that

of C�44 for aligned cracks. We also observe that the values of l* for a solid with randomly oriented cracks are higher than those
of C�44 for a solid with aligned cracks.

2.1.3. An arbitrary degree of alignment (0 < h0 < p/2)
The present model can be used conveniently to predict the anisotropic effective moduli of a solid containing microcracks

with an arbitrary degree of alignment through the introduction of the crack orientation distribution function /(h).
We demonstrate in Figs. 4 and 5 the predicted values of C�44 and C�55 as functions of g for five different values of h0 = p/16,

p/6, p/4, p/3, p/2. It is clear from the two figures that a decrease in h0 will result in a decrease in C�44 and an increase in C�55.
Fig. 3. The calculated l� ¼ C�44 ¼ C�55 for an isotropic solid with randomly oriented cracks.



Fig. 4. The predicted values of C�44 for a cracked isotropic solid as a function of g for five different values of h0.

Fig. 5. The predicted values of C�55 for a cracked isotropic solid as a function of g for five different values of h0.
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The anisotropy of the effective medium monotonically increases as h0 decreases from p/2 (for randomly oriented cracks) to
zero (for perfectly aligned cracks).

Due to the fact that the parameter l� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C�44C�55

p
is an invariant under coordinate rotation, it can be considered as a mea-

sure of the overall stiffness of the cracked material. Therefore, it is of interest to check how l* is influenced by h0 and g. We
demonstrate in Fig. 6 the predicted values of l* as a function of g for four different values of h0. It is observed that an increase
in h0 will cause a decrease in the overall stiffness characterized by l*, especially when the crack density g is large. This fact
can be more clearly observed in Fig. 7 in which l* is plotted as a function of h0 for six different values of g. Figs. 6 and 7 dem-
onstrate that for a microcracked solid, randomly oriented cracks (h0 = p/2) gives the lowest stiffness among all possible crack
orientation distributions, while aligned cracks (h0 = 0) gives the greatest stiffness.

2.2. Anisotropic undamaged material

In the previous discussion we have assumed that the undamaged material is isotropic. Next we consider the more com-
plex situation in which the undamaged material is anisotropic. Without losing generality we can assume that the intact
material is orthotropic with its principal directions along the x1 and x2 axes, respectively. When the intact material is ortho-
tropic, we cannot necessarily take the crack orientation distribution function /(h) as an even function of h. Here /(h) takes
the following form
/ðhÞ ¼
1

h2�h1
; h1 � h � h2

0; h > h2 or h < h1

(
ð14Þ



Fig. 6. The predicted values of l* for a cracked isotropic solid as a function of g for four different values of h0.

Fig. 7. The predicted values of l* for a cracked isotropic solid as a function of h0 for six different values of g.
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where |h1|, |h2| 6 p and h2 � h1 6 p. The definition region of h in Eq. (14) has been enlarged relative to Eq. (2), to |h| 6 p to
incorporate the complex situation in which the average orientation of the cracks h = (h1 + h2)/2 may be arbitrary with respect
to the x1, x2 axes. In this case, perfectly aligned cracks and randomly oriented cracks correspond to h1 = h2 and h2 = �h1 = p/2
(or more generally but equivalently h2�h1 = p), respectively, in Eq. (14).

Now we can write the energy relationship in Eq. (3) as follows
C�44ðr0
31Þ

2

2l�2
� C�45r0

31r0
32

l�2
þ C�55ðr0

32Þ
2

2l�2
¼ ðr

0
31Þ

2

2C55
þ ðr

0
32Þ

2

2C44
þ g

2c2

Z h2

h1

/ðhÞ
Z

Ck

½u3�t0
3dCkdh; ð15Þ
where r0
31 and r0

32 are the anti-plane, far-field stresses, C�44, C�55 and C�45 are the three relevant effective moduli of the dam-

aged material, l� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C�44C�55 � C�245

q
> 0 and C44 and C55 are the two material moduli of the undamaged material. When the

undamaged material is anisotropic, it may very well be impossible to calculate exact values for [u3] using the boundary-value
problem shown in Fig. 1. Therefore, in the following we use an approximation to the BVP to calculate [u3]. When the crack
density parameter is relatively low, we have R� 1 or equivalently a � b� c. As a result, [u3] can be obtained approximately
through the following method: (i) first calculate the uniform stress field within an uncracked circular inclusion with material
moduli C44 and C55 surrounded by the effective medium with material moduli C�44, C�55 and C�45 [15,16]; (ii) then solve the
problem of a crack in an infinite homogeneous material with material moduli C44 and C55 subjected to the remote loading
which is equal to the internal uniform stress field obtained in (i). By using this method we obtain the following approximate
expression of [u3]
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½u3� ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � x2
p

l
2C44

lþ C44

ðl� þ C�55Þr0
32 � C�45r0

31

l�½1þ Cþ qð1� CÞ� cos h� 2l
lþ C44

ðl� þ C�44Þr0
31 � C�45r0

32

l�½1þ C� qð1� CÞ� sin h

� �
ðjxj � cÞ ð16Þ
where q ¼
ffiffiffiffiffiffi
C44

p
�
ffiffiffiffiffiffi
C55

p
ffiffiffiffiffiffi
C44

p
þ
ffiffiffiffiffiffi
C55

p , l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C44C55
p

and C = l*/l.

The integral in Eq. (15) can now be carried out to arrive at the following relationship
C�44ðr0
31Þ

2

2l�2
� C�45r0

31r0
32

l�2
þ C�55ðr0

32Þ
2

2l�2
¼ ðr

0
31Þ

2

2C55
þ ðr

0
32Þ

2

2C44
þ pg

2lðh2 � h1Þ

	 C44

2ðlþ C44Þ
ðl� þ C�55Þðr0

32Þ
2 � C�45r0

31r0
32

l�½1þ Cþ qð1� CÞ� ½2ðh2 � h1Þ þ sinð2h2Þ � sinð2h1Þ�
"

þ l
2ðlþ C44Þ

ðl� þ C�44Þðr0
31Þ

2 � C�45r0
31r0

32

l�½1þ C� qð1� CÞ� ½2ðh2 � h1Þ � sinð2h2Þ þ sinð2h1Þ�

� l
lþ C44

ðl� þ C�44Þr0
31r0

32 � C�45ðr0
32Þ

2

l�½1þ C� qð1� CÞ� þ C44

lþ C44

ðl� þ C�55Þr0
31r0

32 � C�45ðr0
31Þ

2

l�½1þ Cþ qð1� CÞ�

" #
½sin2 h2 � sin2 h1�

#
: ð17Þ
In view of the fact that r0
31 and r0

32 are arbitrary, we arrive at the following three coupled, nonlinear equations for C�44, C�55

and C�45
C�44

l�2
¼ 1

C55
þ pg

l�ðh2 � h1Þðlþ C44Þ
ðl� þ C�44Þ½2ðh2 � h1Þ � sinð2h2Þ þ sinð2h1Þ�

2½1þ C� qð1� CÞ� þ C44C�45½sin2 h2 � sin2 h1�
l½1þ Cþ qð1� CÞ�

" #
;

C�55

l�2
¼ 1

C44
þ pg

l�ðh2 � h1Þðlþ C44Þ
C44ðl� þ C�55Þ½2ðh2 � h1Þ þ sinð2h2Þ � sinð2h1Þ�

2l½1þ Cþ qð1� CÞ� þ C�45½sin2 h2 � sin2 h1�
1þ C� qð1� CÞ

" #
;

C�45

l�2
¼ pg

2l�ðh2 � h1Þðlþ C44Þ
C44C�45½2ðh2 � h1Þ þ sinð2h2Þ � sinð2h1Þ�

2l½1þ Cþ qð1� CÞ� þ C�45½2ðh2 � h1Þ � sinð2h2Þ þ sinð2h1Þ�
2½1þ C� qð1� CÞ�

�

þ l� þ C�44

1þ C� qð1� CÞ þ
C44ðl� þ C�55Þ

l½1þ Cþ qð1� CÞ�

� �
½sin2 h2 � sin2 h1�

�
;

ð18Þ
which can also be solved easily through iteration. We see from Eq. (18) that when /(h), defined by Eq. (14), is an even func-
tion of h, i.e., h1 = �h2, then the effective medium will be orthotropic with C�45 ¼ 0. In other words, when the average orien-
tation of the cracks is zero the undamaged material and the effective medium will possess the same principal axes. In the
following we concentrate our discussion on the effective elastic moduli of a solid containing perfectly aligned cracks and
one containing randomly oriented cracks, respectively.

2.2.1. Aligned cracks (h1 = h2)
When the cracks are perfectly aligned, we have h1 = h2 and both the numerator and denominator in the right hand side of

Eq. (18) vanish. In this case applying the L’Hospital’s rule to Eq. (18) when h2 ? h1 yields the following:
C�44

l�2
¼ 1

C55
þ pg

l�ðlþ C44Þ
ðl� þ C�44Þ½1� cosð2h1Þ�

1þ C� qð1� CÞ þ C44C�45 sinð2h1Þ
l½1þ Cþ qð1� CÞ�

� �
;

C�55

l�2
¼ 1

C44
þ pg

l�ðlþ C44Þ
C44ðl� þ C�55Þ½1þ cosð2h1Þ�

l½1þ Cþ qð1� CÞ� þ C�45 sinð2h1Þ
1þ C� qð1� CÞ

� �
;

C�45

l�2
¼ pg

2l�ðlþ C44Þ
C44C�45½1þ cosð2h1Þ�
l½1þ Cþ qð1� CÞ� þ

C�45½1� cosð2h1Þ�
1þ C� qð1� CÞ þ

l� þ C�44

1þ C� qð1� CÞ þ
C44ðl� þ C�55Þ

l½1þ Cþ qð1� CÞ�

� �
sinð2h1Þ

� �
:

ð19Þ
Now, we can further look into two special cases of the above formulation: the cracks are aligned horizontally (h1 = h2 = 0)
and the cracks are aligned vertically (h1 = h2 = p/2). When h1 = h2 = 0, it follows from Eq. (19) that
C�45 ¼ 0; C�55 ¼ C55;

1
C�44
¼ 1

C44
þ 2pgC44ðl� þ C55Þ

l�lðlþ C44Þ½1þ Cþ qð1� CÞ� ;
ð20Þ
which means that there is no reduction in stiffness along the x1-direction for horizontally aligned cracks.
On the other hand when h1 = h2 = p/2, it follows from Eq. (19) that
C�45 ¼ 0; C�44 ¼ C44;

1
C�55
¼ 1

C55
þ 2pgðl� þ C44Þ

l�ðlþ C44Þ½1þ C� qð1� CÞ� ;
ð21Þ
which means that there is no reduction in stiffness along the x2-direction for vertically aligned cracks.



Fig. 8. The variations of C�44 (h1 = h2 = 0) and C�55 (h1 = h2 = p/2) for an orthotropic solid C44 = 1.2l and C55 = 0.8333l containing perfectly aligned cracks as
functions of g.

Fig. 9. The variations of C�44, C�55 and C�45 as functions of h1 (=h2) for an orthotropic solid C44 = 1.2l and C55 = 0.8333l containing perfectly aligned cracks with
g=1/p.
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Fig. 8 illustrates the variations of C�44 for h1 = h2 = 0 and C�55 for h1 = h2 = p/2 as functions of g. To plot the results on one
graph, the undamaged anisotropic moduli are specifically chosen as C44 = 1.2l and C55 = 0.8333l. It is interesting to observe
that C�44 for h1 = h2 = 0 and C�55 for h1 = h2 = p/2, both of which are decreasing functions of g, converge to basically the same
value as g ? 1. We also observe that the effective material is isotropic ðC�44 ¼ C�55 ¼ 0:8333lÞ at low crack density g � 0.10 for
horizontally aligned cracks (h1 = h2 = 0).

We can also see from Eq. (19) that when the cracks are not aligned horizontally or vertically, the principal directions of
the anisotropic effective medium are no longer the same as those of the undamaged material. We illustrate in Fig. 9, the vari-
ations of C�44, C�55 and C�45 as functions of h1 (=h2) for an orthotropic solid with undamaged moduli, C44 = 1.2l and
C55 = 0.8333l containing aligned cracks with g = 1/p. We observe from Fig. 9 that: (i) C�45 attains a maximum value of
C�45 ¼ 0:3073l at h1 = 48� (the reason why C�45 does not attain its maximum value at 45� is due to the anisotropy of the
undamaged material); (ii) C�44 is an increasing function and C�55 is a decreasing function of h1. As expected
C�44 ¼ C44 ¼ 1:2l for vertically aligned cracks (h1 = 90�) and C�55 ¼ C55 ¼ 0:8l for horizontally aligned cracks (h1 = 0). More
interestingly, our numerical results also verify that the effective compliance constants eS�45 ¼ �eC �45=l�2 and eS�55 ¼ eC �44=l�2
in the Cartesian coordinate system ðx01; x02Þ, which is rotated by the crack alignment angle h1 with respect to the principal
coordinate system (x1, x2), are exactly the same as the compliance constants eS45 ¼ �eC45=l2 and eS55 ¼ eC44=l2 for the undam-
aged material in the same coordinate system ðx01; x02Þ .



Fig. 10. The variations of C�44 and C�55 for an orthotropic solid C44 = 1.2l and C55 = 0.8333l containing randomly oriented cracks as functions of g.
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2.2.2. Randomly oriented cracks (h2 = �h1 = p/2)
When the cracks are randomly oriented, Eq. (18) reduces to
C�45 ¼ 0;

1
C�55
¼ 1

C55
þ pgðl� þ C�44Þ

l�ðlþ C44Þ½1þ C� qð1� CÞ� ;

1
C�44
¼ 1

C44
þ pgC44ðl� þ C�55Þ

l�lðlþ C44Þ½1þ Cþ qð1� CÞ� :

ð22Þ
From the above expressions, we can see that C�44 – C�55 when C44 – C55 even when the cracks are randomly oriented. To
illustrate this fact more clearly we present in Fig. 10, the variations of C�44 and C�55 for an orthotropic solid containing ran-
domly oriented cracks as functions of g. The undamaged anisotropic moduli are chosen as C44 = 1.2l and C55 = 0.8333l. It
is clear that C�44 > C�55, and in addition the difference in C�44 and C�55 decreases as the crack density increases.

Finally it is of interest to point out that when the undamaged material is isotropic, our calculations show that the result by
using the approximation of the GSCM always lies between that by using the exact GSCM and that by using NIA. In view of the
fact that the GSCM is only an approximate scheme to account for crack interactions, the predictions derived by using the
GSCM are not necessarily more accurate than those derived by using an approximation to the GSCM.
3. Conclusions

By means of the GSCM, we analytically investigated the anisotropic effective moduli of a cracked solid subjected to anti-
plane shear deformation. When the undamaged solid is isotropic, the two coupled, nonlinear equations for the two effective
moduli C�44 and C�55 were obtained and shown in Eq. (8). When the undamaged solid is anisotropic, the three coupled non-
linear equations for the three effective moduli C�44, C�55 and C�45 were derived and shown in Eq. (18). Detailed numerical re-
sults were presented to illustrate how the anisotropic effective moduli are influenced by various degrees of crack alignment
(characterized by h0 for the isotropic undamaged material or h1 and h2 for the anisotropic undamaged material) and crack
density (characterized by g).
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Appendix A. Detailed derivation of Eq. (6)

It is convenient to solve the boundary-value problem in the Cartesian coordinate system (x, y, z) with z = x3, as shown in
Fig. 1. First the remote uniform loading r0

zx and r0
zy can be written as
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r0
zx ¼ r0

31 cos hþ r0
32 sin h;

r0
zy ¼ r0

32 cos h� r0
31 sin h:

ðA1Þ
Secondly the effective moduli of the damaged material in the (x, y, z) coordinate system, eC �44;
eC �55 and eC �45 can be derived

as
eC �55 ¼ C�55 cos2 hþ C�44 sin2 h;

eC �44 ¼ C�44 cos2 hþ C�55 sin2 h;

eC �45 ¼ ðC
�
44 � C�55Þ cos h sin h:

ðA2Þ
Due to the fact that the cracked elliptical inclusion is isotropic, if one is only concerned with the field within the inclusion,
it is sufficient to treat the matrix as isotropic with shear modulus l* subject to virtual remote uniform shear stresses ~r0

zx and
~r0

zy such that [13]
~r0
zx � i~r0

zy ¼
ða� ipbÞðr0

zx þ �pr0
zyÞ

ðaþ bÞImfpg ; ðA3Þ
where the complex constant p is given by
p ¼ �
eC �45 þ il�
eC �44

¼ ðC
�
55 � C�44Þ cos h sin hþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C�44C�55

p
C�44 cos2 hþ C�55 sin2 h

: ðA4Þ
Here we are only interested in the expression for ~r0
zy since the loading ~r0

zx will not induce any crack opening displacement.
It follows from Eqs. (A1), (A3), and (A4) that
~r0
zy ¼

bRefpgr0
31 þ ½aImfpg þ bjpj2�r0

32

ðaþ bÞImfpg cos hþ bRefpgr0
32 � ½aImfpg þ bjpj2�r0

31

ðaþ bÞImfpg sin h

¼ al� þ bC�55

ðaþ bÞl� cos hr0
32 �

al� þ bC�44

ðaþ bÞl� sin hr0
31: ðA5Þ
On the other hand it can be deduced from Ref. [12] that the crack opening displacement [u3] due to remote uniform load-
ing ~r0

zy can be expressed as
½u3� ¼
4~r0

zy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � x2
p

l½1þ C� R�2ð1� CÞ�
ðjxj � cÞ: ðA6Þ
Starting with Eqs. (A5) and (A6), we can easily arrive at Eq. (6).
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Abstract In this study we first obtain the explicit
expressions for the 15 effective reduced elastic compli-
ances of an elastically anisotropic solid containing mul-
tiple microcracks with an arbitrary degree of alignment
under two-dimensional deformations within the frame-
work of the non-interaction approximation (NIA).
Under special situations, our results can reduce to the
classical ones derived by Bristow (J Appl Phys 11:
81–85, 1960), and Mauge and Kachanov (J Mech Phys
Solids 42(4):561–584, 1994). Some interesting phe-
nomena are also observed. For example, when the
undamaged solid is orthotropic, the effective in-plane
shear modulus is dependent on the degree of the crack
alignment. The NIA method is then extended to obtain
the effective electroelastic properties of an anisotropic
piezoelectric solid containing two-dimensional insulat-
ing, permeable or conducting microcracks with an
arbitrary degree of alignment. We also derive a set of
fifteen coupled nonlinear equations for the unknown
effective reduced elastic compliances of a microcrac-
ked, anisotropic, elastic solid by using the generalized
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self-consistent method (GSCM). The set of coupled
nonlinear equations can be solved through iteration.
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1 Introduction

The prediction of the effective elastic properties of
anisotropic materials containing microcracks has been
a topic of micromechanics for nearly 30 years (see for
example, Gottesman et al. 1980; Hashin 1988; Mauge
and Kachanov 1994; Feltman and Santare 1999; among
others). The limitations of the previous works lie in the
following: (i) the two-dimensional, anisotropic matrix
studied so far is confined to the special case in which
the in-plane deformations and the out-of-plane defor-
mations are decoupled (see for example, Mauge and
Kachanov 1994); (ii) in most of the studies the micro-
cracks were assumed to be either perfectly aligned or
randomly oriented (Mauge and Kachanov 1994).

In this study we first address the problem of the
effective elastic properties of a generally anisotropic
elastic matrix containing microcracks with an arbitrary
degree of alignment under two-dimensional deforma-
tions. Here we consider any degree of crack alignment,
from perfectly aligned to completely random, through
the introduction of a crack orientation distribution func-
tion (Santare et al. 1995). Very concise expressions for
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the effective reduced elastic compliances of the cracked
material are obtained by making use of energy con-
siderations and by ignoring crack interactions. During
the development, we adopt some results (for example,
the crack opening displacement) based on the Stroh
formalism for two-dimensional anisotropic elasticity
(Ting 1996). The current result based on a non-interac-
tion approximation (NIA) still retains accuracy at sub-
stantially higher crack densities due to the cancella-
tion of the competing interaction effects of shielding
and antishielding (Kachanov 1992; Mauge and Kacha-
nov 1994; Kachanov 2007). The NIA method is then
extended to study the effective electroelastic proper-
ties of a microcracked, anisotropic, piezoelectric solid.
Here the microcracks can be insulating (Pak 1990; Suo
et al. 1992), permeable (Suo et al. 1992) or conducting
(McMeeking 1987; Suo 1993). It is of interest to point
out that the non-convex electric enthalpy used for insu-
lating cracks is different than the convex energy den-
sity function used for conducting cracks. The effective
elastic moduli of a microcracked, generally anisotropic
elastic solid are also discussed within the framework of
the generalized self-consistent method (GSCM), which
approximately takes into account crack interaction
(Aboudi and Benveniste 1987; Santare et al. 1995).
It is found that some observations made by using the
NIA assumption are no longer valid when using the
GSCM.

2 The theory within the framework of NIA

The strain energy balance equation for a microcracked,
elastically anisotropic solid can be expressed as
(Eshelby 1956; Benveniste 1985; Aboudi and Benven-
iste 1987)

1

2
S∗

i jklσ
0
klσ

0
i j=

1

2
Si jklσ

0
klσ

0
i j+

1

2V

M∑

k=1

∫

Ck

[ui ]t0
i dCk,

(1)

where S∗
i jkl is the effective compliance of the dam-

aged material, Si jkl is the compliance of the undamaged
material, V is the sample volume, M is the number of
microcracks within the solid, σ 0

i j is the applied homo-

geneous stress field while t0
i = σ 0

i j n j is the traction
along the crack face if the crack did not exist and [ui ]
is the crack opening displacement.

x1

x2

θ

x

y

a

−a

Fig. 1 A crack of half crack length a oriented at an angle θ to
the positive x1-axis

In this study we assume that all the cracks pene-
trate the solid through the x3-axis. The degree of crack
alignment can be described by the crack orientation
distribution function φ(θ ) with θ, (|θ | < π/2) being
the angle between an individual crack and the positive
x1-axis as shown in Fig. 1 (Santare et al. 1995). Without
losing generality, φ(θ ) can be taken as an even func-
tion of θ such that the average orientation is parallel
to the x1-axis. For simplicity, φ(θ ) is specifically given
by (Santare et al. 1995; Wang et al. 2009)

φ(θ) =
{ 1

2θ0
, |θ | ≤ θ0

0, |θ | > θ0
(2)

where θ0 ≤ π/2. The two special cases of perfectly
aligned cracks and randomly oriented cracks corre-
spond to θ0 = 0 and θ0 = π/2, respectively in Eq. 2.

As a result, under two-dimensional deformations in
which the displacements depend on x1 and x2 only,
Eq. 1 can be further expressed as (Santare et al. 1995;
Ting 1996)

1

2
(σ 0)T S′∗σ 0 = 1

2
(σ 0)T S′σ 0

+ M

2A

θ0∫

−θ0

φ(θ)

∫

Ck

(t0)T [u]dCkdθ,

(3)

where A is the sample area, and

σ 0 =
[
σ 0

11 σ 0
22 σ 0

23 σ 0
13 σ 0

12

]T
, (4)
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S′ =

⎡

⎢⎢⎢⎢⎣

S′
11 S′

12 S′
14 S′

15 S′
16

S′
12 S′

22 S′
24 S′

25 S′
26

S′
14 S′

24 S′
44 S′

45 S′
46

S′
15 S′

25 S′
45 S′

55 S′
56

S′
16 S′

26 S′
46 S′

56 S′
66

⎤

⎥⎥⎥⎥⎦
, (5)

S′∗ =

⎡

⎢⎢⎢⎢⎣

S′∗
11 S′∗

12 S′∗
14 S′∗

15 S′∗
16

S′∗
12 S′∗

22 S′∗
24 S′∗

25 S′∗
26

S′∗
14 S′∗

24 S′∗
44 S′∗

45 S′∗
46

S′∗
15 S′∗

25 S′∗
45 S′∗

55 S′∗
56

S′∗
16 S′∗

26 S′∗
46 S′∗

56 S′∗
66

⎤

⎥⎥⎥⎥⎦
, (6)

t0 =
[
t0
1 t0

2 t0
3

]T
, [u] = [[u1] [u2] [u3]]T . (7)

We add that S′
αβ = Sαβ −Sα3S3β/S33 in Eq. 5 are the

reduced elastic compliances of the undamaged solid,
and S′∗

αβ = S∗
αβ − S∗

α3S∗
3β/S∗

33 in Eq. 6 are the effective
reduced elastic compliances of the cracked solid (Ting
1996).

The traction vector t0 is given by

t0 =
⎡

⎢⎣
σ 0

12 cos θ − σ 0
11 sin θ

σ 0
22 cos θ − σ 0

12 sin θ

σ 0
23 cos θ − σ 0

13 sin θ

⎤

⎥⎦ . (8)

If we ignore the crack interactions, i.e., η �1, then the
crack opening displacement vector [u] = [[u1] [u2]
[u3]]T can be simply given by (Ting 1996)

[u] = 2
√

a2 − x2L−1t0, (|x | ≤ a) (9)

where a is the half crack length, the 3 × 3 real and
symmetric Barnett–Lothe tensor L for the undamaged
solid is positive definite and L−1 is further written in
the following form for the convenience of the following
theoretical development

L−1 =
⎡

⎣
Y11 Y12 Y13

Y12 Y22 Y23

Y13 Y23 Y33

⎤

⎦ . (10)

We stress here that in writing Eq. 9 we have employed
the property of the second-order tensor L under coor-
dinate rotation (also see Fig. 114 on page 421 in Ting
1996).

Substituting Eqs. 2, 8 and 9 into Eq. 3, we can arrive
at

1

2
(σ 0)T S′∗σ 0 = 1

2
(σ 0)T S′σ 0 + η

2a2θ0
⎡

⎣
a∫

−a

√
a2 − x2dx

⎤

⎦

⎡

⎢⎣
θ0∫

−θ0

(t0)T L−1t0dθ

⎤

⎥⎦ , (11)

where η = Ma2/A is the crack density parameter.
We can clearly observe from the above expression

that S′∗ is also positive definite due to the fact that
the value of the second term on the right hand side of
Eq. 11 is always positive (i.e., the elastic energy density
is always increased through the introduction of the mi-
crocracks). The two integrals in Eq. 11 can be exactly
carried out as

a∫

−a

√
a2 − x2dx = πa2

2
, (12)

and
θ0∫

−θ0

(t0)T L−1t0dθ = Y11

2
[2θ0 − sin(2θ0)](σ 0

11)
2

+Y22

2
[2θ0 + sin(2θ0)](σ 0

22)
2

+Y33

2
[2θ0 + sin(2θ0)](σ 0

23)
2

+Y33

2
[2θ0 − sin(2θ0)](σ 0

13)
2

+1

2
{Y11[2θ0 + sin(2θ0)]

+Y22[2θ0 − sin(2θ0)]} (σ 0
12)

2

+Y13[2θ0 − sin(2θ0)]σ 0
11σ

0
13

+Y12[2θ0 − sin(2θ0)]σ 0
11σ

0
12

+Y23[2θ0 + sin(2θ0)]σ 0
22σ

0
23

+Y12[2θ0 + sin(2θ0)]σ 0
22σ

0
12

+Y13[2θ0 + sin(2θ0)]σ 0
23σ

0
12

+Y23[2θ0 − sin(2θ0)]σ 0
13σ

0
12.

(13)

In view of the fact that the applied homogeneous
stresses σ 0

11, σ
0
22, σ

0
23, σ

0
13 and σ 0

12 can be arbitrary,
then we obtain the following expressions for the effec-
tive reduced elastic compliances

S′∗
11 = S′

11 + πηY11

4θ0
[2θ0 − sin(2θ0)],

S′∗
22 = S′

22 + πηY22

4θ0
[2θ0 + sin(2θ0)],

S′∗
44 = S′

44 + πηY33

4θ0
[2θ0 + sin(2θ0)],

S′∗
55 = S′

55 + πηY33

4θ0
[2θ0 − sin(2θ0)],

S′∗
66 = S′

66 + πη

4θ0
{Y11[2θ0 + sin(2θ0)]

+Y22[2θ0 − sin(2θ0)]} ,
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S′∗
12 = S′

12,

S′∗
14 = S′

14,

S′∗
15 = S′

15 + πηY13

4θ0
[2θ0 − sin(2θ0)],

S′∗
16 = S′

16 + πηY12

4θ0
[2θ0 − sin(2θ0)],

S′∗
24 = S′

24 + πηY23

4θ0
[2θ0 + sin(2θ0)],

S′∗
25 = S′

25,

S′∗
26 = S′

26 + πηY12

4θ0
[2θ0 + sin(2θ0)],

S′∗
45 = S′

45,

S′∗
46 = S′

46 + πηY13

4θ0
[2θ0 + sin(2θ0)],

S′∗
56 = S′

56 + πηY23

4θ0
[2θ0 − sin(2θ0)]. (14)

Equation 14 indicates that the four compliance compo-
nents S′∗

12, S′∗
14, S′∗

25 and S′∗
45 are equal to the correspond-

ing ones for the undamaged material and that S′∗
i i ≥

S′
i i , (i = 1, 2, 4, 5, 6) since Y11, Y22, Y33 > 0. It is of

interest to notice that the present result of S′∗
12 = S′

12 is
consistent with the observation by Mauge and Kacha-
nov (1994) that ν∗

12/E∗
1 = ν12/E1 for an orthotropic

solid containing perfectly aligned or randomly oriented
cracks under plane stress deformation. The result we
obtain is valid for generally anisotropic materials con-
taining cracks with an arbitrary degree of alignment.

When the undamaged material is orthotropic, it
follows from the above expression that

1

µ∗
12

= 1

µ12
+ πη

4θ0

×
[

2θ0 + sin (2θ0)

L11
+ 2θ0 − sin (2θ0)

L22

]
,

(15)

which clearly demonstrates that the effective in-plane
shear modulus µ∗

12 depends on the degree of crack
alignment characterized by θ0 when L11 �= L22. Fur-
thermore when the undamaged material is isotropic
such that L11 = L22 = µ

1−ν
, with µ and ν being

the shear modulus and the Poisson’s ratio, respectively,
then Eq. 15 reduces to

µ∗
12 = µ

1 + πη(1 − ν)
, (16)

which is the classical NIA result obtained by Bristow
(1960), and is independent of the degree of crack align-
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L   /L   =0.511 22

2211
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µ*  /µ
12

12

Fig. 2 The variations of µ∗
12 of a cracked orthotropic elastic

material as a function of θ0 by using Eq. 15 for three different
values of L11/L22 = 0.5, 1.0, 1.5 with πηµ12/L11 = 0.25

ment (Kachanov 1992). We illustrate in Fig. 2 the var-
iation of µ∗

12 as a function of θ0 by using Eq. 15 for
three different values of L11/L22 = 0.5, 1.0, 1.5 with
πηµ12/L11 = 0.25. We observe from Fig. 2 that µ∗

12 is
an increasing function of θ0 when L11 < L22; whereas
it is a decreasing function of θ0 when L11 > L22.

In the following we discuss two typical cases for the
crack orientations:

2.1 Perfectly aligned cracks

When the microcracks are perfectly aligned, we have
θ0 = 0. Consequently it follows from Eq. 14 that

S′∗
11 = S′

11,

S′∗
22 = S′

22 + πηY22,

S′∗
44 = S′

44 + πηY33,

S′∗
55 = S′

55,

S′∗
66 = S′

66 + πηY11,

S′∗
12 = S′

12,

S′∗
14 = S′

14,

S′∗
15 = S′

15,

S′∗
16 = S′

16,

S′∗
24 = S′

24 + πηY23,

S′∗
25 = S′

25,

S′∗
26 = S′

26 + πηY12,
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S′∗
45 = S′

45,

S′∗
46 = S′

46 + πηY13,

S′∗
56 = S′

56. (17)

In addition, if the undamaged material is orthotropic,
Eq. 17 further reduces to Eq. 27 derived by Mauge and
Kachanov (1994) in view of the fact that Y11 and Y22

for orthotropic materials are explicitly given by (Suo
1990)

Y11 =
√

S′
11

[
2
√

S′
11S′

22 + 2S′
12 + S′

66

] 1
2

,

(18)

Y22 =
√

S′
22

[
2
√

S′
11S′

22 + 2S′
12 + S′

66

] 1
2

.

Here it should be noticed that Mauge and Kachanov
(1994) discussed the plane stress problem.

2.2 Randomly oriented cracks

When the microcracks are oriented randomly, we have
θ0 = π/2. Consequently it follows from Eq. 14 that

S′∗
11 = S′

11 + 1

2
πηY11,

S′∗
22 = S′

22 + 1

2
πηY22,

S′∗
44 = S′

44 + 1

2
πηY33,

S′∗
55 = S′

55 + 1

2
πηY33,

S′∗
66 = S′

66 + 1

2
πη(Y11 + Y22),

S′∗
12 = S′

12,

S′∗
14 = S′

14,

S′∗
15 = S′

15 + 1

2
πηY13,

S′∗
16 = S′

16 + 1

2
πηY12,

S′∗
24 = S′

24 + 1

2
πηY23,

S′∗
25 = S′

25,

S′∗
26 = S′

26 + 1

2
πηY12,

S′∗
45 = S′

45,

S′∗
46 = S′

46 + 1

2
πηY13,

S′∗
56 = S′

56 + 1

2
πηY23. (19)

In addition if the undamaged material is orthotropic,
Eq. 19 reduces to Eq. 32 derived by Mauge and Kacha-
nov (1994). It seems that the factor ‘π/4’ appearing in
the third expression of Eq. 32 in Mauge and Kachanov
(1994) should read ‘π/2’. Furthermore it follows from
Eq. 19 that the overall effective elastic properties will be
transversely isotropic for an originally isotropic mate-
rial containing randomly oriented cracks (θ0 = π/2).

Once the effective reduced elastic compliances have
been obtained, the effective stiffnesses can be conve-
niently obtained as

C0∗ = (S′∗)−1, (20)

where

C0∗ =

⎡

⎢⎢⎢⎢⎣

C∗
11 C∗

12 C∗
14 C∗

15 C∗
16

C∗
12 C∗

22 C∗
24 C∗

25 C∗
26

C∗
14 C∗

24 C∗
44 C∗

45 C∗
46

C∗
15 C∗

25 C∗
45 C∗

55 C∗
56

C∗
16 C∗

26 C∗
46 C∗

56 C∗
66

⎤

⎥⎥⎥⎥⎦
. (21)

3 Extension to piezoelectric solids

In the previous section we have derived the effective
reduced elastic compliances of a purely elastic solid
containing microcracks. In fact, the energy method can
also be conveniently adopted to derive the effective
electroelastic properties of a piezoelectric solid con-
taining insulating, permeable or conducting micro-
cracks.

3.1 A piezoelectric solid containing insulating
microcracks

In this case, the energy balance relationship for two-
dimensional problems, in which the displacements ui

and the electric potential φ depend on x1 and x2 only,
can be expressed in the following form when the piezo-
electric solid containing insulating microcracks is sub-
jected to the homogeneous stresses σ 0

i j and the homo-

geneous electric displacements D0
i (Suo et al. 1992)

1

2
(σ̃ 0)T (C̃0∗)−1σ̃ 0 = 1

2
(σ̃ 0)T (C̃0)−1σ̃ 0

+ M

2A

θ0∫

−θ0

φ(θ)

∫

Ck

(t̃0)T [ũ]dCkdθ,

(22)
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where

σ̃ 0 = [σ 0
11 σ 0

22 σ 0
23 σ 0

13 σ 0
12 D0

1 D0
2]T , (23)

[ũ] = [[u1] [u2] [u3] [ϕ]]T , (24)

C̃0 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C14 C15 C16 e11 e21

C12 C22 C24 C25 C26 e12 e22

C14 C24 C44 C45 C46 e14 e24

C15 C25 C45 C55 C56 e15 e25

C16 C26 C46 C56 C66 e16 e26

e11 e12 e14 e15 e16 −ε11 −ε12

e21 e22 e24 e25 e26 −ε12 −ε22

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(25)

C̃0∗ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

C∗
11 C∗

12 C∗
14 C∗

15 C∗
16 e∗

11 e∗
21

C∗
12 C∗

22 C∗
24 C∗

25 C∗
26 e∗

12 e∗
22

C∗
14 C∗

24 C∗
44 C∗

45 C∗
46 e∗

14 e∗
24

C∗
15 C∗

25 C∗
45 C∗

55 C∗
56 e∗

15 e∗
25

C∗
16 C∗

26 C∗
46 C∗

56 C∗
66 e∗

16 e∗
26

e∗
11 e∗

12 e∗
14 e∗

15 e∗
16 −ε∗

11 −ε∗
12

e∗
21 e∗

22 e∗
24 e∗

25 e∗
26 −ε∗

12 −ε∗
22

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(26)

t̃0 =

⎡

⎢⎢⎢⎣

σ 0
12 cos θ − σ 0

11 sin θ

σ 0
22 cos θ − σ 0

12 sin θ

σ 0
23 cos θ − σ 0

13 sin θ

D0
2 cos θ − D0

1 sin θ

⎤

⎥⎥⎥⎦ . (27)

In Eqs. 25 and 26, Ci j , ei j and εi j are the elastic, pie-
zoelectric and dielectric constants of the undamaged
solid, while C∗

i j , e∗
i j and ε∗

i j are the corresponding
(unknown) constants for the damaged solid. The energy
expression in Eq. 22 is in fact the electric enthalpy
(Suo et al. 1992). When ignoring crack interactions
and assuming that the crack surfaces are traction-free
and charge-free (Pak 1990; Suo et al. 1992), the jump
in displacement and electric potential across the crack
surface can be simply given by

[ũ] = 2
√

a2 − x2L̃−1 t̃0, (|x | ≤ a) (28)

where L̃ is the 4 × 4 real and symmetric Barnett–
Lothe tensor for the undamaged piezoelectric solid
(Ting 1996). We add that L̃ is not positive definite and
can be further expressed as

L̃ =
[

L11 L14

LT
14 −L44

]
, (29)

where the 3 × 3 symmetric matrix L11 is positive def-
inite and L44 > 0.

Substituting the above results into Eq. 22, we finally
arrive at a concise expression for the effective elec-
troelastic properties of the microcracked piezoelectric
solid

(C̃0∗)−1 = (C̃0)−1 + πη[2θ0 − sin(2θ0)]
4θ0

J̃T
1 L̃−1J̃1

+πη[2θ0 + sin(2θ0)]
4θ0

J̃T
2 L̃−1J̃2, (30)

where

J̃1 =

⎡

⎢⎢⎣

1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0

⎤

⎥⎥⎦ ,

J̃2 =

⎡

⎢⎢⎣

0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1

⎤

⎥⎥⎦ . (31)

It can be easily verified from Eqs. 29 and 30 that both

C0∗ defined by Eq. 21 and

[
ε∗

11 ε∗
12

ε∗
12 ε∗

22

]
are positive def-

inite. It can also be observed from Eq. 30 that the eigh-
teen components (12)= (21), (13)= (31), (24)= (42),
(34)= (43), (26)= (62), (36)= (63), (17)= (71), (47)=
(74) and (67)= (76) of (C̃0∗)−1 do not change due to
the introduction of the insulating microcracks within
the framework of NIA.

For a hexagonal piezoelectric solid with its poling
direction along the x3-axis, it follows from Eq. 30 that
the effective electroelastic properties of the micro-
cracked, piezoelectric solid pertaining to the antiplane
deformation and in-plane electric fields can be explic-
itly given by

C∗
55

C44
= e∗

15

e15
= ε∗

11

ε11
= 1

1 + πη[2θ0−sin(2θ0)]
4θ0

,

C∗
44

C44
= e∗

24

e15
= ε∗

22

ε11
= 1

1 + πη[2θ0+sin(2θ0)]
4θ0

, (32)

C∗
45 = e∗

14 = e∗
25 = ε∗

12 = 0.

For a hexagonal piezoelectric solid with its poling
direction along the x2-axis, it follows from Eq. 30 that
the effective electroelastic properties of the micro-
cracked, piezoelectric solid pertaining to the in-plane
deformation and in-plane electric fields can be explic-
itly given by

⎡

⎣
C∗

11 C∗
12 e∗

21
C∗

12 C∗
22 e∗

22
e∗

21 e∗
22 −ε∗

22

⎤

⎦
−1

=
⎡

⎣
C11 C12 e21

C12 C22 e22

e21 e22 −ε22

⎤

⎦
−1
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+πη [2θ0 − sin(2θ0)]

4θ0

⎡

⎣
1

CL
0 0

0 0 0
0 0 0

⎤

⎦

+πη [2θ0 + sin(2θ0)]

4θ0

⎡

⎣
0 0 0
0 1

CT

1
e

0 1
e − 1

ε

⎤

⎦ ,

[
C∗

66 e∗
16

e∗
16 −ε∗

11

]−1

=
[

C66 e16

e16 −ε11

]−1

+πη [2θ0 − sin(2θ0)]

4θ0

[
1

CT

1
e

1
e − 1

ε

]

+πη [2θ0 + sin(2θ0)]

4θ0

[ 1
CL

0
0 0

]
,

C∗
16 = C∗

26 = e∗
11 = e∗

12 = e∗
26 = ε∗

12 = 0, (33)

where

Re {Y} =
⎡

⎢⎣

1
CL

0 0
0 1

CT

1
e

0 1
e − 1

ε

⎤

⎥⎦ , (34)

has been defined in Eq. C12 by Suo et al. (1992). The
elements in Eq. 34 have to be determined numerically
for the specific piezoelectric material. We illustrate in
Figs. 3, 4, 5 the variations of the effective electroelastic
moduli as functions of θ0 with η = 0.2 for a micro-
cracked piezoelectric material BaTiO3 with its material
properties given by (Pan 2001)

C11 = C33 = 166 × 109 N/m2,

C13 = 77 × 109 N/m2,

C12 = C23 = 78 × 109 N/m2,

C22 = 162 × 109 N/m2,

C44 = C66 = 43 × 109 N/m2,

C55 = 44.5 × 109 N/m2,

e21 = e23 = −4.4 C/m2,

e22 = 18.6 C/m2,

e34 = e16 = 11.6 C/m2,

ε11 = ε33 = 11.2 × 10−9 C2/(Nm2),

ε22 = 12.6 × 10−9 C2/(Nm2).

It can be observed from the three figures that the
degree of the crack alignment characterized by θ0 has
a significant influence on most of the effective elec-
troelastic moduli except C∗

66 due to the fact that the
ratio CT /CL = 1.0736 for BaTiO3 is very close to
unity. We also observe that all the effective electroelas-
tic moduli are monotonically increasing or decreasing
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Fig. 3 The variations of the four effective elastic constants
C∗

11, C∗
22, C∗

12 and C∗
66 as functions of θ0 with η = 0.2 for a

piezoelectric material BaTiO3 containing two-dimensional insu-
lating microcracks. The poling direction of the piezoelectric solid
is along the x2-axis
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Fig. 4 The variations of the three effective piezoelectric con-
stants e∗

22, e∗
21 and e∗

16 as functions of θ0 with η = 0.2 for a
piezoelectric material BaTiO3 containing two-dimensional insu-
lating microcracks. The poling direction of the piezoelectric solid
is along the x2-axis

functions of θ0 at a fixed crack density η. It can be
clearly seen from Fig. 3 that the effective elastic anisot-
ropy decreases as θ0 increases from zero for perfectly
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Fig. 5 The variations of the two effective dielectric constants
ε∗

11 and ε∗
22 as functions of θ0 with η = 0.2 for a piezoelectric

material BaTiO3 containing two-dimensional insulating micro-
cracks. The poling direction of the piezoelectric solid is along
the x2-axis

aligned microcracks to 90◦ for randomly oriented mi-
crocracks. When θ0 = 90◦, C∗

11 ≈ C∗
22 and C∗

66 ≈
1
2

(
C∗

11 − C∗
12

)
. We observe from Fig. 5 that ε∗

11 > ε11

when θ0 < 40◦. This observation indicates that the
piezoelectric effect plays an important role in the effec-
tive dielectric properties of a microcracked piezoelec-
tric solid. On the other hand our results show that some
of the effective piezoelectric and dielectric moduli at a
certain fixed θ0 can be rather complex functions of η.
This complex phenomenon is demonstrated in Figs. 6
and 7 for e∗

21 and ε∗
11 as functions of η for four differ-

ent values of θ0 = 0, π/8, π/4, π/2. We can see from
Fig. 6 that when θ0 is below a certain value (the detailed
results show that this value is θ0 = π/3.03), e∗

21 can
attain its minimum value at an extremely low crack
density η (for example when θ0 = π/8, e∗

21 attains its
minimum value of −4.5851 C/m2 at η = 0.04); on the
other hand when π/3.03 < θ0 ≤ π/2, e∗

21 is a mono-
tonically increasing function of η. Our detailed results
also show that depending on the value of θ0, there exist
three possible distributions of ε∗

11: (i) a monotonically
increasing function of η when θ0 = 0; (ii) a function
with its maximum value at a certain value of η when
0 < θ0 ≤ π/4.09 (for example as shown in Fig. 7 when
θ0 = π/8, ε∗

11 attains its maximum value of 11.86 ×
10−9 C2/(Nm2) at η = 0.436); (iii) a monotonically
decreasing function of η when θ0 > π/4.09. We add
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Fig. 6 The variations of e∗
21 as a function of η at four differ-

ent values of θ0 = 0, π/8, π/4, π/2 for a piezoelectric material
BaTiO3 containing two-dimensional insulating microcracks. The
poling direction of the piezoelectric solid is along the x2-axis
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Fig. 7 The variations of ε∗
11 as a function of η at four differ-

ent values of θ0 = 0, π/8, π/4, π/2 for a piezoelectric material
BaTiO3 containing two-dimensional insulating microcracks. The
poling direction of the piezoelectric solid is along the x2-axis

that this unexpected phenomenon is caused by the cou-
pling effect between the mechanical field and the elec-
tric field (or the piezoelectric effect). For example when
there exists no piezoelectric effect, ε∗

11 ≡ ε11 for per-
fectly aligned microcracks (θ0 = 0).

3.2 A piezoelectric solid containing permeable
microcracks

The effective electroelastic properties of a piezoelec-
tric solid containing permeable microcracks (i.e., ϕ+ =
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ϕ−, D+
n = D−

n across the crack surface, see Suo et al.
1992) can be simply derived as

(C̃0∗)−1 = (C̃0)−1

+πη [2θ0 − sin(2θ0)]

4θ0
JT

3 L−1
11 J3

+πη [2θ0 + sin(2θ0)]

4θ0
JT

4 L−1
11 J4, (35)

where the 3×3 symmetric matrix L11 has been defined
in Eq. 29 and

J3 =
⎡

⎣
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0

⎤

⎦ ,

J4 =
⎡

⎣
0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

⎤

⎦ . (36)

We see from Eq. 35 that the thirty-two components
(12)= (21), (13)= (31), (24)= (42), (34)= (43), (ij)=
(ji), (i=1-7, j=6,7) of (C̃0∗)−1 do not change due to
the introduction of the permeable microcracks within
the framework of NIA. For a hexagonal piezoelectric
solid with its poling direction along the x3-axis, it fol-
lows from Eq. 35 that the effective electroelastic prop-
erties of the microcracked, piezoelectric solid pertain-
ing to the antiplane deformation and in-plane electric
fields can be explicitly given by

C∗
55

C44
= e∗

15

e15
= 1

1 + πη[2θ0−sin(2θ0)]
4θ0

,

ε∗
11

ε11
= 1 + πk1η [2θ0 − sin(2θ0)]

4θ0 + πη [2θ0 − sin(2θ0)]
≥ 1,

C∗
44

C44
= e∗

24

e15
= 1

1 + πη[2θ0+sin(2θ0)]
4θ0

,

ε∗
22

ε11
= 1 + πk1η [2θ0 + sin(2θ0)]

4θ0 + πη [2θ0 + sin(2θ0)]
≥ 1,

C∗
45 = e∗

14 = e∗
25 = ε∗

12 = 0, (37)

where k1 = e2
15/(ε11C44) < 1 is the electromechanical

coupling factor.
We observe from the above expression that only the

expressions for ε∗
11 and ε∗

22 are different from the cor-
responding ones in Eq. 32 for insulating microcracks.
When θ0 is fixed, ε∗

11 and ε∗
22 for permeable micro-

cracks are increasing functions of η; whereas those for
insulating microcracks are decreasing functions of η.

Similarly, for a hexagonal piezoelectric solid with
its poling direction along the x2-axis, it follows from
Eq. 35 that the effective electroelastic properties of the

microcracked piezoelectric solid pertaining to the in-
plane deformation and in-plane electric fields can be
explicitly given by

⎡

⎣
C∗

11 C∗
12 e∗

21
C∗

12 C∗
22 e∗

22
e∗

21 e∗
22 −ε∗

22

⎤

⎦
−1

=
⎡

⎣
C11 C12 e21

C12 C22 e22

e21 e22 −ε22

⎤

⎦
−1

+ πη

4θ0

⎡

⎢⎣

2θ0−sin(2θ0)
CL

0 0

0 (1+k2)[2θ0+sin(2θ0)]
k2CT

0
0 0 0

⎤

⎥⎦ ,

[
C∗

66 e∗
16

e∗
16 −ε∗

11

]−1

=
[

C66 e16

e16 −ε11

]−1

+ πη

4θ0

[
(1 + k2) [2θ0 − sin(2θ0)]

k2CT

+2θ0 + sin(2θ0)

CL

] [
1 0
0 0

]
,

C∗
16 = C∗

26 = e∗
11 = e∗

12 = e∗
26 = ε∗

12 = 0, (38)

where k2 = e2/(εCT ).

3.3 A piezoelectric solid containing conducting
microcracks

The effective electroelastic properties of a piezoelectric
solid containing conducting microcracks (McMeeking
1987; Suo 1993) can also be similarly derived. The
energy balance relationship for two-dimensional prob-
lems can be expressed in the following form when the
piezoelectric solid containing conducting microcracks
is subjected to the homogeneous stresses σ 0

i j and the

homogeneous electric fields E0
i (Suo 1993)

1

2
(σ̂

0
)T (Ĉ0∗)−1σ̂

0 = 1

2
(σ̂

0
)T (Ĉ0)−1σ̂

0

+ M

2A

θ0∫

−θ0

φ(θ)

∫

Ck

(t̂0)T [û]dCkdθ,

(39)

where

σ̂
0 =

[
σ 0

11 σ 0
22 σ 0

23 σ 0
13 σ 0

12 E0
1 E0

2

]T
, (40)

[û] = [[u1] [u2] [u3] [ξ ]]T , (41)
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Ĉ0 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C14 C15 C16 h11 h21

C12 C22 C24 C25 C26 h12 h22

C14 C24 C44 C45 C46 h14 h24

C15 C25 C45 C55 C56 h15 h25

C16 C26 C46 C56 C66 h16 h26

h11 h12 h14 h15 h16 β11 β12

h21 h22 h24 h25 h26 β12 β22

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (42)

Ĉ0∗ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

C∗
11 C∗

12 C∗
14 C∗

15 C∗
16 h∗

11 h∗
21

C∗
12 C∗

22 C∗
24 C∗

25 C∗
26 h∗

12 h∗
22

C∗
14 C∗

24 C∗
44 C∗

45 C∗
46 h∗

14 h∗
24

C∗
15 C∗

25 C∗
45 C∗

55 C∗
56 h∗

15 h∗
25

C∗
16 C∗

26 C∗
46 C∗

56 C∗
66 h∗

16 h∗
26

h∗
11 h∗

12 h∗
14 h∗

15 h∗
16 β∗

11 β∗
12

h∗
21 h∗

22 h∗
24 h∗

25 h∗
26 β∗

12 β∗
22

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (43)

t̂0 =

⎡

⎢⎢⎢⎣

σ 0
12 cos θ − σ 0

11 sin θ

σ 0
22 cos θ − σ 0

12 sin θ

σ 0
23 cos θ − σ 0

13 sin θ

E0
1 cos θ + E0

2 sin θ

⎤

⎥⎥⎥⎦ . (44)

In Eq. 41, ξ is defined such that D1 = ξ,2, D2 =
−ξ,1. In Eqs. 42 and 43, Ci j , hi j and βi j are the elas-
tic, piezoelectric and dielectric constants of the undam-
aged solid, while C∗

i j , h∗
i j and β∗

i j are the corresponding
(unknown) constants for the damaged solid. Here we
have adopted the material constant notations in Suo
(1993). When ignoring crack interactions, the jump in
displacement and ξ across the crack surfaces can be
simply given by (Suo 1993)

[û] = 2
√

a2 − x2L̂−1 t̂0, (|x | ≤ a) (45)

where L̂ is a 4×4 real and symmetric, positive definite
matrix.

Substituting the above results into Eq. 22, we finally
arrive at a concise expression for the effective elec-
troelastic properties of the microcracked piezoelectric
solid

(Ĉ0∗)−1 = (Ĉ0)−1 + πη[2θ0 − sin(2θ0)]
4θ0

ĴT
1 L̂−1Ĵ1

+πη[2θ0 + sin(2θ0)]
4θ0

ĴT
2 L̂−1Ĵ2, (46)

where

Ĵ1 =

⎡

⎢⎢⎣

1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 −1

⎤

⎥⎥⎦,

Ĵ2 =

⎡

⎢⎢⎣

0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0

⎤

⎥⎥⎦. (47)

It is apparent that the energy density function always
increases through the introduction of conducting mi-
crocracks, and that Ĉ0∗ is positive definite in view of
the fact that both Ĉ0 and L̂ are positive definite. Inter-
estingly, this result is very similar to the situation when
the matrix is purely elastic. We stress that the convex
energy density function used here for conducting cracks
is different than the non-convex electric enthalpy used
for insulating cracks.

For a hexagonal piezoelectric solid with its poling
direction along the x3-axis, it follows from Eq. 46 that
the effective electroelastic properties of the micro-
cracked piezoelectric solid pertaining to the antiplane
deformation and in-plane electric fields can be explic-
itly given by

C∗
55

C44

[
1 + πη[2θ0−sin(2θ0)]

4θ0

] = β∗
11

β11

[
1 + πη[2θ0−sin(2θ0)]

4θ0

]

= h∗
15

h15
= C44β11 − h2

15

C44β11

[
1 + πη[2θ0−sin(2θ0)]

4θ0

]2 − h2
15

,

C∗
44

C44

[
1 + πη[2θ0+sin(2θ0)]

4θ0

] = β∗
22

β11

[
1 + πη[2θ0+sin(2θ0)]

4θ0

]

= h∗
24

h15
= C44β11 − h2

15

C44β11

[
1 + πη[2θ0+sin(2θ0)]

4θ0

]2 − h2
15

,

C∗
45 = h∗

14 = h∗
25 = β∗

12 = 0, (48)

where C44β11 > h2
15. Apparently C∗

44, C∗
55, β

∗
11, β

∗
22 >

0 and C∗
55β

∗
11 > h∗2

15, C∗
44β

∗
22 > h∗2

24.
For a hexagonal piezoelectric solid with its poling

direction along the x2-axis, it follows from Eq. 46 that
the effective electroelastic properties of the micro-
cracked, piezoelectric solid pertaining to the in-plane
deformation and in-plane electric fields can be explic-
itly given by
⎡

⎣
C∗

11 C∗
12 h∗

21
C∗

12 C∗
22 h∗

22
h∗

21 h∗
22 −β∗

22

⎤

⎦
−1

=
⎡

⎣
C11 C12 h21

C12 C22 h22

h21 h22 −β22

⎤

⎦
−1

+πη [2θ0 − sin(2θ0)]

4θ0

⎡

⎣
S1 0 −d
0 0 0

−d 0 ε

⎤

⎦

+πη [2θ0 + sin(2θ0)]

4θ0

⎡

⎣
0 0 0
0 S3 0
0 0 0

⎤

⎦ ,

[
C∗

66 h∗
16

h∗
16 −β∗

11

]−1

=
[

C66 h16

h16 −β11

]−1
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+πη [2θ0 − sin(2θ0)]

4θ0

[
S3 0
0 0

]

+πη [2θ0 + sin(2θ0)]

4θ0

[
S1 d
d ε

]
,

C∗
16 = C∗

26 = h∗
11 = h∗

12 = h∗
26 = β∗

12 = 0, (49)

where

Re {Y} =
⎡

⎣
S1 0 d
0 S3 0
d 0 ε

⎤

⎦ , (50)

has been defined by Suo (1993). Similar to the
case of insulating cracks, the elements in Eq. 50
have to be computed numerically. Apparently both⎡

⎣
C∗

11 C∗
12 h∗

21
C∗

12 C∗
22 h∗

22
h∗

21 h∗
22 β∗

22

⎤

⎦ and

[
C∗

66 h∗
16

h∗
16 β∗

11

]
are positive definite.

3.4 A special distribution of the insulating
microcracks

Next we discuss a special distribution of the micro-
cracks: all the insulating microcracks with common
half-length a are distributed along the x1-axis in a
homogeneous piezoelectric solid subjected to the
homogeneous stresses σ 0

i j and the homogeneous

electric displacements D0
i . As pointed out by Fan and

Sze (2001), we may merge the microcracks along the
x1-axis into a continuously damaged interface such that

〈t̃2〉 = k̃〈[ũ]〉, on x2 = 0 (51)

where 〈∗〉 stands for the average over an area of a scale
much greater than the dimension of the microcracks,
t̃2 = [σ12 σ22 σ32 D2]T and [ũ] being defined by

Eq. 24. In addition 〈t̃2〉 = t̃0
2 = [

σ 0
12 σ 0

22 σ 0
32 D0

2

]T
.

Equation 51 can be termed the generalized, spring-type,
imperfect interface model with the 4 × 4 symmetric
matrix k̃ being the generalized stiffness matrix to be
determined. When ignoring the crack interactions and
noticing Eqs. 12 and 28 with θ = 0, we can easily
obtain the following

〈[ũ]〉 = πaρ

2
L̃−1 t̃0

2, (52)

where ρ = Ma/L with M being the number of mi-
crocracks within the sample of half-length L taken out
of the x1-axis. Comparison of Eq. 52 with Eq. 51 will
immediately lead to the following closed-form expres-
sion of k̃ as

k̃ = 2

πaρ
L̃, (53)

which remains valid when ρ � 1. We see from the
above expression that the structure of k̃ is exactly the
same as that of L̃ described in Eq. 29.

3.4.1 Remark

Fan and Sze (2001) derived a closed-form expression in
(2.9) for the spring constant k for two-dimensional non-
interacting cracks. In fact, the expression for k in three-
dimensions for penny-shaped, non-interacting cracks
can also be similarly derived as

k = 3πC

8a

1

ρ2 , (54)

which matches quite well the finite element results in
Table 2 in Fan and Sze (2001) up to ρ = 0.5.

4 An approximation of the GSCM

We point out that the problem in Sect. 2 can also be
discussed within the framework of the generalized self-
consistent method (GSCM), which approximately takes
into account crack interaction (Aboudi and Benveniste
1987; Santare et al. 1995). Here we can adopt a simpli-
fied version of the GSCM for a microcracked, elasti-
cally anisotropic solid: first calculate the uniform stress
field σ̃ 0

i j within an intact circular inclusion with undam-
aged material properties surrounded by the effective
medium with (unknown) material properties subjected
to remote uniform stresses σ 0

i j (Ting 1996); second
solve the problem of a crack in an infinite homogeneous
material with undamaged material properties subjected
to remote uniform loading σ̃ 0

i j obtained in step 1. After
adopting the above, simplified version of the GSCM,
the crack opening displacement can be finally
obtained as

[u] = 2
√

a2 − x2L−1 t̃, (|x | ≤ a) (55)

where

t̃ = L(E1t0
1 + E2t0

2) cos θ − L(F1t0
1 + F2t0

2) sin θ,

(56)

with

t0
1 = [σ 0

11 σ 0
21 σ 0

31]T ,
(57)

t0
2 = [σ 0

12 σ 0
22 σ 0

32]T ,

[E1 E2] = L−1[03×3 I3×3](Ñ∗ + N)−1

×(Ñ∗ + N∗)
[

q2 q2N∗T
1

03×3 I3×3

]
,
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[F1 F2] = −L−1[N3 NT
1 ](Ñ∗ + N)−1

×(Ñ∗ + N∗)
[

q2 q2N∗T
1

03×3 I3×3

]
, (58)

and

N =
[

N1 N2

N3 NT
1

]
, Ñ =

[
S H

−L ST

]
, (59)

q2 =
⎡

⎣
S′∗

11 0 S′∗
15

0 0 0
S′∗

15 0 S′∗
55

⎤

⎦ . (60)

In the above expressions the quantities attached with
the superscript * are those pertaining to the effective
medium. Here we point out that the above derivations
are based on the elliptic inclusion and crack solutions in
Ting (1996) and more detailed structures and identities
of N1, N2, N3, S, H and L, all of which can be explicitly
expressed in terms of the reduced elastic compliances,
can be found in Chapter 6 of Ting (1996). The Bar-
nett–Lothe tensor, S, should not be confused with the
elastic compliance. It can be easily verified from the
above expressions that t̃ = t0

2 cos θ − t0
1 sin θ when

the circular inclusion and the surrounding matrix pos-
sess exactly the same material properties. Substituting
the above results into the energy balance expression,
Eq. 3, we finally arrive at the following set of fifteen
coupled, nonlinear equations for the fifteen unknown
effective reduced elastic compliances:

S′∗
11 = S′

11 + πηF (1)
11

4θ0
[2θ0 − sin(2θ0)] ,

S′∗
22 = S′

22 + πηE (2)
22

4θ0
[2θ0 + sin(2θ0)] ,

S′∗
44 = S′

44 + πηE (2)
33

4θ0
[2θ0 + sin(2θ0)] ,

S′∗
55 = S′

55 + πηF (1)
33

4θ0
[2θ0 − sin(2θ0)] ,

S′∗
66 = S′

66 + πη

4θ0

{(
E (1)

12 + E (2)
11

)
[2θ0 + sin(2θ0)]

+
(

F (1)
22 + F (2)

21

)
[2θ0 − sin(2θ0)]

}
, (61)

S′∗
12 = S′

12 + πη

8θ0

×
{
E (1)

21 [2θ0 + sin(2θ0)]+F (2)
12 [2θ0 − sin(2θ0)]

}
,

S′∗
14 = S′

14 + πη

8θ0

×
{
E (1)

31 [2θ0 + sin(2θ0)]+F (2)
13 [2θ0 − sin(2θ0)]

}
,

S′∗
15 = S′

15 + πη(F (1)
13 + F (1)

31 )

8θ0
[2θ0 − sin(2θ0)] ,

S′∗
16 = S′

16 + πη

8θ0

{
E (1)

11 [2θ0 + sin(2θ0)]

+
(

F (1)
12 + F (1)

21 + F (2)
11

)
[2θ0 − sin(2θ0)]

}
,

(62)

S′∗
24 = S′

24 +
πη

(
E (2)

23 + E (2)
32

)

8θ0
[2θ0 + sin(2θ0)] ,

S′∗
25 = S′

25 + πη

8θ0

{
E (1)

23 [2θ0 + sin(2θ0)]

+F (2)
32 [2θ0 − sin(2θ0)]

}
,

S′∗
26 = S′

26 + πη

8θ0

{(
E (1)

22 + E (2)
12 + E (2)

21

)

[2θ0 + sin(2θ0)] + F (2)
22 [2θ0 − sin(2θ0)]

}
,

S′∗
45 = S′

45 + πη

8θ0

{
E (1)

33 [2θ0 + sin(2θ0)]

+F (2)
33 [2θ0 − sin(2θ0)]

}
,

S′∗
46 = S′

46 + πη

8θ0

{(
E (1)

32 + E (2)
13 + E (2)

31

)

[2θ0 + sin(2θ0)] + F (2)
23 [2θ0 − sin(2θ0)]

}
,

S′∗
56 = S′

56 + πη

8θ0

{
E (1)

13 [2θ0 + sin(2θ0)]

+
(

F (1)
23 + F (1)

32 + F (2)
31

)
[2θ0 − sin(2θ0)]

}
,

(63)

where E (1)
i j , E (2)

i j , F (1)
i j and F (2)

i j , all of which are func-
tions of the unknown effective reduced elastic com-
pliances, are the components of four 3 × 3 matrices
E1, E2, F1 and F2 respectively.

Equations 61–63 can be solved through iteration
(Santare et al. 1995; Wang et al. 2009). During spe-
cific iteration for the unknowns, it is more convenient
to adopt the following equivalent matrix expression

S′∗ = S′ + πη [2θ0 + sin(2θ0)]

8θ0

×
[
JT

2 [E1 E2]

[
J1

J2

]
+

[
JT

1 JT
2

] [
ET

1
ET

2

]
J2

]

+πη [2θ0 − sin(2θ0)]

8θ0

×
[
JT

1 [F1 F2]

[
J1

J2

]
+

[
JT

1 JT
2

] [
FT

1
FT

2

]
J1

]
,

(64)
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where

J1=
⎡

⎣
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0

⎤

⎦, J2=
⎡

⎣
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0

⎤

⎦. (65)

We observe that when using the GSCM, the fifteen
effective, reduced elastic compliances will, in general,
be different from the corresponding compliances for
the undamaged material. Thus the result that S′∗

12 =
S′

12, S′∗
14 = S′

14, S′∗
25 = S′

25, S′∗
45 = S′

45 (see Eq. 14) is
only valid for NIA.

5 Effective thermal conductivities of a solid
containing insulated penny-shaped cracks

In the above, the crack orientation distribution function
φ(θ ) has been introduced for two-dimensional cracks.
In fact, the crack orientation distribution function can
also be adopted to describe three-dimensional cracks.
As an illustration, we consider the effective thermal
conductivities of a solid containing insulated penny-
shaped cracks with an arbitrary degree of alignment.
Within the framework of steady-state heat conduction,
we consider insulated penny-shaped cracks of radius a
with an arbitrary degree of alignment, distributed in a
homogeneous and isotropic medium with thermal con-
ductivity κ . The orientation of the penny-shaped crack
can be described by the azimuth angle θ (|θ | ≤ π/2)
and the zenith angle φ (0 ≤ φ ≤ π ) which define
the direction of the unit normal of the crack surface as
shown in Fig. 8 (Yang and Turner 2003). The crack ori-
entation distribution function φ (θ, φ) on a unit sphere
can be given by

φ(θ, ϕ)

=
⎧
⎨

⎩

1

4θ0 sin ϕ0
, |θ | ≤ θ0 and π

2 − ϕ0 ≤ ϕ ≤ π
2 + ϕ0

0, else

(66)

where θ0, ϕ0 ≤ π/2. By adopting the energy method
and ignoring the crack interactions, closed-form
expressions for the effective thermal conductivities can
be derived as

κ∗
11 = κ

1 + 2η[2θ0+sin(2θ0)]
3θ0

(
1 − sin2 ϕ0

3

) ,

κ∗
22 = κ

1 + 2η[2θ0−sin(2θ0)]
3θ0

(
1 − sin2 ϕ0

3

) ,

x2

x3

θx1

ϕ

o
Unit sphere

Fig. 8 Geometry of a penny-shaped crack

κ∗
33 = κ

1 + 8η sin2 ϕ0
9

, (67)

where η = Ma3/V is the crack density parameter and
κ∗

i j = 0, (i �= j), which implies that the three prin-
cipal directions of the effective medium are along the
x1, x2 and x3 axes. The above derivation uses the fol-
lowing expression for the temperature jump [T ] across
the insulated crack surfaces (Barber 1975)

[T ] = −4q0
√

a2 − r2

πκ
, (0 ≤ r ≤ a) (68)

where q0 is the uniform heat flow prescribed on the
crack face.

If all the microcracks are randomly oriented, i.e.,
ϕ0 = θ0 = π/2, then we have

κ∗
11 = κ∗

22 = κ∗
33 = κ

1 + 8
9η

, (69)

which means that the effective property is still isotro-
pic.

If the unit normals of all the microcracks lie in the
x1 − x2 plane, i.e., ϕ0 = 0, then we have

κ∗
11 = κ

1 + 2η[2θ0+sin(2θ0)]
3θ0

,

κ∗
22 = κ

1 + 2η[2θ0−sin(2θ0)]
3θ0

,

κ∗
33 = κ, (70)

which indicates that the effective thermal conductiv-
ity κ∗

33 is not influenced by the existence of the mi-
crocracks. Furthermore, if the unit normals, which lie
in the x1 − x2 plane, have a random distribution, i.e.,
θ0 = π/2 (or the so called uniaxially aligned cracks,
see Yang and Turner 2003), then it follows from Eq. 70
that

κ∗
11 = κ∗

22 = κ

1 + 4
3η

, κ∗
33 = κ, (71)
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which indicates that the effective property is trans-
versely isotropic with the x3-axis taken as the uniaxial
symmetry axis. Alternatively, if the unit normals lying
in the x1 − x2 plane are along the x1-axis, i.e., θ0 = 0
(i.e, the so-called perfectly aligned cracks, see Yang
and Turner 2005), then it follows from Eq. 70 that

κ∗
11 = κ

1 + 8
3η

, κ∗
22 = κ∗

33 = κ, (72)

which indicates that the effective property is also trans-
versely isotropic, but now with the x1-axis as the
uniaxial symmetry axis.

6 Conclusions

We first derived in Eq. 14 the closed-form expressions
for the fifteen effective reduced elastic compliances of
a microcracked, elastically anisotropic solid by using
NIA. Then we further obtained in Eqs. 30, 35 and 46
the concise expressions for the effective electroelastic
properties of a piezoelectric solid containing insulat-
ing, permeable or conducting microcracks by extend-
ing the NIA for purely elastic materials. We also derived
a set of coupled nonlinear Eq. 64 for the unknown effec-
tive reduced elastic compliances by using the GSCM.
Finally the crack orientation distribution function was
introduced to investigate the effective thermal conduc-
tivities of a solid containing insulated penny-shaped
cracks with an arbitrary degree of alignment, and the
effective thermal conductivities were derived in Eq. 67.
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