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1. Introduction/Background 

High power multimode fiber (MMF) master-oscillator power amplifiers (MOPAs) with 
stimulated Brillouin scattering (SBS) beam cleanup and wavefront reversal are under 
development at the U.S. Army Research Laboratory (ARL) for counter rockets, artillery, and 
mortar (CRAM).  

In the wavefront reversal geometry (figure 1), a Faraday rotator-polarizer combination (Faraday 
isolator) couples the oscillator into the amplifier, and outcouples the amplified Stokes light.  
During the first pass through the large mode area (LMA) fiber core, the incident fundamental 
mode from the oscillator is amplified and scattered into multiple spatial modes.  This light is 
coupled into a fiber designed to generate a wavefront reversed and frequency-shifted 
backscattered Stokes beam through SBS (1).  As it propagates back through the LMA fiber 
(second pass), the scattering is undone and the fundamental mode quality is restored.  A 
component is needed that transmits the laser light (into the fiber) and redirects the Stokes light 
(from the fiber).  There is little basis by which to separate the two beams; the polarizations may 
be identical and the wavelengths differ by less than one part in 105.  Faraday isolators distinguish 
between the two beams based on the fact that they are counter-propagating.  Volume Bragg 
gratings (VBGs) distinguish between the two beams based on the different wavelengths, as in a 
conventional diffraction grating.   
 

 

Figure 1.  The experimental setup for the high power MMF MOPA with phase conjugation.  The Faraday 
rotator is the limiting factor.   

The highest power commercial-off-the-shelf Faraday isolators can handle only up to 1 kW (2).  
Compared to Faraday isolators, VBGs are a more scalable option for outcoupling the Stokes 
beam.  At 1064 nm in fused silica, the wavelength shift of 0.0604 nm (16 GHz) is only one part 
in ~17,600, so to resolve the two wavelengths, i.e., reflect the laser wavelength and transmit the 
Stokes wavelength, the VBG must have ~17,600 periods.  A reflection grating of period 532 nm 
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in a material of index 1.49 (photo-thermal refractive [PTR] glass) would require a thickness of at 
least 6 mm.  For a grating of thickness 12 mm, the anticipated reflectance (figure 2) was ~0.95 at 
λL and ~0.05 at λS (transmittance ~0.95).  The blue line corresponds to illumination with a plane 
wave; the red line corresponds to a more realistic beam with 0.4-mrad divergence.   

 

Figure 2.  Anticipated spectral response of volume Bragg grating from OptiGrate (3). 

2. Experiment/Calculations 

In the wavefront reversal MOPA geometry, the Stokes beam is coupled out after the second pass 
amplification.  The safest approach is to reflect the laser beam and transmit the Stokes beam 
(figure 3) rather than vice versa, because if the VBG shifts, the input light will not be coupled 
into the amplifier and no high-power 1064-nm beam will be created.  In the beam cleanup 
MOPA geometry, the Stokes beam is outcoupled immediately after the SBS takes place and 
there is no preferred approach regarding safety; it does not matter which beam is transmitted and 
which is reflected.  For ease of alignment, we transmit the laser beam and reflect the Stokes 
(figure 4). 
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Figure 3.  Using a VBG to outcouple in the wavefront reversal geometry.   
This geometry is safer than transmitting λL and reflecting λS.  

 

 

Figure 4.  A possible configuration to outcouple in the beam cleanup  
geometry.  It is equally appropriate to reflect λL and transmit λS. 

One issue is whether absorption will heat the VBG enough to shift the resonance.  The index 
change and thermal expansion of PTR glass are such that the resonant wavelength red shifts 
~0.007 nm/°C.  To investigate this we solved the three-dimensional (3-D) heat diffusion equation 
inside an 8×10×16.5 mm3 piece of glass with specific heat 0.84 J/gm°K and thermal conductivity 
1 W/mK.  An absorption coefficient α=10–3 cm–1 corresponds to an absorbed power of 0.16% of 
the incident power.  Obtaining a 100-W average power from the MOPA is the goal of our Joint 
Technology Office (JTO) contract supporting this research.  We, therefore, assume that 0.16 W 
is deposited uniformly in a cylinder 6 mm in diameter and 16.5 mm long.  The boundary 
conditions are that two surfaces are in contact with a heat sink at 300 K.  The steady-state results 
show a 1 °C temperature difference between the beam axis and the 3-mm radius of the beam 
(figures 5 and 6).  This implies a 0.007-nm shift in resonance, which will produce only a small 
change in the transmission at λL and λS.   
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Figure 5.  Steady-state temperature profile inside an 8×10×16.5 mm3 piece of PTR glass, with 
0.16 W of heat deposited in a cylinder of the same length and 6 mm in diameter. 
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Figure 6.  Steady-state VBG temperature vs. distance along the y-axis from the 
center of figure 5. 

The thermal time constant on the order of 1 min limits the rate at which the output power of the 
laser can be changed (figure 7). 
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Figure 7.  Transient VBG temperature on axis with the same conditions as figure 5. 

The size of the actual VBG is state-of-the-art at 8×10×12 mm3 and mounted in a temperature-
controlled holder (figure 8).  To test the VBG, we used a setup (figure 9) in which the laser light 
is reflected and the Stokes light is transmitted.  This is the preferred setup for the wavefront 
reversal geometry and will also work for beam cleanup. 

 

 

Figure 8.  The VBG in its temperature-controlled holder and mounted to a tip-tilt stage. 
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Figure 9.  Experimental setup to test ability of VBG to decouple the Stokes from the input wave. 

We collimate the input light with a 35-mm focal length doublet (to a 4.9-mm-diameter beam), 
use the half-waveplate and Faraday isolator as a variable optical attenuator (VOA) and couple 
into the fiber with a 19-mm focal length doublet.  Uncoated beam samplers at a small angle of 
incidence monitor the power.  The input angle and the VBG angle are chosen to maximize the 
Bragg reflection of the input light.   

3. Results and Discussion 

The threshold of the OFS graded-index (GI) 50/125 fiber is 0.2 W.  The VBG reflectance of the 
input light (λL) is 85% while the maximum VBG transmittance of the Stokes light (λS) is ~84%.  
The VBG Stokes transmittance is calculated from 

 𝑇𝑆𝑡𝑜𝑘𝑒𝑠𝑉𝐵𝐺 =
𝑃𝑡𝑟𝑎𝑛𝑠𝑉𝐵𝐺 −�1−𝑅𝑙𝑎𝑠𝑒𝑟

𝑉𝐵𝐺 �0.04𝑃𝑟𝑒𝑓𝑙
𝑉𝐵𝐺

𝑃𝑏𝑎𝑐𝑘
𝑓𝑖𝑏𝑒𝑟−0.04𝑃𝑟𝑒𝑓𝑙

𝑉𝐵𝐺  (1) 

where 𝑃𝑡𝑟𝑎𝑛𝑠𝑉𝐵𝐺  is the power transmitted through the VBG from the fiber (PD2), 𝑃𝑟𝑒𝑓𝑙𝑉𝐵𝐺  is the input 
laser power reflected by the VBG (PD3), 𝑅𝑙𝑎𝑠𝑒𝑟𝑉𝐵𝐺  is the reflectance of the VBG at the laser 
wavelength, 𝑃𝑏𝑎𝑐𝑘

𝑓𝑖𝑏𝑒𝑟 is the backscattered power (both the SBS-generated Stokes wave and Fresnel 
reflection) from the fiber (PD4), and 0.04 corresponds to the Fresnel reflection from the input 
face of the fiber.  

Figure 10 shows the input laser power reflected by the VBG, the input laser power to the SBS 
fiber, the Fresnel reflected and backscattered Stokes power, and the Fresnel and Stokes power 
transmitted through the VBG, as well as the VBG reflectance at λL, VBG Stokes transmittance at 
λS, and SBS reflectance. 
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Figure 10.  (a) The input laser power reflected by the VBG (red, PD3), the input laser power to the SBS fiber 

(orange), the Fresnel reflected and backscattered Stokes power (green, PD4), and the Fresnel and 
Stokes power transmitted through the VBG (blue, PD2); and (b) the VBG reflectance at λL (red), VBG 
Stokes transmittance at λS (blue), and SBS reflectance (green). 

4. Conclusions 

The scalability of the high-power MMF MOPAs was previously limited by the Faraday isolators 
available, which can handle a maximum of 1 kW.  Compared to a Faraday isolator, a VBG made 
from PTR glass appears to be a more scalable option for outcoupling the Stokes beam.   

The VBG, fabricated by OptiGrate (3), is designed to separate wavelengths 0.0604 nm apart (the 
wavelength shift between the input and Stokes waves operating at 1064 nm in fused silica).  It 
reflects up to 85% of the input laser light while transmitting up to 84% of the backscattered 
Stokes light.  Faraday isolators outcouple based on the direction of propagation, while VBGs 
outcouple based on the wavelength difference between the two waves.   
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