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1. Introduction 

The capability to extract particular pieces of information from a data set while maintaining both 
high precision and recall is difficult and time-consuming.  The need for faster information 
extraction (IE) without significant loss of accuracy has lead to the creation of automated IE 
programs.  Empirical evaluation plays a key role in estimating the performance of promising IE 
tools. 

General Architecture for Text Engineering (GATE) and Automap are two such promising IE 
tools; the former was developed by the Natural Language Processing (NLP) Group of the 
University of Sheffield and the latter by the Center for Computational Analysis of Social and 
Organizational Systems (CASOS) at Carnegie Mellon University.  Both programs have similar 
named entity, date, and location extraction capabilities. 

Comparison of the two programs was based on functionality, usability, customization with 
empirical performance evaluation keyed to the one-dimensional metrics precision, recall, and the 
F-measure.  Each program was evaluated against three independent corpora:  the Database 
Creation for Information Processing Methods, Metrics, and Models (DCIPM3) message set, the 
Soft Target Exploitation and Fusion Human Intelligence (STEF HUMINT) message set, and a 
Google message set. 

Extracted information can be visualized or formatted and stored as Resource Descriptive 
Framework (RDF) triples for later use in the construction of an ontology.  The result would be an 
information system that provides fast and actionable intelligence to the Warfighter. 

 

2. Automated IE Tools 

2.1 GATE 

GATE v.5.0 is an IE open-source program.  The program features a user-friendly graphical user 
interface (GUI) that was used for this project. 

2.1.1 Graphical User Interface (GUI) 

Many of GATE’s features could be utilized via the GUI.  A few syntactical and visual errors 
were encountered when using the GUI, but overall it was a helpful aid to the extraction process. 
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Pipelines,* Processing Resources,† and Language Resources‡ could be loaded into GATE with 
minimal effort using the GUI.  Various resources could be implemented to assist in the extraction 
effort given the capability to load plug-ins into GATE by accessing the plug-in manager from the 
GUI. 

The GUI allowed a corpus to be saved as an XML document, with the option of including 
annotations.  This was a useful capability. 

2.1.2 Annotations 

GATE displays extracted information by annotation.  Each annotation is classified as a type, 
such as date, location, organization, person, etc.  Each annotation includes features such as type, 
gender, kind, rules, etc.  A user can also manually add features to any annotation.  These features 
will appear alongside the annotations when saved as an XML document. 

A pre-defined pipeline named ANNIE, which can be loaded into GATE, uses a variety of 
processing resources located in GATE’s plug-in manager to automatically annotate a corpus. 
ANNIE analyzes a corpus by tokenizing the text,§ running a gazetteer,** and transducing.††  Once 
ANNIE has analyzed the text, the annotation types which have been created are compiled into an 
annotation set.  While viewing a document, a user can select the annotation types to be viewed. 
The selected annotations will be highlighted in the text.  

A user can also create and edit annotations manually.  This is a necessary step to calculate 
precision and recall since manually annotated corpora, which serve as the ground truth, must be 
compared to the automatically annotated corpora.  Creating and editing annotations is a long, 
grueling process in GATE, mainly caused by a few specific yet annoying errors. 

2.2 Automap 

Automap v.2.7.4 takes a different approach to automated IE than GATE.  A corpus loaded into 
Automap undergoes numerous preprocessing steps. Key preprocessing tools may include 
stemming functions, deletion, thesauri, and removing symbols, numbers, and punctuation.  Once 
preprocessing is complete, the user tags the remaining concepts in a meta-matrix thesaurus then 
selects and applies a sub-matrix.  The extracted information is then ready for output. 

2.2.1 Text Preprocessing 

Application of a delete list and generalization thesaurus was sufficient to streamline the data for 
this study.

                                                 
*An application built from different processing resources to process language resources. 
†Sub-processes that can be used to build a pipeline. 
‡Corpora, single documents, etc. 
§Splits texts into tokens such as word, punctuation, space, etc. 
**Sets of lists containing names of entities such as cities, organizations, days of the week, etc. 
††Implementing grammars (patterns) to define entities not defined by gazetteer. 
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2.2.1.1  Deletion.  Deletion was a tricky process—clarity and concision had to be weighed 
against losing potentially valuable information.  The delete list included with Automap was a 
very basic list of 35 words, the majority of which were pronouns and prepositions.  A far larger, 
customized delete list was written to pare the number of concepts.  Since the project involved 
training Automap on only one of the three corpora, the STEF HUMINT message set, the delete 
list was aimed at removing all but military-relevant words. 

2.2.1.2  Thesauri.  Two thesauri found in Automap were utilized.  The first, the Generalization 
Thesaurus, allowed two or more concepts to be indentified as identical and provided a common 
concept label.  For instance, this function identified JCOC as the Joint Civilian Orientation 
Conference and inserted a new symbol grouping, Joint_Civilian_Orientation_Conference, into 
the processed document.  In this way, the concept is processed as a single concept and not 3 pairs 
of concepts.  The Generalization Thesaurus had several other uses, it:  (1) turned plural concepts 
into their singular form, (2) converted dialectal spelling differences, and (3) changed similar 
concepts into the same concept (e.g., “street,” “roadway,” “thoroughfare,” and “throughway” 
were all deemed synonymous with “road”). 

The second and, perhaps, more important thesaurus, was the Meta-Matrix Thesaurus.  Words are 
tagged in this Thesaurus according to the program’s embedded ontology; that is, this thesaurus 
associates text-level concepts with meta-matrix concepts.  AutoMap’s ontology offers several 
classifications for any given concept including knowledge, agent, resource, event, organization, 
location, when, and attribute.  

Output from Automap can be analyzed at any of three levels:  (1) the concept network level, (2) 
the entire meta-matrix level, or (3) the sub-matrix level.  The sub-matrix controls how the 
different classes of Automap’s ontology interact with one another.  The full sub-matrix was 
selected for this study to ensure every class interaction was displayed. 

3. Performance Evaluation 

To objectively compare the two IE programs, the single-dimension quantitative metrics 
precision, recall and the traditional F-measure were selected.  Precision is the proportion of 
documents retrieved that are relevant to a user’s information needs; precision takes all retrieved 
documents into account.  It is defined as  

 Precision (P) = tp/(tp + fp), (1) 

where tp* and fp† are the numbers of true positive and false positive, respectively.

                                                 
*Document is retrieved by system and is relevant. 
†Document is retrieved by system and is not relevant. 
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Recall is the proportion of successfully retrieved documents that are relevant to the user’s query; 
recall corresponds to the true positive rate.  It is defined by  

 Recall (R) = tp / (tp + fn), (2) 

where tp is defined as in equation 1 and fn* is the number of false negative. 

The F-measure can be interpreted as the (equally) weighted harmonic mean of precision and 
recall; the F-measure is defined as  

 F = 2 • [(P • R) / (P + R)]. (3) 

There are several methods to measure precision and recall depending on how strictly or leniently 
partially correct true positives are taken into account.  A partially correct true positive occurs when 
a piece of information is not correctly extracted, such as not including a full name or adding words 
which aren’t part a name.  The “strict”† method considers partially correct true positives as false 
positives.  The “lenient”‡ method considers partially true correct positives as true positives.  The 
third method uses the mean of the strict and lenient methods to compute the overall precision and 
recall measures.  The third method was selected to evaluate GATE and Automap. 

4. Results 

Table 1 gives a summary of the statistical results. 

Table 1.  Precision, recall, and F-measure statistics for the three corpora. 

 GATE Version 5.0 Automap Version 2.7 
 Precision Recall Precision Recall Precision Recall 

DCIPM3 Msg Set       
Date/when 1.000 0.967 0.983 1.000 0.484 0.652 
Location 0.750 0.050 0.094 0.333 0.033 0.061 

Organization 0.750 0.214 0.333 0.250 0.071 0.111 
Person/agent 0.550 0.668 0.604 0.475 0.340 0.400 

Google Msg Set       
Date/when 0.989 0.989 0.989 0.662 0.179 0.282 
Location 0.966 0.664 0.787 0.954 0.838 0.893 

Organization 0.968 0.724 0.828 0.822 0.751 0.785 
Person/agent 0.648 0.805 0.718 0.687 0.658 0.672 

STEF HUMINT Msg Set       
Date/when 0.690 0.794 0.738 0.675 0.214 0.325 
Location 0.947 0.471 0.629 0.680 0.439 0.533 

Organization 0.789 0.366 0.500 0.784 0.500 0.612 
Person/agent 0.333 0.497 0.358 0.818 0.248 0.381 

                                                 
*Document is not retrieved by system but is relevant. 
†http://gate.ac.uk/sale/tao/split.html. 
‡http://gate.ac.uk/sale/tao/split.html. 
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The numbers of correct, partially correct, false negatives, and false positives used for precision, 
recall, and F-Measure calculations are provided in table 2. 

Automap was trained on the STEF HUMINT message set for this study.  Since both the STEF 
HUMINT and Google message sets featured a military specific domain, Automap performed 
reasonably well for most entity types.  Automap performed poorly with respect to the DCIPM3 
message set, which features a high school environment domain.  GATE, however, did not appear 
to be encumbered by the domain type and had higher or equivalent precision, recall, and 
F-Measure statistics when compared to Automap.  

 
Table 2.  Correct (C), partially correct (PC), false negatives (FN), and false positives (FP). 

 GATE Version 5.0 Automap Version 2.7 
 C PC FN FP C PC FN FP 

DCIPM3 Msg Set         
Date/when 58 0 2 0 30 0 32 0 
Location 1 1 28 0 1 0 29 2 

Organization 1 1 5 0 0 1 6 1 
Person/agent 74 111 9 50 0 132 62 7 

Google Msg Set         
Date/when 135 1 1 1 12 25 100 0 
Location 254 6 127 6 312 25 50 3 

Organization 237 8 88 4 201 98 34 5 
Person/agent 68 17 10 33 36 53 6 2 

STEF HUMINT Msg Set         
Date/when 90 20 16 35 14 26 86 0 
Location 114 3 128 5 58 99 88 1 

Organization 14 2 25 3 15 11 15 0 
Person/agent 32 58 55 82 28 16 101 0 

 

5. Conclusions 

GATE has more potential than Automap as an automated IE program.  GATE offers a fully 
automated process, while Automap needs a fair amount of user definition.  The performance 
metrics for GATE, for the most part, are equivalent or better than Automap’s.  Automap 
performed significantly worse at extraction when dealing with concepts it was not trained on, 
which is a large downfall when dealing with domain specific IE.  
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