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1. Introduction: The Nonlinear Transmission Line 

Transmission lines are ubiquitous in almost all high-frequency RF circuits, where they replace 
the standard wire connections used for assembling circuits at lower frequencies. The many forms 
they take, involving complex geometries and exotic materials, are conditioned by the task of 
delivering RF energy from one circuit location to another. A less common use of transmission 
lines is as actual RF devices – switches, phase shifters, filters, etc. – which exploit their ability to 
perform various impedance functions and versatility with regard to fabrication. For example, 
varying lengths of the same transmission line can be used as capacitors, inductors, or delay lines 
for matching circuit subunits such as amplifiers (1). When used in this way, the transmission line 
is usually a linear circuit component. A considerably less common use of nonlinear transmission 
lines (NLTL) is for large-signal device design – phase shifters come to mind (2) – although some 
early work on distributed amplifiers could qualify as such (3). 

The structure of a transmission line can be either continuous or discrete. Whereas continuous 
transmission lines are typically waveguide-based (3a), lines with discrete structure usually 
consist of repeated identical subcircuits made up of lumped elements. A useful definition of a 
NLTL is an ordinary transmission line whose electrical characteristics are functions of local 
voltages and currents. Thus, the prototypical discrete transmission line shown in figure 1 is made 
up of lumped elements – resistors, capacitors, inductors, etc. – any one of which can be voltage 
dependent. In the 1980’s, NLTL were fabricated by inserting shunt diodes periodically into a 
transmission line to create nonlinearity in its overall electrical response (3b). Although these 
lines had very useful properties, they were never capable of much power handling due to the 
semiconductor nature of the diodes used. At the end of the 1980’s, the Ikezi group at General 
Atomics (4) studied layered structures consisting of parallel-plate waveguides in which layers of 
ferroelectric material (specifically, barium strontium titanate, or BST) alternated with layers of 
simple dielectric (see figure 2); these structures now represent the canonical version of high-
voltage NLTLs, and are often encountered in the NLTL literature to this day. Mark Litz and I 
were first made aware of the work of Ikezi’s group in 2007, as a possible way to address the need 
of ARDEC for a HPM source, and it has been the basis for our effort at ARL ever since. 

In this report I will describe my efforts to model the electromagnetic response of this type of 
transmission line numerically, as requested by ARDEC in the summer of 2009. 
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Figure 1.  General discrete transmission-line circuit. 

 

 

Figure 2.  NLTL structure used for fabrication at ARL. 

2. Selection of Capacitance-Voltage Dependence for NLTL Circuit 

Much of the NLTL design work published in the literature is numerical in nature. The need to 
use numerical modeling to design a useful NLTL is regrettable in many ways, the most important 
of which is that easy-to-use design rules are seldom derivable from simulations. After much 
labor, Ikezi et al., at General Atomics (5) published an example of one such design rule for 
finding the frequency at which the power from a NLTL was a maximum. At ARL we used this 
rule extensively in our previous effort. The design rule was formulated by performing a series of 
numerical simulations of their NLTL circuit model for various line parameters, and extracting 
the peak power frequency by Fourier-transforming the computed time dependence of the power 
out of the line and looking for its peak value. Their results were published in the form of a curve, 
which they fitted to the empirical function 
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where  is the peak-power frequency of the output soliton pulse train, b is the width of the 
lowest NLTL pass band when treated as a linear (small-signal) transmission line, E is the electric 
field measured at the input of the NLTL, and E0 is a scaling field of order 10 kV. Because the 
relationship implied by this formula between the small-signal and large-signal quantities is 
obscure, its usefulness for evaluating other systems is problematic. Because we were unable to 
make any accurate power measurements, we were unable to check how good the equation was; 
nevertheless, we were able to use the dependence on b to design the NLTL at a prespecified 
frequency, using an additional equation taken from (6). 

Because the nonlinear response of the NLTL is based on the voltage dependence of BST 
capacitors, it is vital that these components be modeled as precisely as possible. At this time we 
have two literature-based modeling functions, one the original choice of Ikezi in 1988 (5) and the 
other that of Martin Brown in his 1997 thesis (7). In this section I will explain why the former 
was preferred over the latter as a basis for this modeling work, and propose a third alternative 
with features of both. 

2.1 Ikezi’s Model 

The model used by the Ikezi group for the voltage dependence of BST capacitors is based on a 
fundamental relationship between the electric displacement in BST and an external electric field, 
which they write as follows: 

 
3

3 3 2
0 0 0

D D
E

E
 
  

 

The quantity D gives the charge per unit area induced on the metal walls of the parallel-plate 
transmission line, and hence, can be multiplied by the area of contact A between the metal and a 
given ferroelectric layer to extract the charge per ferroelectric layer induced on the walls: 

 
Q

D Q AD
A

    

while the electric field E equals the voltage V between the walls divided by the height of the 
guide: 

 
V

E V Eh
h

    

Then together these quantities let us define a function V(Q) which can be used to specify the 
capacitance of the line: 
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Note that in order to compute the capacitance, we must invert the function V(Q) numerically. 

The form of this expression, which is a consequence of the crystal physics of BST (8), predicts a 
capacitance versus voltage with the following properties: 

1. At small voltages (small D) it predicts a constant capacitance of the usual form, i.e., 

0 A
C

h


 , 

2. The capacitance is independent of polarity, and 

3. For large voltages the capacitance decreases algebraically as V–2/3. 

It is worth noting that the expression used by Ikezi is clearly a truncation of an infinite series, 
and indeed, it is common practice with in most of the ferroelectrics literature to write 

 3 5E aD bD cD    

For our purposes, it is significant that this implies a falloff in the capacitance as V–4/5 with 
voltage. The large-V behavior is thus ambiguous, and can only be resolved by fitting. Note that 
the procedure for fitting experimental data to polynomials is especially simple, a further 
advantage to using Ikezi’s expressions. 

2.2 Brown’s Model 

In contrast to the Ikezi physics-based model, the model used by Brown seems to be entirely ad 
hoc, and violates both the material constraints and the standard laws of electrostatics, casting his 
entire simulation effort into doubt: 

(1) He assumes that the relationship between charge and voltage is 

  Q C V V  
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whereas in fact the correct relationship is 

    
0

V

Q V C d    

(2) He postulates a diodelike functional dependence for C(V) that depends on polarity: 

     /
0 1 CV VC V C e       

In addition, this expression predicts a strong increase for negative V, which is unphysical.  

It is interesting to determine the difference between Brown’s expression and the correct 
expression for Q(V): his simple multiplication gives  

       /
0 1 CV VQ V C V V C V e        

while the correct expression gives 

        / /
0 0

0

1 1 1C C

V
V V V V

CQ V C e dV C V V e                

The plot shown in figure 3 illustrates the difference: 
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Figure 3.  The function Q(V) evaluated from Brown’s fitting expression: red – multiplication,  
blue – integration. 



 

6 

Clearly the two functions are almost identical for small voltages, and differ only by an offset for 
large voltages; however, the severe change in slope at intermediate voltages will greatly distort 
the waveform of an ac signal as it passes through the intermediate voltage range. 

These deficiencies persuade us to adopt the original Ikezi relations in our simulations.  

3. Nonlinear Circuit Software Development For Transmission Line 

Because of its flexibility and proven track record with regard to computational accuracy and 
speed, the mathematical package Mathematica has been chosen for software support of the 
NLTL design. In order to reduce the learning-curve burden for future users, code written for this 
package will be translated into MathCad in 2010 if funding permits; meanwhile, the basic 
analysis of the NLTL performance benefits greatly from the feasibility of writing transparent 
software that is easily changed and physically motivated, and is tailored to the specifics of the 
NLTL problem rather than relying on more broadly applicable circuit software such as PSPICE 
which cannot be “tuned” internally, i.e., lack of access to source code. 

The approach to circuit modeling adopted here takes advantage of the simplicity of the NLTL 
circuit model which in turn is a consequence of the underlying parallel-plate waveguide 
geometry of the latter. A more complex propagation structure would require much more 
powerful mathematical methods to treat correctly. The modeling will be described in the 
following sections. 

3.1 Brown and Ikezi Circuits 

Both Brown and Ikezi adopt a simple series-parallel circuit model for the NLTL (see figure 4). 

 

Figure 4.  Ikezi-Brown NLTL circuit. 

A justification of this circuit structure will be given in a future report. The original circuit 
analyzed at General Atomics had no resistances; the various resistors shown here were added by 
Brown. The circuit is an oversimplification of the real NLTL; roughly speaking, the inductors 
represent the alumina layers, while the shunt lines represent the BST layers. This 
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oversimplification will eventually be removed in our modeling effort. The capacitors C are taken 
to be nonlinear elements. 

3.2 State Variables 

Before the advent of circuit simulators, it was well understood that nonlinear circuits must be 
approached as individual problems. This is in contrast to linear circuits, which allow a universal 
approach to computations based on straightforward matrix computations. Textbooks on circuit 
theory routinely introduce the idea of the “state” of a circuit, by which they mean a list of all the 
currents flowing through the various circuit components and all the voltage drops across them. 
When these quantities depend on time, as in an ac circuit, their values are obtained from 
differential equations. For the special case of linear circuits driven by sinusoidal sources, these 
differential equations reduce to algebraic equations that can easily be solved by matrix methods. 
Transient excitation, e.g., by pulses, require the original differential equations and numerical 
methods, as do circuits with nonlinear elements.  

It is important for numerical reasons that these differential equations all be first-order in time, 
i.e., if we describe the circuit state using a vector of currents and voltages 

 1 1 2 2 3 3, , , , , ,x V I V I V I


 , the numerical problem must be of the form 

  dx
F x

dt


  
 (1) 

where  F x
 

 is a vector function of the vector variable x


. Finding this function can be very 

difficult for a complicated circuit topology, since the circuit equations usually take the form 

 , 0
dx

x
dt

   
 

   (2) 

Numerical simulators like PSPICE routinely use a numerical engine (a “root solver”) that 
converts equation 2 into equation 1, which greatly increases execution time since it must be done 
at each time step. 

It is usually found that not all the currents and voltages are needed to describe the circuit 
dynamics. Thus, for a simple ac circuit like the one in figure 5: only two differential equations 
are needed, the currents through the two inductors. These currents are said to be the state 
variables of the circuit. In general, state variables are defined as the smallest set of electrical 
quantities that can completely specify the circuit performance.  
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Figure 5.  Two-inductor circuit. 

For more complex circuits there may be multiple choices for these state variables. While currents 
and voltages are appropriate for resistive elements, the natural variables for capacitors and 
inductors are actually charges and magnetic fluxes, and these quantities are often handy 
alternatives to currents and voltages, especially when the circuit does not immediately admit a 
description using first-order differential equations. 

A trivial example is a series LRC circuit (see figure 6). 

 

Figure 6.  Series LRC circuit. 

This circuit is usually treated by writing a single equation 
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where the voltage drops are given by 

  
0

1
                                    

t

L R C
dI

V L V RI V I d
dt C

      

This equation can be solved easily; however, from a numerical standpoint it has the problem that 
it has an integral in it, which means it is not a differential equation. Taking the derivative if 
equation 3 corrects this: 

 
2

0
2

1dV d I dI
L R I

dt dt Cdt
    

Although this is easily solved analytically, it is not first order and hence is problematic for 
numerical solution. A new choice of state variables fixes this: since the current is related to the 
charge on the capacitor by  

 
dQ

I
dt

  

we can write the following system of equations: 

 

0
1 1

dQ
I

dt
dI R

V I Q
dt L L LC



  
 

We now have a state vector 
Q

x
I

 
  
 


 to describe the circuit, and a vector function  

 
0

1 1

I
F x R

V I Q
L L LC

 
 
   
 

 
 

which a simulator can accept. 

It is fortunate that this choice of state variables also works for the NLTL. The appendix contains 
the derivation of the set of network equations for the Brown-Ikezi circuit for an NLTL with an 
arbitrary number of stages. This set of equations has been coded into Mathematica, and seems to 
work well – circuits with over a thousand stages have been simulated without numerical 
problems. 

3.3 The Method of Partial Charges 

In writing the network equations for this circuit, it is useful to generalize the state variables 
discussed above. As discussed in the appendix, a natural way to treat the NLTL circuit is by loop 
currents, as shown in the circuit picture at the beginning of this report. Now, the discussion in the 
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previous section suggests that we introduce a “charge” qn associated with each loop current, 
which we define as 

 n
n

dq
i

dt
  

This identifies a set of state variables    1 2 1 2,  ,  ,  ,  and  ,  ,  ,  , N L N Lq q q q i i i i   for the 

circuit, which a differential-equation solver can handle easily. Once we have the solution to the 
network equations, we can get the node voltages from the obvious relation 

  1n Cn n nV V r i i     

where VCn is the voltage drop across the nonlinear capacitor. As discussed in Report #1, we write 
this voltage in the form 

 1 3
Cn n nV C Q Q   

where the capacitor charge Qn = qn – qn+1 mimics the behavior of the shunt current. This is a true 
charge, arising from the flow of current into and out of the shunt branch. 

It is remarkable that when this decomposition of Qn into “partial charges” qn is made, 
preliminary simulation results reveal that the qn are unphysical even though their difference is 
not. When a NLTL is pulsed by a finite voltage signal, after a long time all the variables qn are 
nonzero and identical in value. This means that the currents and true charges on the capacitors 
must vanish, as they should in a dissipative network (i.e., one with resistors). This rather 
mysterious result has no impact on the modeling results, but it is an interesting consequence of 
the freedom to assign state variables to a nonlinear circuit. 

4. Experimental Fitting of Resistive Losses in the NLTL Based on Loss 
Tangent Data 

Accurate determination of losses in ferroelectric materials such as BST is extremely difficult, 
especially over a wide frequency range. Because such losses have a major impact on the 
performance of our NLTL, particular care was taken to identify a reasonable number for the 
single parameter we use to characterize these losses – the resistance r shown in the circuit (see 
figure 7). 
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Figure 7.  Placement of resistors in Brown-Ikezi NLTL circuit. 

Neither Brown nor Ikezi provide any information about this number, although Brown suggests 
that he used loss-tangent data to obtain a value for r (note that he uses the circuit shown above, 
just as we do). Because loss-tangent data does not directly translate into r, a procedure was 
developed for connecting these numbers, which will be described. All the simulations performed 
will be based on numbers obtained from this procedure. 

Frequency dependent measurements of BST parameters usually are based on capacitance 
measurements made on fabricated capacitor structures. This procedure is typified by the work of 
Rimai et al., (9), who used capacitors to measure dielectric constant and loss tangent as a 
function of frequency. They fitted their data to the following functional form:  
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where the parameters t, 0,  and  are used to fit the data. The values of these parameters 
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Now, the loss tangent is defined in most of the ferroelectric literature as follows: 
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so its values are obtained by finding 
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    

                        
       

                      
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and likewise 
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Then the loss tangent is given by 
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The expressions above are valid from dc to near-IR frequencies, but for microwave applications 
they are useful primarily at low frequencies. It is therefore convenient to take the following limit: 

 
 

0
2

0

0 tan
1t

 
  
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The problem with this expression is that, unlike a true resistance, this quantity depends linearly 
on frequency. 

In order to make contact with our NLTL, we look at the capacitance of a BST layer with area A 
and thickness h and this kind of dielectric constant, and compute the corresponding impedance of 
the layer: 
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A low-frequency expansion of Z gives: 
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and thus it is clear that Z is the impedance of a capacitance C0 and a resistance r connected in 
series. This justifies our circuit topology, which is gratifying, but more importantly it gives us a 
formula for r: 
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     

         

     
   


 



 

This simple result almost gets us where we want to be. However, in order for r to be constant we 
need the linear frequency dependence of tan   alluded to above. The variation of tan   observed 
in experiment is not encouraging: the following plots (see figure 8) are given in the paper by 
Vorobiev and Gevorgian (10): 



 

15 

 

Figure 8.  Loss tangent of a BST varactor vs. frequency at different  
temperatures without (a) and under 20 V dc bias (b). The  
dotted line represents the tan δ ~ ω1/3 power law.  
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These authors predict a peculiar dependence tan δ ~ ω1/3 for the loss tangent, which is not very 
useful for our applications. Since the data used to make these plots was unavailable, the crude 
approach of connecting the points  = 0, tan  = 0, and  = 40 GHz, tan  = 0.07 with a straight 
line was used, and its slope, along with a value of C0 appropriate for our structure, was inserted 

in the formula 
0

tan
r

C





. Using the endpoint data tan = .07 at f = 40 GHz gives  
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In all the simulations to date, Brown’s numbers have been used for the line dimensions. In his 
notation, A = wd = (2.5 cm)(.3cm) = .75 cm2, h = .55 cm, which gives 
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r
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As better data is obtained, this approach can be refined.  For now, however, the value obtained is 
suitable for simulations. 

5. Realistic Antenna Coupling Via an RC Circuit 

The code written in Mathematica mimics that of both Brown and Ikezi, i.e., it is based on a 
simple series-parallel circuit model for the NLTL (see figure 9). 
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Figure 9.  NLTL with simple resistive load. 

For the applications under study, this transmission line is excited by transient signals, i.e., pulses. 
Because pulse shapes are nonperiodic functions, there is a potential for a lossless transmission 
line to support signals with dc levels. However, a real antenna cannot pass a dc level, so that this 
problem is clearly mathematical rather than physical. To represent the antenna more realistically, 
a series capacitance can be included in the load, so the circuit becomes (see figure 10). 

 

Figure 10.  NLTL with RC circuit load to simulate antenna reactance. 

The inductor voltage drops are related to the loop currents as stated previously. In particular, at 
the last stage of the transmission line we still have 
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We can use these expressions to eliminate the voltages entirely, which gives us a set of network 
equations in terms of qn and in alone: 
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Then the set of network equations is completed by  

 

n
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N
N

dq
i
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i
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


 

and 

 L L NV R i  

It is no longer convenient to nondimensionalize these equations because there are two different 
capacitors in the system. 

6. Description of Mathematica Code 

The circuit equations are easily converted to Mathematica form, which has a universal 
numerical differential equation solver called NDSolve. The only challenging problem about 
setting up these equations is to generate the code for an arbitrary number of layers.  This can be 
done piecemeal by separating the equations into starting, intermediate, and ending segments. 
Each of these segments involves a set of equations, as shown above: 
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The resulting code looks as follows: 

eqs=Table[{ cd[i]’[tau]�(1+LM (s[i-
1][tau]^2+s[i][tau]^2+s[i+1][tau]^2-s[i-1][tau]s[i][tau]-
s[i][tau]s[i+1][tau]-s[i-1][tau]s[i+1][tau]))(s[i-1][tau]-
2s[i][tau]+s[i+1][tau])+Qc (cd[i-1][tau]-
2cd[i][tau]+cd[i+1][tau]),s[i]’[tau]�cd[i][tau]},{i,2,NN-1}]; 
eqst={cd[1]’[tau]�U0[tau]-(s[1][tau]-s[2][tau])-LM (s[1][tau]-
s[2][tau])^3-Qc (cd[1][tau]-cd[2][tau]),s[1]’[tau]�cd[1][tau]}; 
eqfn={cd[NN]’[tau]�(s[NN-1][tau]-s[NN][tau])+LM (s[NN-1][tau]-
s[NN][tau])^3-gamma s[NN][tau]+Qc cd[NN-1][tau]-
(Qc+QL)cd[NN][tau],s[NN]’[tau]�cd[NN][tau]}; 
eqp=Prepend[eqs,eqst]; 
equ=Flatten[Append[eqp,eqfn]]; 
init=Flatten[Table[{s[i][0]�0,cd[i][0]�0},{i,1,NN}]]; 
NDSL=Flatten[Prepend[init,equ]]; 
vlist=Flatten[Table[{s[i],cd[i]},{i,NN}]]; 
sol=NDSolve[NDSL,vlist,{tau,0,500},MaxSteps->Infinity]; 
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In this code, the function Table generates an arbitrary number of intermediate equations, which 
describe the interior of the transmission line. This set of equations (the intermediate segment) is 
concatenated with the starting and ending segments, and the full set is solved by the numerical 
routine. The result is a list of currents and charges for the circuit elements, which can be 
examined and plotted.  

The translation of this mathematical routine into a MatLab code will be straightforward, 
provided that MatLab has utilities which can generate equation lists for arbitrary numbers of 
layers. Implementing this transfer will be an important deliverable when work on this project 
resumes. 

7. Results of Preliminary Simulations 

To date, the numerical code has been exercised in ways that bring out the physics of the 
frequency translation rather than parameter extraction; this focus lends credence to the 
correctness of the code results, which can be nonintuitive. Indeed, much of the value of 
numerical work lies in creating intuition where none existed before. 

Simulations were performed using a series of pulses based on Ikezi’s normalized trapezoidal 
pulse shape. I chose this pulse shape because it incorporates simply three numbers that 
characterize any pulse: a rise time, a pulse “width”, and a fall time. Thus, consider a pulse of 
almost triangular shape (see figure 11). 

 

Figure 11.  Ikezi normalized short test pulse shape; time scale  
in NLTL low-frequency single-stage periods. 
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For a lossless NLTL, the time scale is measured by the period of the LC stages. In units of this 
period, the rise time of this pulse is 2 periods, its duration 1 period, and its fall time 5 periods. 
Let us choose L and C such that the period was 13 ns, and pulse the line with a 50 V signal, 
whose total pulse length is 104 ns. This low voltage should cause the line to respond like a linear 
filter. Plotting the time dependence of the voltage at the antenna end of the line gives (see figure 
12). 

 

Figure 12.  Low voltage response to figure 11 test pulse at end of NLTL. 

The oscillatory tails following the pulse front exhibit typical dispersive behavior of the line. 
When the pulse voltage is increased to 6 kV, the following plot results (see figure 13), which 
reveals the evolution of solitons. 

 

Figure 13.  High voltage response to figure 11 test pulse at end of NLTL; note solitons. 
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Increasing the 50 V pulse width to 10 periods (see figure 14). 

 

Figure 14.  Ikezi normalized long test pulse shape. 

Gives a linear response of the form (see figure 15). 

 

Figure 15.  Low voltage response to figure 14 test pulse at end of NLTL. 

The longer duration has separated the rise-time regions, producing spikes; these are not solitons, 
however, since the voltage is too low. Increasing the voltage to 5 kV shows multiple soliton 
generation. This suggests that long-duration pulses are better than short-duration ones for 
producing multiple solitons (see figure 16). 
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Figure 16.  High voltage response to figure 14 test pulse at end of NLTL; note solitons. 

8. Movies of NLTL Interior 

There are a number of features of these plots that require explanation. To this end, I have used a 
very handy feature of the Mathematica code to examine the interior of the NLTL as a pulse 
propagates within it. Because they exhibit only the output voltage, these plots treat the device as 
a “black box”, whose mysterious generation of alternating “bursts” of pulses is hard to 
understood. However, because the code simultaneously evaluates voltages and currents at every 
node, i.e., at every layer of the structure, these nodal quantities can be exhibited as “maps” of the 
voltage/current profile at each time step, which can be displayed as “movies” of the line interior.  

Multiple movies were made to examine the overall propagation of signals in the line. Two of 
these movies are included in this report, on a companion CDs for the hard copies; the data files 
they are based on are very large (~.5 Gb). Being able to examine the interior immediately reveals 
the origin of the bursts: the initial drive pulse propagates to the end of the line with a certain 
average velocity, disintegrating as it propagates. Once it reaches the end of the line, it is 
reflected. In the simulations I have made to date the antenna impedance is high, which makes the 
end of the line look like an open circuit. This causes the reflected signal to add to the incident 
signal, doubling the total amplitude. The first pulse burst marks the arrival of the distorted pulse 
at the end. The pulse then returns to the source, where the voltage is fixed, which makes the 
source look like a short circuit; this causes the reflected voltage to become negative. The 
negative reflected pulse then returns to the far end of the line, producing the negative-going 
second burst, which is once again doubled in magnitude. This cycle repeats until the pulse has 
given up all its energy to the load, in small increments because the load impedance is high. 

500 1000 1500 2000
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10000
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The first movie is of a long (120 ns) low-voltage (50 V) pulse, which changes shape as it 
propagates due purely to dispersion. Because the propagation velocity of a sinusoidal signal in a 
dispersive medium depends on frequency, the high-frequency components, which contribute to 
the rapid rise and fall times of the pulse, “dephase” during the propagation and produce the 
oscillations shown. Note that the frequency spectrum tends to redistribute energy to lower 
frequencies and not higher ones. The second movie is of a pulse with the same duration but much 
higher voltage (5 kV). The high-voltage pulse disintegrates into what appear to be solitons before 
reaching the end of the line. However, their shape is not stable – there is an unexpected 
oscillation in the soliton height. Compare these pulses with the superficially similar “ripples” in 
the low- voltage pulse, which are more or less stationary in shape. The origin of the high-voltage 
shape instability is unclear; while it is tempting to identify it with the “modulation instability” of 
soliton trains discussed in the literature, it could also be related to the discrete, i.e., “circuit”, 
nature of the model. Although this effect is small, and hence of no engineering importance, it is 
scientifically interesting, and cautionary given the tendency for any kind of pulse compression or 
amplification to be referred in the literature to as “soliton generation”. 

9. Systems Issues 

Although this modeling effort was preliminary, it is useful to bound the behavior of the NLTL 
based on optimal predictions of its performance. These predictions can only be based on the 
information available now, but they serve as a guide for future efforts. 

1. Maximum output power. Clearly we can use the breakdown field of the ferroelectric to 
estimate this quantity. In BST ceramics this field can approach 750 kV/cm. Assume that 
the line is a BST/alumina-filled parallel-plate waveguide, which propagates a TEM wave 

with electric and magnetic fields and E H
 

 perpendicular and parallel to the conducting 
walls of the guide (top and bottom), respectively. At high power levels the dielectric 
constant of the BST saturates, dropping from 5500 for a very good sample to about 120. 
Then for a uniform line made of lossless material the characteristic impedance at large 

signal levels is 377 / 377 / 120 34.4 ohmsCZ     . Since the power flux is given by 

the Poynting vector, the power flux at breakdown is 

   211 2 5

2

ˆ 34.4 7.5 10  V/cm

16.3 GW/cm

n E H EH Z E
      



  

 

Since the lines we fabricated had cross-sections of 2.5  .3 = .75 cm2, one of our lines 
could handle ~12 GW. Note, however, that the inevitable impedance mismatch with the 
antenna due to the nonlinearity will reduce this, probably by about 50%, so ~6 GW is a 
more realistic number. 



 

25 

2. Maximum frequency: this is hard to specify without referring to geometric, i.e., 
manufacturing issues. The modeling we did was based on a formula Ikezi quotes in one of 
his General Atomics papers (Ikezi et al., Appl. Phys. Lett. 58, 986 (1991)), derived from 
simulation data. The structure he starts with is a parallel-plate waveguide with BST sheets 
in it, i.e., the one described above. His initial design numbers involve the linear modes of 
this structure, which is in essence a band-stop filter. As such, it allows frequencies to 
propagate that are below a certain maximum frequency – he calls it b – and blocks signals 
with higher frequencies within a “stop band”. His nonlinear simulations reveal that this 
maximum frequency also determines the oscillation frequency osc from the empirical 
formula 

osc
10

0

1.25 1.5log
b

E

E

 
     

 

where the field E is the maximum field in the line, and E0 is a material-dependent constant 
with the dimensions of field; for BST this number is around 10 kV/cm. This frequency b 
depends mostly on the widths of the ferroelectric and dielectric slabs, and their linear 
dielectric constants. If we assume the ferroelectric is BST6-4, i.e., with 60% barium and 
40% strontium,  for his material is 5500 at room temperature, i.e., 20 °C (this is an 
optimistic number); at lower temperatures it is higher (the Curie temperature is 0 °C), but 
clearly room temperature is appropriate for our application. Given the volume constraints 
imposed by the latter, the optimal transmission line length is probably about 15 cm. To 
increase b, we want to make the layers as thin as possible. However, we found that layers 
thinner than .1 mm are too fragile to handle, so let us assume the ferroelectric layers are .1 
mm thick. If we have 15 cm to fit the transmission line into the weapon, and we want 100 
layers of each kind of material, this implies a total thickness of ferroelectric of 1 cm, 
leaving 14 cm for dielectric, or 1.4 mm per layer. Then using the formula above along with 
Ikezi’s linear-design formula (equation 3 of the Applied Physics paper mentioned above), 
we find the resulting bandstop filter corresponds to an osc of 3.4 GHz. 

3. Pulse repetition frequency. This can be estimated based on the observation that in this type 
of line, impedance mismatch with the antenna is inevitable due to the nonlinearity. This in 
turn gives rise to reflections, which return to the source and interfere with subsequent 
pulses. The safe thing to do is to wait until all these have died away. If we define “died 
away” to mean that only 1% of the original power is left after N reflections, and the 
reflected power is 50% = .5 of the incident power for each reflection, we are saying that 
(.5)N = .01, or N  = between 6 and 7. Now, the maximum propagation velocity of a pulse in 
the transmission line is the velocity of light for the reduced (saturated) high-field dielectric 
constant, which is 120 for BST at high fields. This velocity is 2.7  109 cm/s, so that for a 
15 cm line we need 7 round trips or a distance of 210 cm, which takes 7.7  10–8 s = 77 ns. 
Then the PRF is the reciprocal of this, or 13 MHz. 
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Now, suppose we have a train of 30 pulses coming at a rate of 3.4 GHz. Then the time 
between pulses is .29 ns and hence, the total duration of the pulse train is 30  .29 = 8.8 ns. 
This implies a duty cycle of 11%. Then the time it takes for the first pulse to hit the antenna 
is 5.6 ns, and the time to return to the source is 11.1 ns. Since this is greater than 8.8 ns, all 
the pulses in the train will be transmitted to the antenna before the first reflected pulse 
returns to the source. Since the power is 6 GW, over a period of 8.8 ns the pulse train 
delivers 53 J to be radiated by the antenna. If the pulser can supply a kilojoule of energy, 
19 of these pulse trains can be generated for a total dwell time of 1.46 s. 

Summary: 
 
Max power:     6 GW 
Max frequency    3.4 GHz 
PRF      13 MHz 
Time between pulses    290 ps 
No. of cycles of 3.4 GHz/train  30 
Duration of pulse train   8.8 ns 
Energy/pulse     53 J 
No. of pulse trains in dwell   19 
Dwell time     1.46 s 

 

10. Conclusions 

The results of this work validate the previous work of Ikezi and, to a lesser extent, Brown, and 
show that we now have a useful numerical tool for studying NLTL and guiding efforts to 
fabricate them. Future work will center on parameter studies for designing and optimizing the 
performance of these devices as HPM sources. 
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Appendix.  Brown-Ikezi Network Equations 

The circuit is defined using Kirchhoff’s law in the usual way, based on loop currents. Source and 
load resistances are introduced to simulate coupling to the PFN and antenna (see figure A-1). 

 

Figure A-1.  Brown-Ikezi NLTL circuit. 

The inductor voltage drops are related to the loop currents as follows: 
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For the shunt branches we introduce the nonlinear function   1 3Q C Q Q   , where C is the 

linear term in the capacitance and  measures the circuit nonlinearity. As discussed in the text, 

we introduce “partial charges” qn related to the physical currents by n
n

dq
i

dt
 .  This gives the 

following expressions for the node voltages: 
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We can use these expressions to eliminate the voltages entirely, which gives us a set of network 
equations in terms of qn and in alone: 
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It is useful to further reduce the terms involving the function  Q  as follows: 
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which we rewrite as follows: 
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Then the final set of network equations is  
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where the state variables are    1 2 1 2, ,  , ,  and , ,  , , N L N Lq q q q i i i i   
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Dimensionless form: let 2
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Setting 0 0 0 0 0 0 0 ,  ,  , C C in in in L L Lt rC Q R C Q R C Q                   gives 

 

       

     

     

     

1
0 0 1 2 0 1 2 1 2

1
2 1 0 2 1 2 1

1 1 0 1 1 1 1

1
1 2 0 1 2 1 2

,

, , 2 2

, , 2 2

, , 2 2

S in C

n
n n n n n n C n n n

n
n n n n n n C n n n

n
n n n n n n C n n n

di
CV q q q q Q Q i Q iCd

di
q q q q q q Q i i i

d
di

q q q q q q Q i i i
d
di

q q q q q q Q i i i
d


     

     


     

        


       


       


       












     

     

1 0 1 1

0 0

, , 2 2

,

N
N N L N N L N N L

L
N L N L C N L C L

di
q q q q q q Q i i iCd

di
q q q q Q i Q Q i

d

         


      







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and 3 2
SC V    measures the system nonlinearity. 



 

34 

NO. OF 
COPIES ORGANIZATION 

 1 ADMNSTR 
 ELEC DEFNS TECHL INFO CTR 
  ATTN  DTIC OCP 
  8725 JOHN J KINGMAN RD STE 0944 
  FT BELVOIR VA 22060-6218 

 1 HC DARPA 
  ATTN  IXO  S  WELBY 
  3701 N FAIRFAX DR 
  ARLINGTON VA 22203-1714 

 1 CD OFC OF THE SECY OF DEFNS 
  ATTN  ODDRE (R&AT) 
  THE PENTAGON 
  WASHINGTON DC 20301-3080 

 1 HC US ARMY RSRCH DEV AND ENGRG  
  CMND 
  ARMAMENT RSRCH DEV & ENGRG  
  CTR ARMAMENT ENGRG &  
  TECHNLGY CTR 
  ATTN  AMSRD AAR AEF T  J  MATTS 
  BLDG 305 
  ABERDEEN PROVING GROUND MD  
  21005-5001 

 1 HC PM TIMS, PROFILER (MMS-P)  
  AN/TMQ-52 
  ATTN  B  GRIFFIES  
  BUILDING 563 
  FT MONMOUTH NJ 07703 

 1 HC US ARMY ARDEC 
  ATTN  AMSRD AAR AEE P   
  C  HAINES 
  BLDG 25 
  PICATINNY ARSENAL NJ 07806-5000 

 1 HC US ARMY ARDEC 
  ATTN  AMSRD AAR AEM C   
  A  MARSTON 
  BLDG 61S 
  PICATINNY ARSENAL NJ 07806-5000 

 3 HCS US ARMY ARDEC 
  ATTN  AMSRD AAR AEM L   
  S  GILMAN 
  ATTN  AMSRD AAR AEP F   
  O  NGUYEN 
  ATTN  AMSRD AAR AEP F  S  SHRI 
  BLDG 65S 
  PICATINNY ARSENAL NJ 07806-5000 

 1 HC US ARMY INFO SYS ENGRG CMND 
  ATTN  AMSEL IE TD  A  RIVERA 
  FT HUACHUCA AZ 85613-5300 

NO. OF 
COPIES ORGANIZATION 

 1 HC COMMANDER 
  US ARMY RDECOM 
  ATTN  AMSRD AMR   
  W C  MCCORKLE 
  5400 FOWLER RD 
  REDSTONE ARSENAL AL 35898-5000 

 1 HC US GOVERNMENT PRINT OFF 
  DEPOSITORY RECEIVING SECTION 
  ATTN  MAIL STOP IDAD  J  TATE 
  732 NORTH CAPITOL ST NW 
  WASHINGTON DC 20402 

 1 HC DEPT OF PHYSICS AND GEOLOGY 
  UNIV OF TEXAS - PAN AMERICAN 
  ATTN  S  TIDROW 
  1201 W UNIVERSITY DR 
  EDINBURG TX 78541 

 1 HC US ARMY RSRCH LAB 
  ATTN  RDRL CIM G  T  LANDFRIED 
  BLDG 4600 
  ABERDEEN PROVING GROUND MD  
  21005-5066 

25 HCS US ARMY RSRCH LAB 
  ATTN  IMNE ALC HRR  
  MAIL & RECORDS MGMT 
  ATTN  RDRL CIM L TECHL LIB 
  ATTN  RDRL CIM P TECHL PUB 
  ATTN  RDRL SE  J  PELLEGRINO 
  ATTN  RDRL SED E  D   KATSIS 
  ATTN  RDRL SED E  S  HENRIQUEZ 
  ATTN  RDRL SED M  J  TATUM 
  ATTN  RDRL SED P  K  JONES 
  ATTN  RDRL SEE I  S  SVENSSON 
  ATTN  RDRL SEE O  W M  GOLDING 
  ATTN  RDRL SER E  E  VIVEIROS 
  ATTN  RDRL SER E  F  CROWNE 
  (5 COPIES) 
  ATTN  RDRL SER E  R  DEL ROSARIO 
  ATTN  RDRL SER  J  MAIT 
  ATTN  RDRL SER L  D  POTREPKA 
  ATTN  RDRL SER L  J  PULSKAMP 
  ATTN  RDRL SER L  M  DUBEY 
  ATTN  RDRL SER L  R  POLCAWICH 
  ATTN  RDRL SER  P  AMIRTHARAJ 
  ATTN  RDRL SER U  C  FAZI 
  ATTN  RDRL SES  M  PATTERSON 
  ADELPHI MD 20783-1197 
 
TOTAL: 40  (1 ELEC, 1 CD, 38 HCS) 


