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1. Summary 

This report details my study of the non-linear plasma oscillations in a semiconductor conduction 
channel controlled by a gate. The analysis is based on the hydrodynamic equations derived from 
the Boltzmann equation for a parabolic conduction band. The hydrodynamic approximation 
derived here includes the effects of viscosity, finite mobility, and temperature gradients in the 
channel. I evaluated the electron-electron collision limited mean free path as a function of 
temperature and gate potential. When this path is much smaller than the wavelength of the 
density variations, the electron gas in the channel can be treated as a two-dimensional fluid. The 
flow is described by the Navier-Stokes equation and the heat conduction equation. The quality of 
the plasma resonance is limited by the electron mobility and the viscosity of the electron fluid. 
Using the relaxation time approximation I evaluated the hydrodynamic transport coefficients, 
and showed that at low temperatures in high mobility channels the quality factor of the plasma 
resonance is limited by the viscosity. The hydrodynamic nonlinearities in the gated channel 
subjected to a time-harmonic signal, induce a constant drain-to-source voltage with a resonant 
dependence on the frequency. This effect can be used for the detection of electromagnetic 
radiation by the Dyakonov-Shur detector. I evaluated the detector response for particular 
dimensions and values of mobility at which plasma resonances are in the terahertz range. I also 
evaluated the quality of the plasma resonance as a function of temperature, and showed how the 
viscosity effects limit the quality factor at low temperatures. 

2. Introduction 

The conduction channel of a semiconductor Field Effect Transistor (FET) or a heterostructure 
High Electron Mobility Transistor (HEMT) can act as a plasma wave resonator for density 
oscillations in quasi-two-dimensional (2D) electron gas. The plasma wave here refers to electron 
density excitation, possible at frequencies significantly higher than the FET cut-off frequency in 
a short channel device. The hydrodynamic model predicts a resonance response to 
electromagnetic radiation at the plasma oscillation frequency which can be used for detection, 
mixing, and frequency multiplication in the terahertz range (1, 2). In particular, the 
hydrodynamic nonlinearities produce a constant source-to-drain voltage when gate-to-channel 
voltage has a time-harmonic component. In the Dyakonov-Shur detector, a short channel HEMT 
is used for the resonant tunable detection of terahertz radiation. The non-linear plasma response 
has been observed in InGaAs (3, 4) and GaN (5–8) HEMTs, in the frequency range from 0.2 to 
2.5 THz. The emission of radiation is also possible due to amplification of plasma oscillations 
upon reflection of plasma waves at the channel lateral boundaries, which has been shown to lead 
to plasma instability under certain boundary conditions (9). For recent reviews of the 
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experimental efforts in detection and emission of THz radiation by using such submicron 
channels see references 7 and 9. The results show that short channel FETs can be used both for 
tunable resonant and broadband detection of electromagnetic radiation in THz and sub-THz 
range. In addition, a resonant frequency response was also studied in a few GHz range using a 
180 µm long channel GaAs HEMT (10).  

The plasma waves in the gated two-dimensional channels have linear dispersion law (1)  

 

 g th

pl

e U U
ω (q) sq q

m


 

, (1) 

where s is the plasma wave velocity, q is the in-plane wave vector, e is the electron charge, Ug is 
the gate voltage, Uth is the threshold voltage for the formation of the conduction channel, and m 
is the effective electron mass.  For example, if gate voltage is 1 V above the threshold, the 
plasma wave velocity in GaAs and GaN channels s ~ 108cm/s, usually much higher than the 
electron drift velocity. Note that the dispersion law in the gated channel is different from the 
dispersion law in the un-gated two-dimensional electron gas (ungated parts of FET) with sheet 
density n0, ω(q) = (qe2n0/2m)1/2 .  

In a FET channel with length L, figure 1, the eigen-frequencies of the plasma standing waves are 
odd multiples of the fundamental plasma frequency, given by  

 
 g th

0

e U Uπ
ω

2L m


 . (2) 

 

Figure 1.  Schematic structure of a conduction channel in a FET.  The gate length L is much larger than the 
mean free path of electron-electron collisions λee but smaller than the mean free path of electron-
phonon and electron-impurity scattering. 

If the mean free path of electron-electron collisions λee is much smaller than the channel length 
L, the plasma transport in the channel can be studied within the hydrodynamic model of the 
electron density waves. If the momentum relaxation time τp, determined by electron-phonon and 
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electron-impurity collisions is such that ω0τp >> 1, the FET can operate as a resonant detector 
tunable by the gate voltage. If ω0τp < 1, the detector response will be broadband. The wavelength 
of the incoming electromagnetic radiation in the terahertz range is much larger than the device 
dimensions, and the original proposal of the Dyakonov-Shur detector in reference 1 included an 
antenna structure in order to collect the radiation. In a design with a slot antenna, an ac voltage 
Uac is induced between source and gate contacts as shown in figure 2(a). In a design with a bow 
tie antenna, an ac current Iac is induced between source and gate, figure 2(b). In the resent 
realizations of the HEMT based detector, references 3–7, the metal pads of the electrodes 
perform the role of the antenna. The gate voltage Ug is tuned to control the electron density in the 
gated part of the channel, thus allowing the resonant plasma frequency to vary through the 
frequency of the incoming signal. 

 

Figure 2.  Schematic geometry of FET operating in detector mode for (a) induced ac voltage and (b) induced ac 
current.  

The analysis based on hydrodynamic model of electron gas in the conduction channel (1) shows 
that the detector response ΔU, the constant source-to-drain voltage induced by the incoming ac 
signal of amplitude Ua and circular frequency ω in the configuration shown in figure 2(a), is 
given by  
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  
2

0 0

UΔU
f

U U
a 

 
  
 

, (3) 

where U0=Ug-Uth. In high mobility short channels such that sτp/L >>1, the function f(ω) has a 
resonant structure.  The detector response in the above equation is due to non-linear plasma 
response in the channel, as will be shown in some detail later in the report. The propagation of 
the plasma waves in the channel with high density of electrons is much faster than electron drift 
transport. The non-linear properties of these collective excitations allow the detector’s response 
at frequencies considerably higher than the FET cutoff frequency, determined by the electrons 
ballistic transport.  The width of the resonance is determined by the momentum relaxation rate 
1/τp that limits the electron mobility, and by the hydrodynamic viscosity in the channel. In the 
published analysis of the non-linear plasma waves in FET channels the kinematic viscosity 
coefficient ν at low temperature was assumed to be given by a temperature independent value 
ħ/m, about 15 cm2/s for GaAs (1, 9).  

Below I will derive the hydrodynamic equations from the quasi-classical Boltzmann equation 
using relaxation time approximation for the collision integrals and obtain the temperature 
dependence of the hydrodynamic transport coefficients, i.e., viscosity and heat conductivity. 
These equations will be derived as balance equations starting with a non-equilibrium Fermi-
Dirac distribution as a zero order term in the expansion of the distribution function in orders of 
the Knudsen number, the ratio of the mean free path to the characteristic length of density 
variations (11). The first order corrections to the pressure tensor will be obtained using the 
electron-electron mean free path, and the viscosity terms will be obtained. The non-linear terms 
in the hydrodynamic equations lead to non-linear effects in the plasma wave propagation in the 
channel. In particular, a constant voltage (zero harmonic term) will develop in the plasma 
response to a time-harmonic perturbation. I will apply a perturbation analysis to the evaluation of 
this non-linear response, evaluate the response function for different values of mobility and 
viscosity, and estimate the detector response. It will be shown that at low temperatures in high 
mobility samples, the viscosity is the main physical mechanism that limits the quality of the 
plasma resonance. I will include the heat transfer equation in the model and evaluate temperature 
variations in the conduction channel for relevant values of physical parameters. 

3. Quasi-classical Approximation 

Let r and p be 2D position and momentum and v is 2D velocity v = vFp/p.  The quasi-classical 
Boltzmann transport equation for the distribution function f(r,p,t) of electrons in the 2D 
conduction channel (z = 0) is 

 
ee R

f f f
f e U f

t t t

                   
r r pv , (4) 
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where U(r,z,t) is the electric potential to be determined self-consistently, e is the charge of 
electron, the first term on the right hand side is the collision integral due to electron-electron 
scattering, the second term is the collision integral due to electron-impurity and electron-phonon 
scatterings. The electron density n(r,t) in the channel is obtained from the distribution function as 

 
 

2s
2

g
n( ,t) d pf( , ,t)

2π
 r r p


, (5) 

where gs =2 is spin degeneracy factor. Electric potential is found from the Poisson equation (in 
SI units) 

 
2

2
2

s 0

U e
U δ(z)n( )

z ε ε


  

r r , (6) 

where εs is the value of the background static dielectric constant and ε0 = 8.854×10–12 F/m. If the 
gate contact is at z = d, the boundary condition is a zero tangential field at z =d. In the limit of 
the infinitely long channel, the Poisson equation can be solved by Fourier transformation, 

 2U( z) d re U( z)i   q rq, r,  (7) 

with the result 

 
 s 0

en( )
U( ,0)

ε ε q 1 coth(qd)
 


q

q . (8) 

In the long wave-length limit qd → 0, one obtains the “gradual channel” approximation (9) U = 
en/C, where capacitance per unit area C = εsε0/d.  

In an equilibrium state with zero drift velocity, f(r,p,t) is a Fermi-Dirac distribution defined by 
temperature T and chemical potential ζ. We assume a parabolic conduction band and obtain from 
the equation (∂f/∂t)ee = 0 (11): 

 
2

0

B

1
( m )

f ( ) 1 exp ξ
2k T


  

    
  

p u
p  (9) 

where ξ is the chemical potential ζ divided by temperature, ξ = ζ/kBT, with the chemical potential 
determined by the normalization equation 5 with f replaced by f0: 

  F BE /k T
Bς k T ln e 1  . (10) 

At low temperature f0 → θ(p-pF) where pF is Fermi momentum. We also define Fermi wave 
vector kF = pF/ and Fermi energy EF = ζ(T=0). From the normalization at zero temperature, kF = 

(2πn)1/2 and 
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2

F

π n
E

m



. (11) 

It is important to note the applicability of the quasi-classical kinetics, i.e., equation 4 at low 
temperatutes. The spatial condition is for the wave-length of the applied field to be much larger 
than the de Broglie wavelength of electrons: 1/k >> /pF, while the momentum spread should be 

much smaller than the spread of the distribution f0(p): k << T/vF where vF= pF/m. These 

conditions and the time domain condition are equivalent to FBF E  ω  T,kkv   .  Taking k 

~ 1/L, the spatial condition becomes  

 B F Fk T 2E /Lk  (12) 

As examples consider GaAs and GaN channels with gate to channel distance d = 35 nm. For the 
GaAs channel m/m0 = 0.067 and εs = 12.5. The gate to channel capacitance per unit area C = 
3.16×10–3 F/m2, and electron density n = U0C/e where U0 = Ug – Uth. At U0 = 0.5 V we obtain n 
≈ 1×1012 1/cm2, EF ≈ 35 meV, vF = 4.32 ×107 cm/s. If L = 0.2 µm, equation 12 requires T >> 16 
K. For the GaN channel m/m0 = 0.2 and εs =8.9. Then C = 2.25×10–3 F/m2. At U0 = 1 V we 
obtain n ≈ 1.4×1012 1/cm2, EF ≈ 16.8 meV, vF = 1.72×107 cm/s. If L = 0.2 µm, equation 12 
requires T >> 7 K. Thus the validity of quasi-classical theory for very short channels requires 
temperatures considerably higher than 10 K. In the terahertz range f ~ 1 THz, ω ~ 4 meV, and 

the frequency restriction is fulfilled. 

Considering linear response to a harmonic electrical field (11), we obtain the quasi-classical 
dielectric function in a two-dimensional gated channel: 

 
   

F B

0
pE /k T

2 22 2
0

f Θ(ω qp/m) Θ(qp/m ω)
ε(q,ω) 1 αK(q) 1 e ω dp

p ω qp/m qp/m ω




                      
  (13) 

where Θ(ω) is the step function, 

 
 

1
K(q)

qd 1 coth(qd)



, (14) 

 
2

2
0 s

e md
α

πε ε



. (15) 

At temperatures such that kBT < EF/2, exp(–EF/kBT) is small and the integral in equation 13 can 
be simplified to obtain an approximation 

       
F B 0 T 0 TE /k T

2 2 2 2 2 2
0 0

ωΘ ω qv 1-G Θ qv ω G
ε(q,ω) 1 αK(q) 1 e 1

ω q v q v ω

i
        

   
 (16) 
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where  

 

2

F B2
F B

1
mω

E /k T
2kE /k T

TG (q,ω) 1 e e


 

    
 
   
 
 

 (17) 

  F BE /k TB
0 F

F

k T
v v 1 ln 1 e

E
 

   
 

 (18) 

The plasmon dispersion is obtained from the equation Re{ε(k,ωpl)} = 0. Then, if the factors of 
exp(–EF/kBT) are neglected, we obtain 

 

  

F
pl

2

kv
ω (k)

1
1

1 1/αK k






 (19) 

In the examples considered above, α is much larger than 1, namely 14.1 and 59.4 for GaAs and 
GaN channels respectively. For α >>1 and kd ≤ 1, equation 16 can be replaced by 

  pl F

α
ω (k) kv K k

2
 . (20) 

In the long wave length limit, kd <<1, we obtain the linear dispersion of the equation 1 ωpl(k) = 
sk with s = (eU0/m)1/2, where U0 = Ug-Uth. It follows from equation 19 that ωpl > kvF  and 
Im{ε(k,ωpl)}≈ 0. Therefore, in the quasi-classical approximation the Landau damping (11), a 
resonant transfer of plasma energy to single particle excitations, is small in the gated channel for 
temperatures below EF/2. 

4. Electron-electron Scattering Rate and Mean Free Path in Two-
dimensional Gated Channels 

The hydrodynamic approximation can be derived from the kinetic equation assuming a 
sufficiently high electron density, i.e., the mean free path of the electron-electron (e-e) collisions 
λee should be much smaller than the channel length L. In this work I derive the Navier-Stokes 
equation from the quasi-classical Boltzmann equation (12, 13). The hydrodynamic equations can 
also be derived by statistical averaging of the Heisenberg equations of motion for density and 
momentum operators (14). In this section I evaluate the mean free path defined by electron-
electron collisions, which will determine the limits of validity of the hydrodynamic equations. 
The electron-electron scattering rate will be evaluated from the Fermi Golden Rule as done for 
the doped channels (15, 16), using quasi-classical approximation for the dielectric function.  
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  
 

2

0 0 0 0 0 0
kσ k-q,σ p q,σ kσ k-q,σ p q,σ

, , p p q

p q k q p k

v(q)1 2
f (1-f )(1 f ) (1-f )f f

( , ) ε q,(E E )/

δ E E E E

ee 


      

 

 

     

   


k qp    (21) 

where index σ refers to electron spin, E(q) = ħ2q2/2m, v(q) is the Coulomb interaction in the 
gated channel: 

 
 

2

s 0

e
v(q)

ε ε q 1 coth(qd)



, (22) 

and the exchange terms where neglected in the interaction matrix element. The inclusion of the 
exchange terms will increase the scattering rates only by a modest amount (17). In terms of the 
many-body perturbation theory, the first term in the square brackets in equation 21 represents the 
scattering of quasi-particles and the second term represents the scattering of quasi-holes (defined 
with respect to the Fermi surface of the electron gas in the conduction band). Summation over k 
and σ in equation 21 produces the imaginary part of susceptibility (15) and after converting 
summation to integration, we obtain 

 

π2
p p q p q

2 2
ee s 0 B B0 0

p p q

E E ς E1 e 1
dq dθ coth tanh

τ (p) 4π ε ε 1 coth(qd) 2 k T 2 k T

1
Im

ε(q,(E E )/ )


 



     
          




   



 (23) 

where ζ is the chemical potential given in equation 10. 

The mean free path for an electron with wave-vector k is obtained as λ(k) = vkτee(k) where vk = 
ħk/m and τee is the inverse of the e-e scattering rate in equation 21. The distribution averaged 
value of the mean free path, after summing over the spin directions, is defined as  

 0 0
p,σ 0

σ p,σ 0
σ

1 1
λ f λ(p) dkkf (k)λ(k)

f πn



  p
p

 (24) 

where p denotes the momentum while k denotes  the  wave-vector, and f0(k) is taken at zero drift 
velocity. The mean free path obtained in this way is shown in figure 3 as a function of 
temperature, defined in units of the Fermi temperature TF = EF/kB, for the GaAs channel. The 
mean free path for the GaN channel when plotted as function of T/TF, is similar. It follows from 
figure 3 that for channel of length L = 0.2 µm, the hydrodynamic approximation for transport can 
be used for T/TF > 0.1.  In our examples the Fermi temperature is 405 K for GaAs and 195 K for 
GaN channels. 
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Figure 3.  The electron mean free path λee determined by  
the electron-electron scattering is shown as a  
function of temperature for the GaAs channel,  
when the gate voltage above the threshold value  
is U0 = 0.5 V.  

5. Derivation of the Hydrodynamic Equations and the Transport Coefficients 

The hydrodynamic equations can be derived from the Boltzmann transport equation as balance 
equations for conserved quantities (12). The hydrodynamic variables are plasma density n(r,t), 

given in equation 5, macroscopic velocity u(r,t), and internal energy ε(r,t). The last two are 

obtained by an ensemble averaging of the corresponding microscopic variables: 

  /2m, 2ε uvvu  .  For a parabolic conduction band assumed here, the microscopic 

velocity and momentum are linearly related, /mE(p) pv p  .  The collision integral in 

equation 4 is given by (11)  

 




1
2 3 4 3 4 1 2 3 4 1 2

1 2 3 4 1 2 3 4 3 4 1 2

( )
( ) ( ) ( )[1 ( )][1 ( )]

( ) ( ) ( )[1 ( )][1 ( )] ( )
ee

f
d d d W f f f f

t

W f f f f 

      
     


p

p p p p ,p ,p ,p p p p p

p ,p ,p ,p p p p p p p p p

, (25) 

 
2

1 2 3 4 1 2 3 4

2
( ) ( )W M E E E E

    p ,p ,p ,p


 , 

where M is the Coulomb interaction matrix element. The average of a microscopic variable Q is 
defined as  

 
2

2

d pf( , ,t)

d pf( , ,t)

Q
Q Q  


r p

r p
. (26) 
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 The balance equations for the density (or charge), momentum, and energy are obtained by 
setting Q = 1, mv, and m(v-u)2/2 respectively.  The balance equation for the density is obtained 
in the form of  

 
n

(n ) 0
t


  


u . (27) 

The electron-electron collision integral does not contribute because of charge, momentum and 
energy conservation in equation 25 (12). For the contribution of the second collision integral in 
equation 1, I will use the relaxation approximation (14), with the relaxation time τ being an 
inverse of the combined rate of electron-impurity and electro-phonon scatterings. It can be 
obtained from measured electron mobility in the channel. This gives a friction term in the 
momentum balance equation: 

   e 1
U

t m τ n


        


u u

u u


 (28) 

where the pressure tensor was defined: 

 ij j j i iΠ n(v u )(v u )   . (29) 

The energy balance equation takes the form  

 ij ij
c

n n Π Λ
t t

ε εε          
u q  (30) 

where q is the vector heat flux defined as  

 2mn
( )( )

2
  q v u v u , (31) 

the velocity tensor is defined as  

 j i
ij

i j

u um
Λ

2 x x

  
     

, (32) 

and the internal energy collision integral (∂ε/∂t)c is related to the energy collision integral 

(∂W/∂t)c where the energy W = ε + mu2/2: 

 
2

c c

W mu

t t τ

ε            
. (33) 

The zero-order approximation to the balance equations is obtained by replacing the distribution 
function f by its equilibrium form in equation 9 where the density, drift velocity and temperature 
are functions of position and time. To this order we obtain the energy in terms of temperature 
and density: 
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 

 
B 1

0

k TF ξ

F ξ
ε  , (34) 

where the Fermi integrals Fm are defined as  

 
0

m

m
x

F (y) dx
1 exp(x y)




  . (35) 

In the zero-order approximation the heat flux vanishes, q(0) = 0, while the pressure tensor is 
diagonal, Π(0)

ij = δijP, where the scalar pressure is given by  

 
 

 
B 1

0

nk TF ξn
P

m F ξ

ε
  . (36) 

In this order the momentum balance equation gives the hydrodynamic Euler equation (18). 
Together with the density balance equation, it was used to predict the nonlinear response of FET 
to the harmonic perturbation (1, 2, 9).  The energy balance equation can be put in form of 
equation for electron temperature. Then, use the energy units and define θ(r,t) ≡ kBT(r,t). Define 

the heat capacity as cv ≡ (∂ε/∂θ)n = (∂ε/∂T)n/kB and evaluate it as the heat capacity of the two-

dimensional ideal Fermi gas: 

 
 

 F

1 F
v E /θ

F

2θF ξ E
c

E θ 1 e
 


 (37) 

where EF is a function of n, see equation 11.  Now, writing  

 
θ n

n θ
n θ

ε εε                
 

and using equations 27 and 34 I obtain the equation for the electron temperature distribution. 
Thus, to zero-order we obtain the Euler equation and the temperature distribution equation: 

   e 1
U P 0

t m n τ


       


u u

u u  (38) 

  
2

cv v

θ 1 W mu
θ

t c t c τ

        
u

.

 (39) 

From equations 10 and 36 the hydrostatic pressure can be obtained as  

 
 2

1
2

θ F ξ
P

π



. (40) 

The effects of viscosity and thermal conductivity appear in the next order of expansion in 
Knudsen number (12). Correspondingly, write the distribution function as   
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 0 (1)f( , ,t) f ( , ,t) f ( , ,t) r v r v r v  (41) 

A systematic expansion of the classical distribution function for a parabolic band exists in the 
form of the Chapman-Enskog expansion (12). Here I will use a relaxation time approximation 
for the first order correction: 

 
(1)

eeee

f f

t τ

     
. (42) 

Then, from the Boltzmann equation with only the electron-electron scattering included, one 
obtains to this order 

 
0

(1) 0 0
ee r r p

f
f τ v f e U f

t

 
        

 (43) 

with t)),θ(t),,(t),,(n(ff 00 rrur  , where n(r,t) and u(r,t) are solutions of the zero order 

hydrodynamic equations. Without the relaxation time approximation, one has to solve the 
linearized Boltzmann equation in order to obtain the transport coefficients in the first order of the 
expansion in Knudsen number (11). In case of fermions in ungated two-dimensional channel, an 
analytical solution is possible in the low temperature limit (19). A much simpler approximation 
in equation 42 allows one to obtain an estimate of the hydrodynamic transport coefficients in the 
wider temperature range while giving the correct temperature dependence. The derivation is 
outlined below. After taking the partial derivatives, the first order contributions are evaluated at 
u = 0 and we obtain  

  (1) 0 0 2 21
ee i j ij ij2u 0

F

2Fm 1 1
f τ (p) f 1 f w θ w w δ w Λ

2θ E θ 2

                    
w  (44) 

where w ≡ v – u. Using this in the evaluation of the ensemble averages in equations 29 and 31, 
one obtains the pressure tensor and the heat flow to the first order. The pressure tensor can be 
written as a sum of a unit tensor and a traceless symmetric tensor (18), Πij = δijP + Π(1)

ij. Let us 
define the following integrals over the momentum dependent relaxation time: 

 m 0 0F
m eem 1

F 0

E
J (T) dkk τ (k)f (k) 1 f (k)

k




   

 (45) 

and obtain the first order term in the pressure tensor in the form 

 (1)
ij ij ij

2νn m
Π Λ δ

m 2
      
 

u  (46) 

where the kinematic viscosity coefficient ν is given by  
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 F
5

T
ν J (T)

m T



. (47) 

Notice that the second viscosity (18) does not appear in the pressure tensor in this order, as also 
is the case in the classical statistics with a parabolic energy band (11).  

The heat flow is obtained from equations 31 and 44, and to the first order it is proportional to the 
temperature gradient, as also is the case in the classical fluid: 

 κ θ  q , (48) 

where the coefficient of  thermal conductivity κ is given by  

 
2

7 F
1 52

J Tκ 2
2FJ

n m T

 
  

 


. (49) 

Using equations 46 and 48, one obtains the equations of the viscous hydrodynamic model for the 
electron fluid in the gated channel as the two-dimensional density balance equation, the Navier-
Stokes equation, and the heat equation. Omitting the gradients of the transport coefficients, the 
equations are: 

 
n

(n ) 0
t


  


u  (50) 

   2e 1
U P ν 0

t m n τ


         


u u

u u u  (51) 

  
2

2
j2 i k

ij
v v j i k v vc

uu uθ χ mν 1 W mu
θ θ δ

t c 2c x x x c t c τ

     
                  

u , (52) 

where we defined the coefficient χ ≡ κ/n, which has the same units as kinematic viscosity. This 
coefficient divided by the heat capacity, χ/cv, is the thermometric conductivity (18).  The 
coefficients of viscosity and thermal conductivity for GaAs and GaN channels are shown in 
figure 4 as functions of temperature, T/TF. 
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Figure 4.  Coefficients of kinematic viscosity (left panel) and thermal conductivity divided by density (right 
panel) are shown as functions of temperature for the (a) GaAs and (b) GaN channels. 

In the low temperature limit the electron-electron collision time τee(p) in equation 45 can be 
replaced by its value at the Fermi surface, τee(pF) (15, 16) and an explicit temperature dependence 
can be obtained for  the transport coefficients: 

 
 

2
F

F 2
F

T2 1
ν(T T )

πm T ln 2T /T
 


 (53) 

 
 

F F

F

κ(T T ) T4π 1

n 3m T ln 2T /T





. (54) 

Notice that the temperature dependence is same as one would obtain without the relaxation time 
approximation by solution of the linearized Boltzmann equation (19). 

It is clear from figure 4 and equation 53 that at moderately low temperatures the viscosity can be 
much larger than the value assumed in the published studies of FET based plasma resonator, a 
constant equal ħ/m (1–9). As shown below, at the temperatures at which many of the 
experimental studies of Dyakonov-Shur detector were performed (3–7, 10) the viscosity can be a 
major limiting mechanism for the quality of the plasma resonance. 

In order to compare the relative contributions of the self-consistent field and the pressure 
gradient terms in the Navier-Stokes equation 51, assume a uniform flow and use the gradual 
channel approximation, U= en/C, and then obtain: 

  
2

B 1 1
2 ξ

F 0 0

k T F F(1/n) P π C
1

(e/m) U me E F 1 e F

 
   

   


. (55) 

This ratio generally will be small if T < TF. Consider for example a GaAs channel, d = 35 nm, at 
Ug – Uth = 1 V. Then the low temperature limit of the right hand side in equation 55 is 0.075. The 
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linear approximation to the hydrodynamic equations has solutions in the form of plasma waves 

propagating with the speed 22
0pl sss a , where s0 is obtained from the electric field term in 

the momentum balance equation and is given in equation 20, and sa is the speed of sound 
obtained from the pressure gradient term. At the electron density in the channel with gate 
voltages of 0.5 ÷ 10 V, sa

2 << s0
2, one can neglect the pressure gradient term compared to the 

electric field term (20). 

The relaxation time τ in the friction term in equation 50 can be related to the mobility η in the 
channel, η = eτ/m. For the collision term in equation 52, (∂W/∂t)c, I will use a relaxation 

approximation (13), (θ – θ0)/τε where θ0 is the lattice temperature, and the energy relaxation time 

τε can be calculated from the electron-phonon scattering rate (14). 
 

6. Nonlinear Response of the Channel Confined Electron Plasma to a Time-
harmonic Signal 

As a simple application of the hydrodynamic equations in this section, I will calculate the 
response function of the Dyakonov-Shur detector based on the FET conduction channel using the 
equivalent circuit in figure 2(a). In doing this, I will generalize the treatment in reference 1 to 
include the effects of viscosity, and also evaluate the electron temperature distribution in the 
channel. The boundary conditions are U(0,t) = U0 + Uacos(ωt) at the source side of the channel 
and zero current at the drain side, j(L,t) = 0. In the detector mode, the time-harmonic part is 
induced by the external radiation (1–7). Here the analysis is restricted to a one-dimensional flow 
that is uniform in the transverse channel direction:  

 
n (nu)

0
t x

 
 

 
 (56) 

 
2

2

u u e U 1 P u u
u ν 0

t x m x n x τ x

    
     

    
 (57) 

 
22 2

2
cv v v v

θ (θu) χ θ mν u 1 W mu

t x c x c x c t c τ

                     
 (58) 

In the narrow channel, approximation n = CU/e. Then, the boundary condition at the source 
contact becomes n(0,t) = n0 + nacos(ωt).  As agued above, the pressure gradient term in equation 
57 can be omitted as compared to the electric field term. Then, if one assumes that the 
temperature variation is small enough to ignore the space-time variation of the viscosity, the 
Navier-Stokes equation effectively decouples from the heat equation, equation 58.  

For convenience use dimensionless variables and parameters, defined as  
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 2
0 0 0 0 0 0 0t ts /L, x x/L, n n/n ,u u/s ,τ τs /L,ν ν/(s L),  χ χ/Ls , θ θ/ms              (59) 

where s0 is the equilibrium value of the plasma wave velocity. The hydrodynamic equations 
derived in the previous section can be written in the dimensionless form,   

 
( )

0
n nv

t x

 
 

 
  
 

, (60) 

  
2

2

u u n u u
u ν 0

t x x τ x

   
    

   
       

, (61) 

 
22 2

0
2

v θ v

θ θθ (θu) χ θ u u
ν 0

t x c x x τ c τ

              

          
 (62) 

where we defined τθ ≡ cvτε . When the solution u(x,t) of the equations 60 and 61 is found, it can 

be used in equation 62 to obtain an inhomogeneous heat equation which then can be solved to 
obtain the electron temperature distribution θ(x,t) in the channel. 

The boundary conditions are 

  an(0,t) 1 n cos ωt , u(1,t) 0.      (63) 

Expand the solutions of equations 59 and 60 in time harmonics: 

 (0) (1) (2)1n n n n       (64) 

 (0) (1) (2)u u u u      (65) 

where  tmωexpv,n (m)(m) i , m=0,1,2…. The hydrodynamic nonlinearities result in coupling 

of different harmonics. Assuming that the input signal is small, 1n~ a  and 1u~  , apply the 

small signal analysis. This obtains the following hierarchy of orders of expansion: 

 (1) (1) (2) (0) 2 (0) (2) 2
a a an ,u O(n ); n ,n O(n ); u ,u O(n )     . (66) 

Separating the orders and integrating over the time in the second order equations, obtain 

 
(1) (1)n u

0
t x

 
 

  
 (67) 

 
(1) (1) (1) 2 (1)

2

u n u u
ν 0

t x τ x

  
   

  
   

 (68) 

  (0) (1) (1)u n u 0
x


 


 (69) 
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(0) (1) (1) 2 (0)

(1)2 (0)
2

2u n u1 u
u n ν 0

x 2 τ x

        


  
 (70) 

where the angular brackets denote time average over the period 2π/ω. Boundary conditions for 
these equations are 

  (1) (0) (0) (1)n (0,t) n cos ωt , n (x 0) u (x 1) u (1,t) 0.a          

The induced constant source to drain voltage will be found as  

    (0) (0) (0)
0 0/ ) / ) ( 1) ( 0)U e C n n e C n n x n x              (71) 

From equations 69 and 70, obtain 

 
1

(0) (1)2 (1) (1) (1) (1)

0

1 1
Δn u (0) dx n u ν n (0)u (0)

2 τ
   


 (72) 

where the arguments refer to x. The first order functions n(1) and u(1) are solutions of equations 67 
and 68 which give linear wave equation, with solutions proportional to exp(ikx-iωt). The 
dispersion relation is  

  2 2 2
0ω ω/τ k νω 0i s i    . (73) 

The solutions of equations 67 and 68 are  

   0 0(1)
1 2

k x k x tn Re C e C e ei -i i  -   (74) 

   0 0(1)
1 2

k x k x tu Re C e -C e ei -i i -   (75) 

where k0(ω)=k1 + ik2 is solution of equation 73 and 

 1 1
1,2 12 2 2

0 1

1/21/22 2
τ τω 1 1

k 1 1 ωτ
τ τ ωτ2s 1 ω τ

                    
         

. (76) 

Here I defined τ1 = ν/s0
2. Constants C1 and C2 are found from the boundary conditions:  

 
 1,2

0

n
C

1 exp 2 k L
a

i


 
 . (77) 

Then use equations 74 and 75 in equation 72, and use equation 71 to find constant source to 
drain voltage ΔU induced by the harmonic input signal. This can be written as in equation 3: 
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  
2

0 0

UΔU
f

U U
a 

 
  
 

, 

where the detector response function f(ω) is given in terms of k0(ω). Let us define the following 
combinations of hyperbolic and trigonometric functions of k1L and k2L: 

1 2 1cosh(2 ) cos(2 )S k L k L   

   1 2
2 2 1

2 1

cosh(2 ) 1 1 cos(2 )
k k

S k L k L
k k

     

3 1 2 2 1cosh(2 ) cos(2 )S k k L k k L   

4 2 1cosh(2 ) cos(2 )S k L k L  . 

In terms of these the detector response function is given by 

    2

1 32
22 2

0 4

ωτ S 2νωτSωτS 1
f ω

τ 2τ τ k L S

 
   
  


  

, (78) 

where ν~ and τ~ are defined in equation 59. Depending on the value of the friction parameter τ~, the 
detector response will be resonant or broadband.  

Next, consider the behavior of the response function in the case of the GaAs channel of length L 
= 0.5 µm, gate insulator thickness d = 35 nm, and set U0 = 0.5 V as in the first example in section 
III. The temperature dependence of the friction parameter at low to moderate temperatures is 
determined by the electron-acoustic phonon scattering rate, and the total rate is given by  

 
0

1 1
aT

τ τ
   (79) 

where the zero temperature value 1/τ0 is due to scattering from impurities and defects. We set 
here τ0 = 10 ps (the corresponding low temperature mobility is about 2.7×105 cm2/Vs). For GaAs 
heterostructure we obtain (21, 22) a = 7.1×108 1/Ks. This determines the friction parameter τ~ as a 
function of temperature, while the temperature dependence of the viscosity coefficient is found 
from equation 47 and figure 4. The resonant frequency f0 = ω0/2π= s0/4L = 0.57 THz.  In figure 5 
the resonant response is shown at two values of T/TF, 0.1 and 0.15, corresponding to T = 40.6 K 
and 60.9 K. The corresponding values of the friction parameter s0τ/L are 17.7 and 15.9 and of the 
kinematic viscosity coefficient 260 and 135 cm2/s. The higher resonances are strongly 
diminished by the viscosity effect. 
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Figure 5.  Response function of the GaAs channel based detector at  
two different temperatures: T/TF = 0.1 (solid line) and  
T/TF = 0.15 (broken line).  

When the friction parameter τs0/L decreases below 0.5, the response becomes broadband, 
corresponding to overdamped plasma oscillations in the conduction channel, as shown in figure 6 
for τs0/L = 0.3 and 0.2 with ν/s0L = 0.001. For a long channel, as τs0/L decreases the plasma 
waves decay before ever reaching the drain contact.  

 

Figure 6.  Response function in the case of strongly damped plasma  
oscillations, giving a broadband detector response, for two  
different values of friction parameter, τs0/L = 0.3 and 0.2 with  
ν/s0L = 0.001. 
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Next, turn to the evaluation of the electron temperature distribution in the channel to O(na). To 
that order the u2 and (∂u/∂x)2 terms in equation 62 can be omitted. Define Δθ ≡ θ – θ0 and 

 0

u
Φ(x,t) θ

x


 





 (80) 

where θ0 refers to lattice temperature and u(x,t) is given in equation 74. Then obtain an equation 
for Δθ: 

 
2

2
θ

Δθ Δθ Δθ
χ Φ(x,t)

t x τ

   
 

  
   

 (81) 

where vχ/cχ  . For the boundary conditions, assume lattice temperature at the source and drain 

contacts and assume that the electron temperature was initially set to the lattice value: 

 Δθ(0,t) Δθ(1,t) 0, Δθ(x,0) 0     . (82) 

Substitution  θt/τt)expf(x,t)Δθ(x,   transforms equation 80 into 

  
2

θ2

f f
χ Φ(x,t)exp t/τ

t x

   
 

    
, (83) 

which is the inhomogeneous heat equation with Dirichlet boundary conditions (23). The Green’s 
function for this equation can be evaluated by Fourier expansion in the interval 0≤ x ≤1, and 
restoring the dimensional units we obtain 

  
 

  
m 1

0 0a
m 2 2 2 2

m 10 0 0 m 0

k Lπmsin πmx/L 1 ( 1) sec(k L)nΔT
2 exp - ωt exp( a t)

T n ωL/s a π m k L
Re i

i





               
  (84) 

where 
2 2

m
0 0 θ

π m χ L
a

Ls s τ


  . 

As an example, consider a signal with the amplitude equal to 0.1 of the gate voltage applied to a 
GaAs channel with s0τ/L = 2 (corresponding to mobility of 54000 cm2/Vs), and we set s0τθ/L = 2, 
ν/s0L = 0.04, χ/(cvs0L) = 0.16. The deviation of the electron temperature T(x,t) from the lattice 
temperature T0 is shown in figure 7 as a function of the position along the channel at times ts0/L 
= 1 and 2, evaluated at the resonance frequency. 
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Figure 7.  An example of electron temperature distribution in the  
conduction channel with s0τ/L = 2, at two different times  
(a) ts0/L = 1 and (b) ts0/L = 2. Both distributions are  
evaluated at the resonance frequency ω0, with the amplitude  
of the applied signal equal to 0.1U0. 

As another example, consider the case corresponding to the solid line in figure 5, i.e., GaAs 
channel at lattice temperature T = 0.1TF, when the signal of amplitude 0.01U0 and ω = ω0 is 
applied. The resulting temperature distribution is shown in figure 8, at two times, (a) ts0/L = 1 
and (b) ts0/L = 2. 

 

Figure 8.  Electron temperature distribution in the GaAs conduction  
channel at T0 = 0.1TF at two different times, (a) ts0/L = 1 and  
(b) ts0/L = 2 in. Both distributions are evaluated at the resonance  
frequency ω0, with the amplitude of the applied signal equal to 0.01U0. 
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Note that in these examples the variation of the electron temperature in the channel is relatively 
small when the applied signal is small. This justifies the approximation of uniform electron 
temperature in the solution of the Navier-Stokes equation. At much higher mobility and when the 
applied signal is not small as compared to the gate voltage, the temperature dependence of the 
transport coefficients may have to be included explicitly in equations 60–62 which then would 
have to be solved numerically. 

One can estimate the sensitivity of the detector following reference 1. If the electro-magnetic 
radiation is coupled to device by means of dipole antenna, the detector response is given by R = 
ΔU/(IS), where I is the radiation energy density in the incoming signal, ΔU is given in equation 
3, and the antenna aperture S = λ2G/4π. Here λ is the wavelength and G ≈ 1.5 is the antenna gain. 
We then obtain an estimate R ~ (100/U0)f(ω) V/W. For the example shown in figure 5, R ~  
104 V/W.  

The predicted response is smaller than was originally predicted for semiconductor HEMT device 
at low temperature (1), due to significant increase of viscosity coefficient with the decreasing 
temperature. Most experiments with the Dyakonov-Shur plasma resonators have been done at 
low temperature in order to reduce electron-phonon scattering rate 1/τ and achieve 
correspondingly high value of mobility, see references 1–10. It follows from the present 
calculation that at very low temperatures the entropy production associated with viscosity 
negates the advantage of increasing carrier mobility with lower temperature. One can see it in 
considering the quality of the plasma resonance at low temperatures. Near the resonant frequency 
ω0 the function f(ω) is approximately a Lorentzian with the width Δω determined by the friction 
and viscosity. Define the quality factor Q of the resonance at ω = ω0 as Q ≡ ω0/Δω. Then  

 
0 0

1 2L 2π

Q πs τ s L


  . (85) 

The temperature dependence of ν is given in equation 47 and figure 4, and the temperature 
dependence of τ at low temperature is given in equation 79. The linear coefficient a in equation 
79 can be deduced from the temperature dependence of electron mobility in GaAs (21, 22) and 
GaN (24) channels, and we obtain values of 7.1×108 1/Ks and 22×108 1/Ks, respectively. Then 
the equation 85 can be rewritten as 

 
0 0 0 0

1 2L 2LaT 2π (T)

Q πs τ πs s L


   . (86) 

With the same parameters as in figure 4 and τ0 = 10 ps, the resonator quality factor Q is shown in 
figure 9 as a function of temperature at low temperatures for GaAs and GaN submicron channels, 
L = 0.5µm, with the plasma resonance at approximately 0.5 THz. 
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Figure 9.  Plasma resonator quality factor is shown as  
function of temperature for (a) GaAs and (b) GaN  
channels with length L = 0.5 µm. The resonance is  
at f0 ~ 0.5 THz.  

One can see that the quality factor is limited to values below Q = 10, which agrees with the 
experimental studies (4) in which the loss to transversely propagating waves (oblique plasmons 
(25, 26)) was eliminated by having a multi-channel configuration.   

Next, consider resent low temperature experiments (10) with the long channel GaAs detector, 
with L = 180 µm, d = 190 nm, and the measured electron density n0 = 1.3×1011 1/cm2. 
Correspondingly, the plasma resonance is at f0 ≈ 1.2 GHz. By fitting the measured values of 
mobility as 1/µ = 1/µ0 + αT and relating τ to µ by τ = mµ/e, we find that the scattering rate is 
obtained from equation 79 with τ0 = 0.539 ns and a = 5.45×108 1/Ks. The viscosity coefficient 
can be calculated from equation 53 as  

    

2
2 F

F

T 1
ν(T) 11 cm /s

T ln 2T /T
   
 

 

where TF = 54 K. The quality factor evaluated from equation 85 is shown in figure 10 and the 
results are in reasonable agreement with the resonance widths in reference 10. 
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Figure 10.  Plasma resonator quality factor is shown as function of  
temperature for a GaAs detector with channel length  
L = 180 µm. The resonance is at f0 ~ 1.2 GHz.  

Thus, as in the case of short channel plasma resonators discussed above, here too the viscosity 
effects limit the quality of the resonator at low temperatures, reducing the advantage of higher 
mobility achieved by lowering the temperature. 

7. Conclusions 

In this work I considered the non-linear plasma transport in gated conduction channels. The 
hydrodynamic Navier-Stokes equation was derived from the quasi-classical Boltzmann equation, 
and the applicability of hydrodynamic model was evaluated. The non-linear convection term in 
the Navier-Stokes equation and the non-linearity in the current term in the mass balance equation 
contribute to non-linear effects in the wave propagation in the electron fluid. I evaluated the 
temperature dependent hydrodynamic transport coefficients in gated two-dimensional conduction 
channels. I applied these equations to show that a constant voltage develops in the plasma 
response to a time-harmonic perturbation, and evaluated the response function for different 
values of mobility and viscosity and we then estimated the detector response. The treatment here 
extended the theory of Dyakonov-Shur plasma resonator and detector (1) to account for the 
temperature dependence of viscosity, and also included the energy balance equation into the 
analysis. Depending on the length of the gated channel, the detector response can be in the range 
from a few GHz to a few THz, and is further tunable by the gate voltage. Depending on electron 
mobility in the channel the response can be resonant or broadband. I showed that the quality of 
the plasma resonance in the high mobility channels at low temperature is limited by the effects of 
viscosity. Though the evaluation of the response was confined to the one-dimensional uniform 
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flow, the hydrodynamic equations derived here can also be applied to the two-dimensional wave 
propagation, and the effects of the oblique modes (26) can also be included. 
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