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1. Introduction 

In integrated circuits and other electronic devices, components may be connected together by 
long, straight conductors.  The inductance and resistance of these conductors at various 
frequencies should be known to avoid unwanted signal loss, distortion or leakage to other 
conductors known as cross talk.  An approach to calculate the frequency dependence on the 
inductance and resistance is based on the Partial Equivalent Electronic Circuit (PEEC) method 
(Ouda and Sebak, 1995) where a conductor is divided up into a number of elements.  It is 
assumed that each of these elements has a uniform current density directed along its length.  This 
is analogous to a number of insulated wires that are bundled into a cable.  The cable is analogous 
to the conductor and the wires are analogous to the elements.  Each wire or element is treated as 
a part of an equivalent electronic circuit with its own resistance, self inductance and a mutual 
inductance with every other wire.  In some cylindrically symmetric problems where the current 
is azimuthally distributed, it is possible to divide up the conductors into a number of concentric 
rings each carrying a uniform current density.  In this geometry, each ring or wire element is 
again treated as part of an equivalent electronic circuit with its own resistance, self inductance 
and mutual inductance with every other ring.  Both cases give a matrix equation for a number of 
electronic circuits that are magnetically coupled together.  In this report, PEEC is used to 
duplicate the calculations in a recent study in railguns (Powell and Zielinski, 2008), and used to 
find the temperature and current distribution in rails that have a cladding.  As an example for 
applying PEEC to problems with cylindrical symmetry, the diffusion of a magnetic field into a 
cylindrically symmetric object is presented. 

In a recent study of the temperature distribution, current distribution and the inductance of the 
rails in a railgun, Powell and Zielinski (2008) solved the coupled Maxwell and energy transport 
equations for infinitely long parallel rails having a width and a height, but no armature.  
Maxwell's equation was solved by calculating the magnetic vector potential inside the rails, 
between the rails and in the free space that extended out to a large distance as compared to the 
width, the height, and the spacing between the rails.  Coupled with the Maxwell's equation were 
the equation for ohmic heating of the rails and the equation for heat conduction.  Because the 
PEEC method uses the current density distribution in the rails as the basis for the solution of 
Maxwell's equation, calculations in the surrounding free space are avoided, which may ease 
some computational burden.  The PEEC gave nearly identical results to Powell’s, even though 
heat conduction was not included.  This method was again applied to rails that launched the S0 
armature (Powell and Zielinski, 2005) having a mass of 2.0 kg to a velocity of 2.3 km/s.  For a 
given current pulse, the current and temperature distributions were found when the rails were 
solid copper, cladded with 304 stainless steel and cladded with molybdenum.  These calculations 
show that these claddings do reduce the surface temperature of the rails, but they do not explain 
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why the claddings fail to delay or prevent the formation of the plasma.  The PEEC method, 
however, can easily provide the inductance gradient and resistance gradient of rails with novel 
geometries and composition, which are important parameters in designing railguns.  To illustrate 
how to apply PEEC to problems with cylindrical symmetry, the diffusion of a magnetic field into 
a copper cup is solved.  It is assumed that the magnetic field is uniform at distances far from the 
copper cylinder, parallel to the cylinder's central axis, and it is applied instantaneously. 

 

2. PEEC 

The derivation of the matrix equation for the PEEC starts with Faraday’s law for stationary 
conductors in the form 

 
t

trA
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



),(

),(
   , (1) 
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 are the electric field vector, the electric potential, and the magnetic field 

vector potential, respectively (Corson and Lorrain, 1962). 

Using Ohm’s law, 
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Faraday’s law becomes 
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where ),( tr
 in equation 2 is the distribution of the electrical conductivity. 

When the conductor is divided up into a number of elements, n in equation 5, the integral in 
equation 3 may then be expressed as a sum of integrals that are performed over each element.  
Let all of these elements have equal length l and be parallel to the z-axis so that the current 
density and the magnetic vector potential have only the z component, and the gradient of φ 
becomes ∂φ/∂z.  This is assuming that this common length is much larger than the cross sectional 
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dimensions of the conductor.  Thus the vector notation for these quantities will be dropped with 
the understanding that A and J are the z component of a vector.  With this understanding and 
assuming a uniform current distribution for each element varies with time, equation 3 may then 
be approximated by 
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where ir 


is a location of a point inside the ith element and id  is the unit volume within the 

element.  Ji is the assumed uniform current density for the element.  Using equation 5 instead of 
equation 3 and integrating over the volume of the jth element when it has a uniform conductivity 
σj gives 
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where aj is the cross sectional area of the jth element and ∆φ is the potential difference between 
the ends of the element.  The integrals in equation 6 are the magnetic coupling between elements 
i and j which is related to the mutual inductance between them.  By convention, this mutual 
inductance that depends only on the geometry of the conductors for this application is 
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Tables and formulas for Mi,j have been presented for a large number of different geometries and 
configurations of conductors by Grover (1946) as an example of a large body of literature.  
Solving equation 7 for the integrals and substituting the result into equation 6 yields 
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or, in other terms, 
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where Ij =Jj aj is the current and Rj =l/(σj aj) is the resistance for the element.  It will be shown 
later, however, that this resistance is Rj =2l/(σj aj) for parallel rails. 

This matrix equation is a commonly accepted circuit equation for a number of electronic circuits 
that are magnetically coupled.  Each circuit has a resistance Rj, a voltage ∆φj , and a self 
inductance Mj,j: the matrix element on the diagonal.  Each circuit is coupled to the other circuits 
by the off-diagonal matrix elements Mi,j, i and j are not equal, which are the mutual inductances.  
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It is commonly assumed in PEEC literature that the current in the elements and the voltage are 
harmonically oscillating at a constant angular frequency ω.  By letting )exp()( tiItI jj  and 

)exp( ti  , equation 9 becomes an algebraic equation that is independent of time but 

dependent on ω.  These assumptions are not taken here, because the currents in the elements are 
not harmonically oscillating. 

In some cases, if a total current in the circuits can be defined, a total inductance of the circuits 
can be found from the total energy of the magnetic field, Em in equation 20, which is defined as 
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This energy is then equated to the energy stored in an equivalent total inductor having an 
inductance L and a total current I(t).  In the case for the rails, the total current to the rails is 
known, and, thus, the inductance gradient of the rails can be calculated for rails with an assumed 
length. 

Excluding heat conduction, the increase in temperature of the elements is found by equating the 
ohmic heating over some time interval dt (the left side of equation 11) to the heat of the element 
(the right side of equation 11): 
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In this equation, l is the length and ai is the cross sectional area of the element having a density ρ.  
When the electrical conductivity σ(T) and the heat capacity Cp(T) depend on the temperature T, 
the rate of temperature increase for an element is 
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3. Railgun Rails 

Equation 9 must be modified, however, for the constraints imposed by a railgun problem before 
solving it for the time derivative of the currents.  One constraint is that the voltage across all the 
elements are equal.  The other constraint is that the total current for all the elements is given.  In 
preparation for imposing these constraints, equation 9 is parsed into two equations.  The equation 
for j ≤ n–1 is written as 
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Another equation for j = n is 
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Since the total current is the sum of all the currents of the elements, one of these currents is no 
longer independent.  Arbitrarily choose In(t) as the dependent current that is given by 
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Substituting the time derivative of this equation into equation 13 gives 
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and equation 14 becomes 
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Equation 15 was not substituted into the left-hand side of equation 14 because In(t) is known at 
this time.  If the voltages across all the elements are equal, then the voltages can be eliminated by 
subtracting equation 17 from equation 16: 

 








1

1

,,,,,, )(
)()(

)()()(
n

i

nnnijnji
i

jnnnnnjj MMMM
dt

tdI

dt

td
MMRtIRtI  . (18) 

After defining a new matrix nnnijnjiji MMMMZ ,,,,,  and finding its inverse 1
,


jiZ , the time 

derivatives for the first n-1 elements are 
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The time derivative for the nth element can now be determined simply by adding all the time 
derivatives of the first n-1 elements and subtracting the sum from the time derivative of the total 
current: 
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Thus, the time derivatives for all the currents are now determined at the given time. 

The construction of the inductance matrix Mi,j elements in equation 9 uses two fundamental 
equations that are presented in the appendix.  One fundamental equation is for the self inductance 
of a long rectangular bar S(w,h,l), where w is the width, h is the height and l is the length of the 
bar.  The other fundamental equation is for the mutual inductance of element “a” with respect to 
element “b” M(wa, ha, xa, ya, wb, hb, xb, yb, l) both having equal lengths l.  wa and ha are the width 
and height respectively of element “a” with its center located at (xa, ya).  wb and hb are the width 
and height respectively of element “b” with its center located at (xb, yb).  This mutual inductance 
is independent from the origin of the coordinates for (xa, ya) and  (xb, yb).  The origin in figure 1, 
however, is assumed to be located half way between the two inner surface of the rails, so that the 
y-z plane and the x-z plane are planes of symmetry of the rails.  Although the rail symmetry 
about the x-z plane could be included to reduce the number of elements, this symmetry is 
ignored here. 

 

 

Figure 1.  A current path through the elements for the rails. 

 
Let the position of the ith element be located at (xi, yi) and carrying a current Ii in the positive z-
direction.  The element that is carrying the equal but opposite current –Ii is located at (–xi, yi), 
provided that both elements have equal widths wi and equal heights hi, figure 1.  The magnetic 
fields from the currents crossing over from one rail to the next that represent the current through 
the armature, can be ignored for rails having a length much larger than the spacing between 
them.

X

Y

Z

(xi,yi)

(-xi,yi)

Ii

Ii

Ii

Ij

Ij

Ij
(xj,yj)

(-xj,yj)
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By symmetry, there is an element located at (xi, –yi) that is carrying an equal current Ii to the one 
at (xi, yi) and there is another element located at (–xi, –yi) that is carrying the equal but opposite 
current –Ii to the one at that (xi, yi), provided that these latter two elements, (xi, –yi) and (–xi, –yi), 
also have equal widths and equal heights to the one at (xi, yi).  As stated before, this symmetry is 
not used here.  Thus the current in the element at (xi, yi) is not assumed to be equal to the element 
(xi, –yi), but taken to be an independent variable.  The elements at (xi, yi) and (–xi, yi), as shown in 
Figure 1 constitute a circuit that has an inductance and a resistance.  The inductance of this 
circuit is the sum of the self inductances for each element that are equal, the mutual inductance 
of the element at (xi, yi) with respect to the element at (–xi, yi), and the mutual inductance of the 
element at (–xi, yi) with respect to the element at (xi, yi): 

 Mi,i = 2 S(wi,hi,l) – M(wi, hi, xi, yi, wi, hi, –xi, yi,l) – M(wi, hi, –xi, yi, wi, hi, xi, yi, l) . (21) 

Because M(wi, hi, xi, yi, wi, hi, –xi, yi,l) = M(wi, hi, –xi, yi, wi, hi, xi, yi, l), the diagonal elements 
of the inductance matrix are 

 Mi,i = 2 ( S(wi,hi,l) – M(wi, hi, xi, yi, wi, hi, –xi, yi,l) ) . (22) 

The minus sign in front of the mutual inductance function comes from the currents being equal 
but having opposite directions.  If the current in both of these elements were in the same 
direction, such as the positive z-direction, then there would have been a positive sign.  The total 
resistance for this circuit is Ri = 2 l/(wi hi σi), because the current path length is twice the rail 
length. 

The off-diagonal elements of the inductance matrix are the mutual inductances of the ith rail 
element and its complement in the negative x-direction with respect to the jth rail element and its 
complement in the negative x-direction as shown in figure 1, which is Mi,j = M(wi, hi, xi, yi, wj, hj, 
xj, yj,l) – M(wi, hi, xi, yi, wj, hj, –xj, yj,l) + M(wi, hi, –xi, yi, wj, hj, –xj, yj,l) – M(wi, hi, –xi, yi, wj, hj, 
xj, yj,l).  However, the mutual inductance between the ith and the jth elements on the positive side 
of the x-axis is equal to the mutual inductance between the ith and the jth elements on the 
negative side of the x-axis; M(wi, hi, xi, yi, wj, hj, xj, yj,l) = M(wi, hi, –xi, yi, wj, hj, –xj, yj,l).  Note 
that their mutual inductances are positive because the current in these two pairs are in the same 
direction.  Also, the mutual inductance between the ith element on the positive side of the x-axis 
and the jth element on the negative side of the x-axis is the same as the mutual inductance 
between the jth element on the positive side of the x-axis and the ith element on the negative side 
of the x-axis; M(wi, hi, xi, yi, wj, hj, –xj, yj,l) = M(wi, hi, –xi, yi, wj, hj, xj, yj,l).  The signs for these 
terms are negative because the current in these pairs of bars are equal but opposite.  Thus the off-
diagonal elements of the inductance matrix are 

 Mi,j = 2 ( M(wi, hi, xi, yi, wj, hj, xj, yj,l) – M(wi, hi, xi, yi, wj, hj, –xj, yj,l) ) . (23)
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3.1 Copper Rails 

PEEC will now be applied to the identical problem recently reported by Powell and Zielinski 
(2008), where each copper rail has a width w = 19.4 mm, a height h = 34 mm and a spacing 
s = 44 mm between them.  See figure 2 as an illustration of w, h and s for another set of rails 
having different dimensions.  The material properties for copper are shown in table 1.  And the 
current in this case is 

 )100.1/tanh(100.5)( 45  ttI  , (24) 

where t is in seconds and the current is in amps.  Although the symmetry above and below the 
x-axis was ignored, the resulting current and temperature distributions did have the correct 
symmetry.  Using the symmetry, this calculation was repeated with half the number of elements 
and gave identical results. 

 

 

Figure 2.  Cladded rails for the S0 armature. 

 
Table 1.  Material properties for copper. 

Property Value 
Heat capacity (J/kg/K) Cp(T) = 360.0 + 0.1 T 

Resistivity (Ω m) 1/σ(T) = -5.42 × 10–9 + 7.81 × 10–11 T 
Density (kg/m3) ρ = 8900.0 

X

Z

s = 100 mm

w = 25 mm

h = 50.8 mm

l

Y

c = 1.5 mm
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The current density distribution and the temperature distribution of these calculations agree very 
well with the distributions given by Powell and Zielinski (2008).  As an indication of the 
agreement, the inductance gradients are compared in table 2 at various times. 

 
Table 2.  Comparison of the inductance gradient at various times. 

t 
(μs) 

Powell L' 
(μH/m) 

Present L' 
(μH/m) 

200 0.591 0.567 
500 0.598 0.590 
1000 0.615 0.613 
1500 0.627 0.627 
5000 0.650 0.656 

 
At the very early times, all the current should be distributed on the outside surfaces of the rails 
and no current inside the rails.  By assuming an infinite conductivity for the rails, Kerrisk (1982) 
gave empirical formulas that were based on more detailed calculations for the inductance 
gradient for these surface current distributions.  These formulas gave an inductance gradient to 
be 0.56 μH/m for these rails, which compares well with the present calculation at 200 μs.  Powell 
speculated that his inductance at this time was high, because his model may not have had 
adequate resolution for the current distribution near the corners.  Thus it seems that the present 
approach has a better resolution for the current distribution at these early times.  At later times 
when the current distribution has diffused into the rails, both calculations give virtually identical 
inductance gradients.  At the latest time, 5000 μs, the current distribution is almost uniform.  If 
the current distribution was uniform, the inductance gradient according to Grover (1946) would 
be 0.67 μH/m (see equation A-15 in the appendix).  It is not expected that the inductance 
gradient of the present calculation should approach this value exactly at a later time, because the 
rails do not have a uniform conductivity due to a non-uniform temperature distribution. 

3.2 S0 Armature Rails 

In a previous study (Powell and Zielinski, 2005), a two-dimensional (2-D) model was used to 
investigate the current and temperature distributions in the rails and an armature, designated as 
the “S0 armature,” of a rail gun.  Assuming a rail current that is typically used at a pulse power 
facility in Kirkcudbright, Scotland (Hammon et al., 1993), the conditions for a contact transition, 
the formation of a plasma gap between the rail and the armature, were investigated.  When this 
occurs, the rails and the armature are damaged, and the performance is also adversely affected.  
It was speculated that a metal cladding starting at the exit end of the rails and extending to some 
distance into the bore could prevent this transition.  This study considered rails with no cladding 
and then considered rails that had a stainless steel cladding.  It was concluded that the cladding 
did not prevent contact transition (Powell and Zielinski, 2008).
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Since this cladding does not extend from end to end, PEEC cannot be used.  It will be assumed, 
however, that the cladding does extend over the entire length of the rails as shown in figure 2, 
which also shows the dimensions of the rails and the cladding. 

As shown in figure 3, the total current I (in amps) as a function of time t (in seconds) of the rails 
used for both cases is taken to be 

 )75.981sin(10933.1)( 6 ttI   for 3106.10  t  , (25) 

 
610933.1)( tI  for 33 103.3106.1   t  , (26) 

and 

 )106.710558.21(10933.1)( 37256 tttI   for 33 100.5103.3   t , (27) 

where 3t t 3 3 10. .     This equation, however, does not follow some of the small variations 
in current form that was used in the previous study (Powell et al., 2005; Hammon et al., 2003). 

 

 

Figure 3.  Rail current for the S0 armature. 

 
Using the thermodynamic properties for 304 stainless steel given in table 3, the thermodynamic 
properties for molybdenum given in table 4, and the current pulse, the final temperature 
distribution of the rails were calculated at 5 ms, figure 4, when the temperatures should be the 
largest.  The current distributions were also calculated at 0.5 ms, figure 5, when the current 
densities should be large.  The left edges in figure 4 and figure 5 are the inside surface of the 
right rail in figure 2 and the bottom edges in figures 4 and 5 are the midline of the right rail in 
figure 2.  The inductance gradient and the resistance gradient for these rails are listed at various 
times in tables 5 and 6, respectively.
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Table 3.  Material properties of 304 stainless steel. 

Property Value 
Heat capacity (J/kg/K) Cp(T(K)) = 500.0 

Resistivity (Ω m) 1/σ(T(K)) = 5.17 × 10–7 + 6.90 × 10–10 T 
Density (kg/m3) ρ = 8030.0 

 
Table 4.  Material properties of molybdenum. 

Property Value 
Heat capacity (J/kg/K) Cp(T(K)) = 220.7 + 0.1 T 

Resistivity (Ω m) 1/σ(T(K)) = -2.82 × 10–8 + 2.73 × 10–10 T 
Density (kg/m3) ρ = 10220.0 

 

 

Figure 4.  Temperature distribution at 5 ms for solid copper, molybdenum cladding, and stainless steel 
cladding from left to right where the claddings are on the left side. 

 

 

Figure 5.  Current density distribution at 0.5 ms for solid copper, molybdenum cladding, and stainless steel 
cladding from left to right, where the claddings are on the left side.
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Table 5.  Inductance gradient for copper, molybdenum, and 304 stainless steel 
cladding. 

Time  
(ms) 

Copper 
(μH/m)

Molybdenum 
(μH/m)

304 S. S. 
(μH/m) 

0.5 0.680 0.688 0.694 
1.0 0.693 0.701 0.707 
2.0 0.723 0.732 0.738 
3.0 0.743 0.752 0.757 
4.0 0.768 0.777 0.782 
5.0 0.817 0.825 0.830 

 

Table 6.  Resistance gradient for copper, molybdenum, and 304 stainless steel cladding.  

Time  
(ms) 

Copper 
(μΩ/m) 

Molybdenum 
(μΩ/m) 

304 S. S. 
(μΩ/m) 

0.5 28.5 29.7 30.3 
1.0 29.2 30.4 31.1 
2.0 31.1 32.5 33.3 
3.0 32.8 34.4 35.3 
4.0 34.5 36.3 37.4 
5.0 35.7 37.7 38.8 

 
The temperature distributions in all cases have a maximum at the corners near the gap of the 
copper.  Although not obvious in figure 4, the maximum temperature is at the upper left corner 
of the copper rail when it has the stainless steel cladding is greater than the bare copper rail and 
the one with the molybdenum cladding.  Thus, a cladding may increase the temperature of the 
copper, and the cladding can reduce the temperature of the inside surface.  Therefore, the higher 
resistivity of the stainless steel relative to the molybdenum diverts more current into the copper 
to produce a higher temperature in the copper. 

 

4. Copper Cup 

As an example for using PEEC for a problem having cylindrical symmetry, let a uniform 
magnetic field at a large distances be suddenly applied to a copper cup as shown in figure 6.  The 
tubular part of the copper cup has an outside radius of 0.015 m and a total outside length of 
0.025 m, with a 0.005-m-thick wall.  The bottom of the cup at z = 0.0 m is also 0.005 m thick.  
Heating of the copper is ignored.  After the cup is divided up into rings with a square cross 
section, the induction matrix Mi,j in equation 9 is calculated by the formulas for the self-inductance 
and the mutual inductance given in the appendix.  Since each ring does not have an applied 
potential 0 j .  Thus, from equation 9, the time derivative of the current in each ring is
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1
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 , (28) 

where Rj is the resistance of the jth ring.  To begin the solution, the current at zero time must be 
established.  Before the magnetic field is applied, there is zero magnetic flux through the rings.  
Just after the magnetic field is applied, the total magnetic flux through each ring, the sum of the 
applied magnetic flux, the magnetic flux of the ring itself, and the magnetic fluxes from all the 
other rings, is 0: 

 



n

j

jjii IM
1

, )0(0  , (29) 

where 2
ii rB .  B is the magnitude of the applied magnetic field (1.0 T) and ri is the radius of 

the ith ring.  After solving equation 29 for the currents at time zero, currents at later times were 
numerically found by using the 4th order Runge-Kutta method.  Using these currents and the 
applied magnetic field, the magnetic field can be calculated anywhere near the cup, by adding 
the applied magnetic field and the magnetic fields produced by the rings that has the calculated 
current Ij(t).  The distribution of the magnitude of the magnetic field 5.0 and 10.0 μs after the 
external magnetic field began are shown in figure 6.  As expected, the magnetic field is larger at 
some distance from the outer wall of the cup.  The eddy currents in the cup produce a magnetic 
field in the opposite direction of the applied magnetic field within the cup, but the magnetic field 
of these eddy currents bend around into the same direction as the applied magnetic field outside 
the cup. 

 

 

Figure 6.  Distribution of the magnitude of the diffused magnetic field into a copper cup, the 
cross section outlined in black, after 1.0 μs (left) and 5.0 μs (right) of the establishment 
of the 1.0 T magnetic field that is uniform in the positive z direction at large distances 
from the copper cup. 
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5. Conclusions 

It has been demonstrated that the PEEC method can be applied to a number of different kinds of 
magnetic field problems, such as the cladding of the rails in railguns.  The purpose of cladding 
the rails is to delay the transition of the armature as it is nearing the muzzle of the 
electromagnetic gun by preventing the sliding surfaces of the rails from becoming too hot.  These 
calculations indicate that the cladding should prevent this heating as shown in figure 4.  Indeed, 
stainless steel should be more effective than molybdenum even though stainless steel is more 
resistive than molybdenum.  A 2-D calculation (Powell and Zielinski, 2005) of the temperature 
and current distribution of the armature and the stainless steel cladded rails, however, showed 
that the armature still had a higher temperature than when the rails were solid copper.  The 
current distribution given by the PEEC method, however, could be used as a boundary condition 
for the more detailed calculations, and it can easily estimate the inductance gradient and the 
resistance gradient of a railgun design. 

The PEEC method is now being applied to other problems, such as the launching of metal plates 
by a magnetic field.  In addition, this method can be modified to account for the linear magnetic 
properties of materials (Antonini et al., 2006; Keradec et al., 2005).
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Appendix.  Mutual and Self-Inductance Formulas 

The calculation of the inductance matrix Mi,j is based on two fundamental equations.  One 
fundamental equation is the self inductance of a long rectangular bar S(w,h,l), and the other 
fundamental equation is the mutual inductance between two long rectangular bars of equal length 
M(wa, ha, xa, ya, wb, hb, xb, yb, l).  These two fundamental equations are found by first performing 
the general integral in equation 7 over the z and z' coordinates for a pair of filaments of equal 
length l that are parallel with the z-axis and having arbitrary cross sections: 
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where    222 yyxxs   , the cross sectional area for the primed and unprimed ith and the 

jth elements are ai and aj, respectively.  If the primed x and y coordinates are of a point in the 
cross section of one conductor and the unprimed x and y coordinates are for a point in the cross 
section of a separate conductor, then M would be the mutual inductance between the two 
conductors.  If the prime and unprimed x-y coordinates are for two points in the cross section of 
a single conductor, the M would give the self inductance of the single conductor.  Grover1 
assumes that the length of the conductors are much larger than the dimensions of the cross 
sections.  Thus, this integral is approximated by 
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or 
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The integral in this equation is defined as the geometric mean distance (GMD) by Grover or 
simply R, which is 
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so that 
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1Grover, F. W.  Inductance Calculations Working Formulas and Tables; Dover Publications: New York, 1946. 
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Because the analytic expression for some of cross sectional areas are complicated, Grover 
presented their values in tables and graphs for various cross sections, which served the purpose at 
that time.  Today, however, it is preferable to use analytic expressions that are presented here for 
some cases. 

The diagonal elements of the inductance matrix are the self inductance of the elements having a 
rectangular cross section.  Let the width and height of the rectangle be w and h, respectively.  
The GMD for a rectangular bar is 
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After performing the integrals, the GMD is 
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and α = w/h is the aspect ratio of the rectangle.  Because ))/1(ln())(ln(  ee  , using the aspect 

ratio α = h/w will give the same value.  Indeed, equation A-8 was written in a way to illustrate 
this property.  Thus, the self inductance is 
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Grover also expresses this self inductance as 
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where ))(ln(5.1exp()(  eK  .  The advantage of this expression is that the function K(α) is 

nearly a constant for all aspect ratios.  It has a minimum value of about 0.22313 when α = 0 and 
a maximum value of about 0.22360 when α = 0.5.  Thus, the self inductance can be 
approximated by using the mean value of the minimum and the maximum 0.22337 for K(α) for 
any aspect ratio, i.e., 
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The off diagonal elements of the inductance matrix are the mutual inductances between two 
different rectangular elements where the centers that are separated by a distance p=s+w.  Grover 
also has tables that are used to calculate this mutual inductance, but only where the widths are 
equal, the heights are equal, and the line joining the centers is either perpendicular or parallel to 
the sides such as the rails shown in figures 1 and 4 of this report.  The geometric mean distance 
to be used in equation A-5 in this case is 
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Defining α = w/h and β = p/h, the integrations give 
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If the rails have equal width and heights and if the rails had a uniform current distribution, the 
inductance gradient of a railgun can be calculated by using equation A-13 and equation A-9.  
When the rails are conducting equal but opposite currents, the inductance of the rails is 
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With this equation, equation A-9, and equation A-15, the inductance gradient is 
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where α must be w/h. 

The off diagonal elements of the inductance matrix, however, require a more general formula for 
the mutual inductance, where the elements may be located anywhere and may have different 
widths and heights as shown in figure A-1.  Let element “a” have a width wa and a height ha and 



 20

 

Figure A-1.  Two elements with the locations of filaments (●) used for the mutual 
inductance in equation A-17. 

have its center located at (xa,ya).  Let element “b” have a width wb and a height hb and have its 
center located at point (xb, yb).  Instead of performing the integrals in equation A-2 for an 
analytical formula, these integrals are approximated by expanding the integrand in a Taylor 
series and then integrating over the two regions of the elements.  This procedure gives this 
mutual inductance as a sum of mutual inductances between filaments, equation A-19, that are 
located at the dots in figure A-3. 
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In equation A-19, the location of one filament is (x,y) and the location of the other filament is 
(x',y').  Both filaments have the same length l.  Thus, the approximate mutual inductance between 
the elements in terms of equation A-19 is 
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This approximation was checked with equation A-13 by setting wa = wb, ha = hb, ya = yb, and 
varying the distance between the centers, xb – xa.  The difference in the mutual inductances is 
well within one percent when the elements are bordering each other.  The two equations give 
nearly identical results when the distance between the centers is on the order of two to three 
times the width or height.
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When there is cylindrical symmetry and the conductors are divided up into concentric rings with 
square cross sections, the inductance matrix has the self-inductance of the rings on the diagonal 
and the mutual inductance on the off diagonal.  According to Grover1, the self inductance of a 
ring with a square cross section is 
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where c is the width or height of the square and a is the distance from the center of the ring to the 
center of the square.  N is the number of turns, but there is only one turn N = 1 for the rings.  The 
mutual inductance between two rings is approximated in the same procedure for estimating the 
mutual inductance between two rectangular bars, but by starting with the mutual inductance 
between two filamentary loops: 
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where r and r' are the radii of the filamentary loops and ∆z is the distance between their centers, 
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and 
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K(m) and E(m) are the complete elliptic integrals of the first and second kind, respectively.  
Using this formula for the filamentary loops, the mutual inductance between two rings that have 
rectangular cross sections.  Suppose that the rectangles in figure A-1 are the cross sections of two 
rings where the x-coordinate would be the z-coordinate for the ring and the y-coordinate would 
be the r-coordinate.  Thus, the mutual inductance of the two rings is then approximated by 
equation A-20.  The resistance for the ring is R = 2πa/σc2 , where c is the width or height of the 
square and a is the distance from the center of the ring to the center of the square, same as 
equation A-21.  σ is the conductivity of the ring.
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