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1. Introduction/Background 

Zinc oxide (ZnO) has previously attracted a lot of attention because of its large bandgap, good 
transparency, high electron mobility, biosafety, and other desirable characteristics.  ZnO has 
since found potential applications in optoelectronics, thin-film transistors, sensors, and energy 
harvesting applications (1).  The ability to repeatedly create nanostructured ZnO also makes it an 
attractive candidate for future electronic nanodevices.  The energy harvesting applications of 
ZnO nanowires are of particular interest to the U.S. Army as a potential means to reduce the 
quantity of batteries that need to be carried by the American Soldier.  Previous work by Wang et 
al. from the Georgia Institute of Technology demonstrated that small amounts of energy can be 
harvested from bending ZnO nanowires (2).  ZnO is piezoelectric, an inherent material property 
in which a mechanical stress results in the generation of an electric potential across the material.  
Due to the infancy of ZnO nanowires as an energy harvesting system, many challenges must be 
overcome and many questions still need to be answered. 

The charge-distribution created in a bent wire is a complicated model dependent on the strain 
gradients (3).  Depending on the type of bending and the device being created, different models 
have been proposed.  When a single nanowire, or an array of nanowires, is bent with an atomic 
force microscopy (AFM) tip, previous research suggested that the charge-distribution runs along 
the diameter of the nanowire (analogous to piezoelectric films) (2, 4).  However, when flexing a 
single microwire, the same research suggested that the charge-distribution in that case runs along 
the length rather than the diameter (5). 

Alternative models have been presented that assess the systems used in previous work, theorize 
ideal placement of electrodes, and propose new device designs and measurement systems (6, 7).  
The work on devices inspired by the piezoelectric effect exhibited by ZnO is still dominated by 
one primary research group, and not many instances of independent confirmation of successful 
energy harvesting systems have been documented (8).  Additional studies are required to 
determine the viability of such devices and evaluating their success in potential markets is still 
necessary. 

2. Experiment 

2.1 Nanowire Growth 

ZnO nanowires were grown on silicon (Si) substrates with ZnO seed layers using two different 
methods:  (1) vapor-solid growth using ZnO and graphite precursors and (2) hydrothermal 
growth using zinc nitrate (Zn(NO3)2) and hexamethylene tetramine (HMT). 
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2.1.1 Vapor-solid Growth 

Vapor-solid nanowires (NWs) were grown using a tube furnace with ZnO and graphite 
precursors.  The ratio of the precursors was 1:1.  The ZnO and graphite were ground and mixed 
together before being placed into the furnace.  The temperature of the furnace at the location of 
the precursor mixture was ~915 °C.  The substrate was placed downstream, where the 
temperature was ~760 °C.  The pressure in the tube was then reduced to 1 torr.  Nitrogen was 
flowed through the tube at a rate of 150 sccm, and 1 to 3 sccm of oxygen was injected near the 
substrate to aid in NW nucleation.  The growth time was 30 min, after which the furnace was 
turned off and the tube was allowed to cool to room temperature.   

2.1.2 Hydrothermal Growth 

Hydrothermal ZnO NWs were grown in solution using Zn(NO3)2 and HMT at 80 °C.  The 
solution was heated using a hot plate and mixed continuously using a magnetic stir bar at 60 rpm.  
The growth substrate was taped with two pieces of Kapton tape to the backside of a Petri dish, 
which was then floated on top of the solution.  During growth, the solution was covered with 
parafilm to minimize evaporation.  Although the hydrothermal method is performed at low 
temperature, facilitating the use of various substrates, growth can take up to 24 h. 

The purpose of using two different growth methods was to examine the differences in resulting 
morphologies and the respective effects on the piezopotential generated by one NW.  The 
experimental setups are shown in figure 1 with the associated results shown in figure 2.  Further 
investigation of precursors used for the solution growth method is ongoing to obtain longer 
wires.  Development of this growth process will aid in other areas where lower processing 
temperatures are necessary. 

 

Figure 1.  Experiment setup diagrams for vapor-solid and hydrothermal NW growth. 
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Figure 2.  Images of nanowires grown using vapor-solid (left) and hydrothermal (right) methods. 

Note:  The difference is shown in scale bars. 

2.2 Overview 

A general list of tasks was created to outline the steps necessary to design and implement a 
single-nanowire device.  An appropriate, non-charging substrate is necessary for identifying the 
NW’s position in a scanning electron microscope (SEM) before e-beam lithography.  Due to 
poor visibility of the NWs through the photoresist, the pattern was made using reference 
coordinates taken from an image of the NW before the photoresist was deposited.   

The chosen substrate was patterned with a large-scale mask to reduce the amount of time 
necessary to finish the e-beam write to the NW.  The NWs were to be transferred between two 
separate lithography steps.  A system for bending and measuring the piezoelectric potential was 
designed for use after contacting the NW.  Preliminary tests were performed using existing 
equipment:  a probe station and a Keithley 4200 Semiconductor Characterization System.  As 
needed, alterations were made to reduce ambient noise or interference.  If a higher frequency 
actuation is needed, the voice coil and associated controller (at Oregon State University) can be 
modified to bend the NW. 

2.3 Initial Tests 

After NW growth, a test of the mechanical transfer process was performed to move the vertically 
aligned NWs to a new substrate where the NWs were laid horizontally on the substrate 
(figure 3).  Images were taken using a SEM to see if pressing the two substrates together and 
lightly rubbing them was enough to transfer wires from one substrate to another.  Figure 4 shows 
that NWs could be successfully transferred to a silicon substrate with native oxide, and that a 
single nanowire could be isolated. 
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Figure 3.  Cross-sectional views of (a) growth substrate showing the 
silicon sample (grey), ZnO seed (blue), and nanowire growth; and 
(b) the transferred wire on substrate. 

 

 

 

 

 

Figure 4.  SEM images showing transfer of NWs from the growth substrate to 
the secondary substrate and isolation of a single ZnO NW. 

When choosing a substrate, there are a few considerations which limit the viable options.  
Potential transfer substrates should be flexible enough to bend without damaging the substrate or 
the measurement apparatus, but robust enough to withstand the device fabrication processing.  
Preliminary bending tests were performed using a probe station.  Alternatively, a carrier wafer 
could be used as long as the flexible substrate could be removed and handled without damaging 
the device.  As mentioned previously, the contacts to the wire are written using e-beam 
lithography.  The substrate must not undergo excessive charging in the environmental SEM 
(ESEM), so that the coordinates taken from images prior to photoresist (PR) placement are 
reliable. 

Various substrates were examined as candidates.  Table 1 summarizes the experiments and 
results obtained when trying to complete processing up through the first metallization and NW 
transfer.  Figure 5 shows the Kapton tape double-layer on an Si carrier.  Figure 6 illustrates the 
problems with the Kapton tape and gold (Au).  Figure 7 shows the SiO2 flaking off of the 
stainless steel (SS) substrate.    
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Table 1. A summary of the various substrate candidates and their results. 

Substrate Description Summary of Results 
Kapton tape on SS There were adhesion problems with platinum on Kapton tape.  During 

lithography, the Kapton started to peel off of the SS substrate.  A metal etch was 
unsuccessful because of adhesion problems.  We tried to sonicate the excess 
metal that was left and all metal was removed. 

Kapton tape double-layer on 
Si carrier  
(see figure 5) 

This sample was created as a double-layer Kapton tape sample that could be 
removed from the Si wafer once processing was complete.  Problems with the 
adhesion of the platinum on Kapton ruled out this substrate option as well. 

Aluminum oxide (Al2O3) on 
aluminum 

The thermal Al2O3 layer could not be grown thick enough on aluminum in the 
Blue M oven. 

Kapton  The Kapton has to be coated to reduce charging in the ESEM.  We tried an Au 
coating because oxygen plasma needed for removing carbon could change the 
electrical properties of the wires.  We tested the ability for Kapton to withstand 
potassium iodide (Au etch).  The Kapton survived the necessary etch times.  We 
tried coating and etching of ZnO wires on a Si substrate in parallel with trying to 
determine how much Au was needed to reduce charging.  The Kapton could not 
be coated with Au well enough to reduce charging in the ESEM in high vacuum 
mode, which was needed for e-beam writing.  Also, on the Si samples, when the 
Au was removed, the NWs were removed as well (see figure 6).   

Silicon dioxide (SiO2) on SS First, the Unaxis VLR 700 deposition tool was used to deposit SiO2 on the SS.  
The SiO2 flaked off of the substrate (see figure 7).  After some discussion, we 
discovered that the recipe on the Plasma Therm 790 was better developed.  We 
completed a successful deposition.  We successfully imaged the NWs as well. 

 

 

 

 

 

Figure 5.  The center square is adhesive side up, 
which is held in place on the Si wafer 
by the face-down Kapton tape. 

 

 

 

 

 

Figure 6.  The etch on Si showing that when the Au is completely removed, the 
NWs are removed with the Au. 
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Figure 7.  SiO2 on SS showing the flakes that resulted from using the Unaxis tool. 

3. Results and Discussion 

A non-charging substrate was discovered that could be integrated into a NW bending system 
through systematic trials.  NW transfer to the flexible substrate became more difficult with the 
integration of the large-size contacts.  Figure 8 shows the resulting transfers, where wires would 
gather around the Au contacts or not transfer as desired.  For future devices, only one set of 
large-size contacts (two per sample previously) will be patterned to leave space available for 
direct transfer of wires to the SiO2/SS sample.  

 

 

 

 

 

 

Figure 8.  The influence of large-sized Au contacts on the ZnO NW transfer. 

Initial measurements using the probe station and Keithley 4200 showed that ambient noise was 
greater than the piezoelectric measurements from actuation.  Preliminary testing was performed 
on samples that had NWs connecting the large-scale contacts rather than an e-beam patterned 
connection to a single wire.  The mechanical actuation of the sample was performed by mounting 
a sample to a larger stage and applying pressure with a probe tip on one side of the substrate.  

 



 

7 
 

4. Summary and Conclusions 

The results gleaned from experiments over a two-month period showed a necessity for minor 
revisions to the previously used processing technique.  We will continue this work at Oregon 
State University with an investigation of modified hydrothermal growth methods.  Using a 
microwave as a heating mechanism to decrease growth time has been suggested by Unalan et al. 
(9).  We will design experiments around determining the best growth parameters for obtaining 
NWs that are long enough (~1 µm) to pattern with e-beam lithography.   

To facilitate easier alignment of a single NW, we will perform electrophoresis studies.  
Additionally, the project could be extended to actuate multiple, horizontally aligned NWs at once 
to potentially increase the usable piezoelectric potential.  Measurement and actuation systems at 
Oregon State University will be developed in parallel.   

Continuing partnerships with ON Semiconductor and Hewlett-Packard will help ease the load of 
SEM analysis, which needs to be performed to examine the growth, transfer, and alignment of 
the ZnO NWs.  A research grade microwave, with integrated temperature control, is available for 
demo from CEM Corporation.  Plans to compare the piezoelectric output from ZnO NWs grown 
using different methods are in progress as well. 
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