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1. Introduction 

As the threats from terrorists and criminals appear to be intensifying dramatically over the last 
decade, both the public and private sectors have invested an enormous amount of resources to 
address concerns of physical and personnel security.  Due to the highly informative and easily 
understood nature of video display, video surveillance has long been embraced by security 
personnel in the form of closed-circuit television (CCTV).  Significant improvements in sensor 
technology, digital communication, data storage, and computing power have enabled and 
empowered the exponential growth of video security surveillance in recent years.  At a 
reasonable cost, practically any organization can install dozens of high-resolution, low-lux, and 
pan-tilt-zoom video security cameras around its facility, display the video outputs on a wall of 
large and bright liquid crystal display (LCD) monitors, and store the video data into digital video 
recorders (DVRs) with terabytes of memory.  In their 2006 report, Ball et al. (1) estimated that 
there might be as many as 4.2 million CCTV cameras in Britain, and a person could be captured 
on over 300 cameras each day.  The left image in figure 1 shows a group of surveillance cameras 
installed on a street light pole, which could have contributed to these surveillance statistics in 
Britain and elsewhere. 

Unfortunately, most of the surveillance video data in the world were collected, displayed, stored, 
overwritten, and forgotten over time, without anyone ever having promptly and reliably extracted 
the vital actionable information that could have been embedded in the ever-increasing streams of 
data.  This happens because human operators are simply unable and unwilling to monitor so 
many video streams over a long period of time.  In their studies, Sears and Pylyshyn (2) showed 
that a typical human operator may track up to four moving targets simultaneously, but is unable 
to keep up with neighboring distracters efficiently.  Both the number and speed of moving targets 
in the video streams are inversely related to the monitoring performance of human operators (3).  
Furthermore, the tracking capabilities of human operators are obviously bounded by spatial and 
temporal limits; thus, the effectiveness of monitoring degrades quickly as the wall of monitors 
becomes larger and the duration of screen-watching stretches longer.  In many force protection 
scenarios, the video streams carry either near-static or rather mundane views most of the time.  
As a result, human operators often lower their vigilance level and rarely watch any video 
surveillance stream at all.  The right image of figure 1 shows the reality inside the control room 
of a typical video surveillance network.  Most of the time, one or none of the many video 
surveillance cameras is actually monitored by someone.  
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Figure 1.  Left image shows a number of video surveillance cameras installed on a street light pole.  Right image 
shows a surveillance control room with a wall of video surveillance monitors.   

NOTE:  The question is how often is someone actually watching from the other end of these cameras?  In reality, a human 
operator can keep track of only a few video streams for some of the time.     

The problems described previously can be alleviated to a great extent by incorporating 
intelligent, efficient video analysis and threat warning algorithms into the video surveillance 
system.  In most cases, security personnel are interested in recognizing certain patterns of 
movement by certain types of targets or discovering certain unusual changes in the scene by 
viewing the video streams.  The closer an algorithm can perform the intended surveillance 
functions automatically, accurately, and efficiently, the higher acceptance and usage it will enjoy 
in the video surveillance community.  Obviously, many mundane movements and changes 
displayed on the monitors, such as wavering tree branches driven by strong wind and changing 
shadows due to sun movement, are to be ignored in general.  Algorithms have been proposed to 
suppress such benign background distracters, including swaying trees in wooded scene (4) and 
roaring waves at beaches (5), with some success.   

Human and vehicular movements are the primary foci of video surveillance personnel in general, 
even though most of these movements are usually benign and normal in the settings under 
surveillance.  Instead of having to follow the tracks of all the movements, security personnel 
would be better served if they were only alerted to examine those tracks that were automatically 
flagged as suspicious movements by intelligent video surveillance algorithms.  Based on the 
Dempster-Shafer theory of evidence framework, for instance, Snidaro et al (6) proposed a real-
time trajectory clustering algorithm to learn common patterns of activity, and then detect any 
unusual trajectories that may need a closer scrutiny for behavior analysis and situation 
assessment.  Sometimes, only human targets are monitored by the security personnel due to a 
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higher level of threat and suspicion associated with the presence of pedestrians in certain 
scenarios.  A number of algorithms were proposed to detect human moving targets in video 
streams (7), including but not limited to those methods based on human gait motion (8), skin 
detection (9), and face recognition (10).  On the other hand, some surveillance applications (e.g., 
monitoring highway traffic congestion using ground sensors [11]) or sensor limitations (e.g., too 
few pixels on human targets can be picked up by aerial sensors situated at high altitude [12]) 
may restrict the target set to vehicular objects only.  Examples of existing vehicular tracking 
algorithms include those based on Projective particle filter (13) and rigid body target modeling 
(14) approaches. 

In addition to human and vehicular movements, security personnel may also be interested in 
some abnormal changes in the scene, such as abandoned baggage, removed property, or oddly 
positioned objects.  While these irregularities can be harmless at times, they may well be the 
indications of improvised explosive devices (IEDs), burglary, illegal parking, malicious 
intrusion, personnel injury, or structural damages that need immediate attention.  For instance, 
Bhargava et al. (15) described a general framework to detecting an unattended baggage in 
forbidden areas, based on the temporal flow leading to the event.  By backtracking and analyzing 
the recorded video stream, the true owner of the suspicious baggage may be identified and 
investigated.  A number of approaches were proposed to perform and improve the detection of 
these movements and changes in video streams, some of which were summarized by Hu (16) and 
Morris (17) in their survey paper, respectively.  Obviously, detecting the movements and 
changes alone may not be useful enough to understand what is happening and what the response 
should be.  There is a need to recognize the underlining activity and behavior based on the 
movements and changes observed, as well as any prior or external information related to the 
given scenario.  In recent years, semantic understanding and interpretation (18) of video events 
by machines—the automatic recognition of human behavior and activities (19, 20), in 
particular—has emerged as an important but challenging multi-disciplinary research area. 

Due to the security requirements of military facilities and the growing threats of terrorists, 
military physical security personnel are increasingly worried about potential intrusions by 
unauthorized personnel and vehicles, as well as unconventional attacks by hostile elements.  
Human and vehicular movements at certain times, areas, speeds, and directions can be deemed as 
suspicious, while object-abandoning, box-carrying, picture-taking, and wall-scaling are abnormal 
activities that are worth a closer look.  With the objective of enhancing the physical security of 
critical facilities, the Force Protection Surveillance System (FPSS) has been developed using an 
intelligent Moving Target Indication (MTI) algorithm.   

FPSS processes input video streams, tracks the targets of interest in the scene, and reports critical 
information, such as potential intrusions and suspicious activities, to the security personnel 
immediately.  Early discovery of these suspicious objects or events may enhance the safety and 
security of the protected community.  For example, prompt detection of an abandoned package 
near a parking lot may avert a deadly IED attack by defusing the bomb in a timely manner.  
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Many suspicious objects or events may occur after night fall and will not be detected by human 
eyes or electro-optical cameras operating in the visible spectrum.  Therefore, the FPSS was 
designed to process both color and forward-looking infrared (FLIR) imageries, so that it may 
perform well around the clock and under visually challenging conditions, including foggy or 
smoky scenes.  On the other hand, FLIR imagery has its own share of phenomenological 
challenges, which include reversed polarity of the same targets in different seasons, varying 
target-to-background contrast as the ambient temperature changes over the course of a day, and 
often spotty heat emissivity from a given large target.  The FPSS algorithm is able to achieve 
satisfactory tracking performances by overcoming some of these FLIR difficulties in particular.   

The backbone of the FPSS algorithm is a set of disjoint intermediate background models that are 
intelligently structured to form accurate and dynamic representations of the most recent scenes.  
Using an adaptive background subtraction method, the signatures of moving targets are first 
captured and then enhanced through a set of image filters to reduce noise and ambiguity.  The 
next movements of these targets are reasonably estimated using a set of kinematic predictors, so 
that a persistent track can be maintained.  The details of these methods are provided and 
explained in the next section, while section 3 describes the experimental setup and results 
pertained to the FPSS algorithm.  Some concluding thoughts are given in the final section of this 
report. 

2. FPSS algorithm 

After the FPSS algorithm is initiated, it accepts image frames from an input video stream for its 
preprocessing stage.  In real life scenarios, sometimes the input video stream may not contain the 
anticipated video signals due to a foggy scene, a blocked field of view, or failures in camera, 
transmission line, or video capture card.  Therefore, it is prudent to first examine whether or not 
the input image frames contain any discernable features by computing the mean and standard 
deviation of all pixel values of each input frame.  If blank or near-blank image frames are 
detected, these frames will be discarded from further processing and a warning alert is sent to the 
human operator.  Otherwise, the image frames will be uniformly down-sampled to speed up the 
tracking process, while maintaining an acceptable level of tracking performance.  The amount of 
down-sampling is set by the human operator, which is often dependent on the original resolution 
of input images, the number of pixels on the smallest target of interest, and the reasonable trade-
off between speed and accuracy for a given tracking task and condition.   

The image frames acquired from different cameras, especially those with multiple-byte value per 
pixel, may vary significantly in terms of dynamic range and minimum value of the pixel values.  
Some cameras also automatically adjust their dynamic range and brightness periodically.  To 
reduce this kind of variability and disturbance, FPSS normalizes the dynamic range of all input 
images by applying histogram equalization on them.  Optionally, median filtering can be applied 
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to reduce salt-and-pepper noise that may exist in the original input images or is somehow 
induced by the previous preprocessing steps.  Given the computationally expensive nature of 
median filtering, it is recommended for fairly noisy input image streams only.  

At the end of the preprocessing stage, the resulting images are fed through an adaptive 
background modeling module, a target detection module, and a target tracking module 
sequentially.  These three modules are described in the following subsections.   

Background modeling 

In order to detect moving targets in a video stream, typical approaches (21) may include 
background subtraction (22), optical flow analysis (23), moving energy analysis (24), and 
temporal differencing (25) methods.  Among these approaches, background subtraction is the 
most popular method due to its simplicity in implementation and efficiency in computation, 
especially when the input video streams are captured by fixed cameras.  Compared to other 
approaches, the background subtraction method provides the most complete feature data, but this 
method is rather sensitive to environmental changes in a dynamic scene and not suitable for the 
applications where the cameras are moving.  On the other hand, optical flow method is capable 
of detecting independent moving targets in video streams captured by moving cameras, but its 
computational complexity and requirements may exclude this method from real-time, full-frame 
video surveillance applications.  To the opposite of the background subtraction method, moving 
energy analysis is robust in detecting certain targets buried in a complex and dynamic scene, but 
this method is unable to extract exact feature data of the moving targets.  Similarly, the temporal 
differencing method is also very adaptive to complex and dynamic scenes, but it is not capable of 
extracting all relevant feature data, in general.  Because the surveillance cameras for force 
protection applications are usually installed at fixed locations, and the scenes around military 
installations are usually not very complex or dynamic, the background subtraction method was 
chosen and implemented for the FPSS algorithm.   

The FPSS background modeling and subtraction process is depicted in figure 2.  Each input 
image is first filtered by a stability mask and then channeled through four imager buffers of equal 
size and depth.  The images in Buffers 2 and 4 are used to generate Background Models 1 and 2, 
respectively.  Instead of creating it anew from Buffer 4, Background Model 2 can also be 
obtained from a buffer of models that is continuously replenished by the outgoing 
representations of Background Model 1.  By subtracting the next input frame from these 
background models, we can obtain two separate difference images.  A difference-product image 
(DPI) is then generated by multiplying these two difference images pixel by pixel.  In addition to 
its function of affecting the properties of stability mask from time to time, the DPI is also 
essential to the subsequent detection and tracking processes of FPSS.  
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Figure 2.  The schematic diagram of the background modeling process in FPSS.      

To begin the background modeling process, the first successfully preprocessed input image 
frame is used to fill up all image buffers and to become the initial background models.  For each 
of the subsequent input image frames, a simple frame registration procedure is used to reduce 
any potential jitter effects incurred by shaking cameras.  A number of small and evenly 
distributed image patches are defined, each of which is allowed to move within a predefined 2-D 
neighborhood on the input image.  By moving a patch within its neighborhood, a better match 
region between the input image and the current background model around that location may be 
found.  The horizontal and vertical movements associated with the best match, (m*, n*), for a 
given patch are computed as follows: 

, (1) 

where Ii (x, y) and Ib (x, y) is the pixel intensity value of the input image and background model 
at location (x, y), sx and sy are half of the horizontal and vertical neighborhood size that each 
patch is allowed to roam, and px and py are the horizontal and vertical size of each patch, while g 
and h is the horizontal and vertical shift of a given patch from the upper-left corner of the input 
image, respectively.  The values of g and h are dependent on the number, size, and distribution 
pattern of the patches, while the total size of all patches should not cover a significant portion of 
the input image.  
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When a noticeable and consistent movement is recorded by the majority of the patches, then a 
frame-wide jitter or movement may have occurred.  Based on this consistent movement, the 
input image is shifted accordingly in order to achieve better registration with the current 
background model.  This method works well with small jitters, such as those incurred by wind, 
but is not suitable for drastic scene changes caused by pan-tilt-zoom operations of the camera.  
These drastic changes are handled by the background updating procedure, which often requires a 
complete flush of the current background model and replacing it with the new scene.     

Each of the jitter-free images is then subtracted from the two background models to produce a 
DPI.  When the two background models are identical to the first preprocessed input image, the 
resulting DPI is merely a difference image with squared difference value for each pixel.  The 
product term introduced in this step is useful for the subsequent target detection module, because 
bright blobs will be generated for all moving targets regardless of the polarity of their original 
brightness with respect to their immediate background.  Although taking the absolute value of 
each pixel in the first difference image may achieve similar effects in the beginning, the DPI 
exhibits much better characteristics when the two background models later evolve into two 
background representations that are clearly disjointed in time.  For instance, transient noise will 
be better suppressed in the DPI than in an absolute-difference image.   

Typically, the preprocessed input image frame contains a mostly stable background with a 
number of small but volatile areas caused by moving objects and other transient events.  In order 
to prevent these rapidly changing foreground pixels from ruining the background model, a 
stability mask is used to filter out all unstable pixels from the input image frame.  Supported by 
the information provided by the DPIs, this stability mask looks for significant intensity changes 
based on a predefined threshold of variability and maintains a record of stability index at each 
pixel location.  Only the stable pixels on a given input image frame are fed to Buffer 1, while the 
once-stable but now active pixels are blocked and substituted by the corresponding stable pixels 
available from Buffer 1.  Figure 3 clearly shows the positive effects of the stability mask in 
generating stable background models.  Without the stable background models, it will be much 
harder to detect and extract legitimate moving objects in the scene, while additional false alarms 
will likely be generated.   
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Figure 3.  The effects of stability mask on background models.  Left image shows that active foreground pixels 
(identified with red ovals) could seep in and ruin the background models when the stability mask is 
deactivated.  Right image shows a much cleaner background model when the stability mask is activated. 

Each newly arrived set of pixel values replaces the oldest frame in Buffer 1, while the oldest 
frame of Buffer 1 becomes the newest frame in Buffer 2.  The same mechanism of first-in first-
out (FIFO) frame-shift and update is applied to all image buffers continuously.  The number of 
image frames stored in each buffer is defined by the FPSS user, with 3–10 frames as a reasonable 
number under most circumstances.  The role of Buffer 1 is merely a time-delay buffer, so that 
there is a noticeable gap in time—and potentially in content—between the current input image 
and the image frames in Buffer 2.  Background Model 1 is derived from the images in Buffer 2, 
which can be as simple as taking the average of all images in Buffer 2.  Similar to Buffer 1, 
Buffer 3 is just another buffer to separate Buffer 2 and Buffer 4 in time.  Background Model 2 
can be obtained by either processing (e.g., averaging) the images in Buffer 4 or drawing from the 
Buffer of Models supplied by Background Model 1.  The same background modeling structure 
depicted in figure 2 can be extended to include four or a larger even number of background 
models.  The extended structure is able to achieve even more stable background representations 
and higher target enhancement capabilities at the expense of additional computational resources.   

One of the advantages of using multiple disjoint background models to generate a DPI is that the 
problematic “trailing effect”, which is often associated with background subtraction method, can 
be suppressed effectively; because those gradually fading trails carved out by the moving objects 
are now showing up in different parts of the two difference images, they are likely to diminish or 
disappear when the DPI is formed, as demonstrated in figure 4.  Another advantage of this 
method is that the trails are now clearly detached from the moving objects, which allows the 
subsequent target detection module to estimate the size and location of those movers more 
accurately.  With improved estimation in target size and location, the target tracking module may 
then perform better in motion estimation and track maintenance. 
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Figure 4.  Enhancement of target signatures and suppression of trailing effects and noises are achieved 

simultaneously in a DPI.  Two difference images on the left show the trailing effects and random noises in 
different places, which are suppressed in the resulting DPI.  Signatures of legitimate moving targets 
appear in the same locations on both difference images, thus, they are enhanced in the DPI through the 
multiplicative process.   

An even number of background models are needed in the formation of DPI to address the 
problem of target polarity, which is a common target detection problem, in general, and a FLIR 
target detection problem, in particular.  As the seasons and ambient temperature change, the 
same type of moving targets (e.g., walking humans) observed in FLIR imagery may assume 
different polarity of pixel intensity with respect to their immediate background due to automatic 
gain control (AGC) of the camera.  Figure 5 shows a pair of FLIR images that exhibit polarity 
change in human signatures during different seasons of the year.  A similar problem occurs in the 
visible imagery when the illuminance of moving targets is flipping between or occupying in both 
the upper and lower sides of the illuminance of their immediate background.  Using a single 
difference image or a DPI computed with any odd number of difference images to detect the 
moving targets will have to pick the locations with both positive and negative values 
simultaneously and appropriately, which is not always easy or straightforward.  This problem is 
alleviated, however, simply as a by-product of forming the DPI using an even number of 
difference images.   
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Figure 5.  Polarity changes are common in FLIR cameras equipped with automatic gain control.  Left image shows 
that human signatures are clearly brighter than their background in a typical winter afternoon.  Right 
image shows that human signatures are much darker than their background in the same parking lot during 
summer time.    

Target detection 

The function of the target detection module is to estimate the size and location of all moving 
targets in the current input image frame based on the information received from the background 
modeling module.  As described in previous subsection, a DPI is generated by multiplying two 
or any even number of difference images pixel to pixel.  The surface of the resulting DPI is often 
rough and plagued with gaps.  Therefore, a morphological operation is used to remove small 
spikes and to fill up small gaps on the DPI.  Usually, this smoothing process is achieved by a 
sequence of opening and closing operations, with a window size of 3 × 3 or 5 × 5 pixels in FPSS, 
based on the typical target sizes observed in the FPSS dataset. 

Although the morphological operation does make the surface of DPI smoother and more 
connected, it does not necessary enhance the centroid and overall silhouette of the moving 
targets.  A pyramid-means method is used in FPSS to increase the “blobiness” of moving targets 
by replacing each pixel value of the morphologically filtered DPI with the average of three mean 
pixel values that are computed based on the surrounding three different-sized rectangular areas.  
Figure 6 shows the DPI (upper-right) of a given input image frame (upper-left), as well as the 
post-processed DPI after the morphological (lower-left) and pyramid-means (lower-right) 
operation, respectively.  It is obvious that the morphological filter has removed all noticeable 
speckle noises caused by spurious movements, while improving the structure of the target 
signatures.  The pyramid-means operation has significantly increased the “blobiness” of the 
target signatures, especially those pertinent to human targets in this example.  
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Figure 6. The upper-left image is an image frame in a FLIR video sequence.  The upper-right image is the 

corresponding DPI with some small but clearly visible noises.  These noises are removed after the 
morphological operation (lower-left).  The “blobiness” of moving targets is increased in the lower-
right image through a pyramid-means method.      

The actual moving target detection process begins with finding the brightest pixel on the post-
processed DPI, which is usually associated with the most probable moving target in the given 
input frame.  The size of this target is estimated by finding all the surrounding pixels that are 
deemed as connected to the brightest pixel.  This connectivity is determined by the existence of 
an unbroken path from a given pixel to the brightest pixel, where each pixel in this path must 
satisfy a predefined or adaptive threshold of brightness.  In FPSS, the connectedness is explored 
by performing multi-directional recursive searches emanated from the brightest pixel.  The 
farthest extents of those searches are used to establish the horizontal and vertical boundaries of 
the current target.  For the sake of simplicity, a rectangular area defined by these boundaries is 
considered as the shape and size of the given moving target.  In figure 7, for example, the first 
moving target detected in this input frame is a fast-moving car that is tagged as Target 1 and 
delimited by a blue bounding box.   



 
 

 12 

 
Figure 7. Three moving targets are detected on this input frame, which are tagged as Targets 1, 2, and 3, 

respectively.  The size of each target is delimited by a rectangular bounding box and the potential type of 
target is represented by the color of the box.  The green area is a “don’t care” zone, while the red area is a 
“critical” zone.   

After the first moving target is detected, all the pixels within that rectangular target-sized area are 
flattened to the minimum value of the post-processed DPI, so that none of these pixels will be 
considered again as another potential moving target.  The detection process continues by finding 
the next brightest one among the remaining pixels and repeating the process until all the pixels 
are flattened, a predefined number of detections are obtained, or other user-defined parameters 
have prevented further searches.  These parameters may include the minimum and maximum 
size of potential targets, the proportion of overlapping area allowable between adjacent targets, 
and the “don’t care” area, in which all detections should be ignored.  In figure 7, the green area is 
a “don’t care” zone that covers a public road outside of the main gate; the traffic activities in that 
area are ignored by FPSS.  On the other hand, the red patch is a wooded area just inside of the 
main gate, which is a “critical” zone, where movements are subjected to a higher level of 
scrutiny.  A total of three moving targets are detected on this input frame, one of which is found 
in the critical zone.   
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As shown in figure 8, the FPSS can also perform change detection by focusing on stationary 
changes between the current input image and a previously saved reference background.  The 
reference background can be refreshed at any time, or a number of reference backgrounds can be 
created and saved for different times and scenes.  In addition to detecting abandoned objects, this 
function is also very useful in detecting purposely move-and-stop objects, such as snipers in a 
wooden area.  The change detection and moving target detection can be operated concurrently or 
separately in FPSS, and they are controlled by two independent sets of parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.  FPSS change detection capability.  A man left a suitcase on the traffic island adjacent to parking lot 
(lower-right and middle images).  FPSS detected the scene change and highlighted the abandoned object 
within a few seconds (upper-left image).  

The results of change detection and/or moving target detection are reported to the user via a 
graphical user interface (GUI).  As shown in figure 9, the GUI of FPSS allows a user to enter or 
modify a number of parameters related to the file directories, input images, potential targets, 
tracking characteristics, background modeling, and jittery control.  Furthermore, the user may 
define, activate, deactivate, and remove any “don’t care” zone, “critical” zone, and trip wire by 
using this GUI, as well.  The detected moving or changed targets are annotated or highlighted 
over the input image frame for easy understanding.  The tag number, location on the image, size 
in pixels, and activation strength of all detected targets on each input frame are displayed at the 
bottom-right corner of this GUI.  This GUI can also be used to extract image chips based on the 
location and size of all detected targets for other security surveillance applications, including a 
profiling sensor for human detection.    
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Figure 9.  The FPSS graphical user interface.  

Target tracking 

The target tracking module uses the moving target information, extracted by the target detection 
module over a period of time, to build and maintain the track of each moving object.  In order to 
build a meaningful track, it is required that a noticeable moving target must appear on multiple 
contiguous frames in a video sequence.  This requirement may not be met when the target is 
moving across the field of view of the camera at a very short range and/or a very high speed, or 
when the camera is operated at a very low frame rate, the target is occluded for an extended 
period of time and/or behind a very large obstacle, or a combination of these and other 
detrimental factors.  
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Assuming the aforementioned requirement is met, the target tracking module in FPSS uses 
previous locations, velocity, and target size of a moving target to predict the destination of its 
next movement.  Interestingly, as depicted in figure 10, most of the moving targets follow a 
rather straight traveling path (presumably the shortest and/or most feasible path) and a rather 
constant velocity most of the time.  The perceived speed within the field of view also tends to 
positively relate to the observed size of the moving targets, either because the movers are 
traversing nearer to the camera or the bigger vehicles are moving faster than the smaller people.  
Based on these observations, the next destination of a moving target can be predicted fairly 
accurately.  This is achieved by generating and updating a destination probability density map, in 
which the highest probability is assigned to the anticipated destination under an unchanged 
velocity.  The spread of this destination map is proportional to the size of the moving target, 
because larger moving targets are more likely to end up in a broader span and range of 
destination.  The shape and size of this destination map is also influenced by the velocity history 
of the moving target; for instance, a small elliptical destination map is reasonable for a slow and 
straight movement.  

Charting the track of a single and open moving target is generally less of a challenge.  Quite 
often, there are several moving targets of different sizes and velocity in a given proximity and 
their paths may cross or mix with each other.  Under this circumstance, a moving target detected 
at a given location needs to be examined and compared with other targets in the area to avoid 
inadvertently mixing the tracks and wrongly tagging the targets.  In addition to the target size 
and destination map information, a template match method is also used to further differentiate 
the moving targets from each other.  Unfortunately, this approach does not always work; for 
instance, some people may look identical from a FLIR camera on the rooftop.  Furthermore, 
when multiple groups of people merge, regroup, and then split again, tagging error is very likely 
to occur unless there are very distinctive features available to tell them apart from distance.  

Another problem of track maintenance occurs when the moving targets become stationary for an 
unspecified amount of time.  Sometimes a walking target may stop for a minute and then start 
moving again.  In this case, the tracking algorithm should wait for a while and not create a new 
track for the same target when it starts moving again.  On the other hand, if a vehicle comes into 
a parking lot and the driver leaves the vehicle soon after that, then the track for the vehicle may 
need to be terminated, and a new track created for the driver who is walking away.  FPSS has 
different parameters to define temporary stopped and permanently gone instances.  Targets that 
are deemed to have moved out of the scene for a period time are labeled gone and their tracks 
terminated. 
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Figure 10.  Using the track history (purple arrow) of a moving target, the FPSS predicts the likely directions and 
locations (yellow arrows) of the target in the near future. 

Efforts are being made to improve the FPSS so that it may detect suspicious behavior and 
activities based on tracks analysis.  For instance, if a vehicle comes and parks for a long time and 
no driver is seen leaving the vehicle, that vehicle may be considered suspicious and some 
additional actions may be necessary.  Similarly, when one or more humans are detected as 
moving aimlessly in a large parking lot for a period of time, it may be worth a closer look to find 
out whether or not they are loitering, disoriented, or doing some other suspicious activities.   

Obviously, there is a need to develop robust algorithms to detect and categorize the observed 
movements into more user-friendly semantic descriptions, such as “loitering,” “loss of 
direction,” “hijacking,” and “illegal parking.”  These algorithms may rely on a sensible and 
effective set of rules and efficient data mining procedures to augment current tracking results 
with prior or external information, including functional scene descriptions, expected movements 
in a given area, rules and prohibitions in parking, speed limit, time of the day, weather condition, 
threat level of the installation, special occasion, and other related factors.  
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Extended time coverage over an area of interest is crucial in understanding the normal pattern of 
activity in that area.  Figure 11 shows the track history for a given area over the course of a few 
hours.  As expected, most of the traffic occurred along the road and sidewalk.  However, there 
are a number of suspicious tracks that crisscross the road to a steep slope, as well as tracks 
entering and exiting a small tent on the grassy patch between the road and sidewalk.  These 
suspicious movements are strangely deviated from the established norm for this area.  Therefore, 
an investigation is aptly warranted.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.  Analyzing the track history (red arrows) is useful in establishing a normal pattern of movements and 
detecting suspicious movements in a scene.  

3. Experimental Results 

In order to have a quantitative assessment on the FPSS algorithm, we examined its performance 
using a large and realistic set of parking lot video events collected from a fixed rooftop camera.  
The resulting FPSS detections were compared to the corresponding moving target ground-truth 
information that was manually generated by human experts.  The dataset and the corresponding 
FPSS results are further described in the following subsections. 
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Dataset 

The dataset used in this performance assessment is referred to as the Second FPSS Dataset in this 
report, which was collected using the Thermal Vision Sentry Personnel Observation Device 
(POD) manufactured by the FLIR Systems.  Shown as the left image in figure 12, the Sentry 
POD consists of a long-wave infrared (LWIR) uncooled microbolometer and a color visual 
camera, which are bore-sighted and integrated in a sealed enclosure.  The microbolometer has a 
focal plane array (FPA) resolution of 320 × 240 pixels and a field-of-view (FOV) of 24° × 18°, 
while the color visual camera is capable of producing 460 NTSC TV lines and its FOV was set to 
about 24° horizontally, as well.  Instead of producing calibrated pixel intensities that are 
consistently tied to the actual surface temperature of the scene observed, the Sentry POD 
constantly stretches the observed thermal profile across its intensity spectrum to maximize the 
contrast of the imagery outputs.  Due to this AGC function of the Sentry POD, the resulting 
LWIR signatures for a constant-temperature object, such as a human, may change based on the 
background temperature in different scenes.  The Sentry POD was installed on a rooftop and 
surveyed a parking lot nearby.  The right image of figure 12 shows a typical view of the parking 
lot on a sunny day from the rooftop.  

In the Second FPSS dataset, there are 53 concurrent pairs of color-FLIR image sequences, 
recorded at 10 Hz and stored in JPEG image format, totaling 71,130 image frames.  A global 
linear transformation method was used to co-register each color-FLIR image pair to an 
acceptable level, while scaling the registered images to a common size of 640 × 480 pixels.  
Most of the scenarios in this dataset were actively staged by collaborators to represent a variety 
of suspicious activities and behaviors, such as a man abandoning a suitcase beneath a car, several 
people loitering around the parking lot, and passengers running away from a van.  Figure 13 
shows the color and FLIR images of a man soon before he abandoned his suitcase beside the 
trashcan next to the stairway.  By comparing the lamp post at the upper-left corner of these two 
images, the color image on the left appears to exhibit a higher degree of warping at its corner 
area than that of the FLIR image.  
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Figure 12.  The Sentry POD used in the FPSS data collection effort (left) and a typical view of a parking lot (right). 

 
 

 

 

 

 

 

 

 

Figure 13.  A pair of concurrent Color-FLIR images in the Second FPSS Dataset that was coarsely co-registered. 

This dataset was collected in many separate occasions and under different weather conditions 
over a period of several months, hence it exhibits a wide range of variability and challenges.  For 
the color sequences, there are common problems of shadows under the bright sun, headlight 
glare and windshield reflections at night hours, and the inability to detect and track the targets 
occluded by darkness, fog, and rain.  For the FLIR sequences, some moving targets assume a 
temperature profile that is very similar to that of their immediate backgrounds, hence the target 
signatures are often faded into the background and become very difficult to detect consistently.  
Furthermore, there are many complex trajectories of moving targets in these scenarios, where the 
paths of people and vehicle are often obscured, crossed, split, grouped, and regrouped from time 
to time.  
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Accurately extracted ground-truth information is very important in providing a trustworthy basis 
of reference for any algorithm performance assessment.  Using a GUI, the locations and target 
types of all moving targets in each frame in the FPSS dataset are manually but efficiently 
determined and recorded.  As shown in figure 14, this GUI allows users to detect, track, classify, 
and record the targets of interest in a given image sequence with ease.  There are five categories 
of target type defined in this GUI, namely, “person,” “vehicle,” “animal,” “unknown,” and 
“other,” where the “other” category can be specified differently on each frame as necessary, such 
as lawn-mover, motorcycle, or ignored-car.  The information provided by the user for each 
sequence is saved to an ASCII ground-truth file, which contains the number of moving targets in 
each category and the corresponding X-Y coordinates for the center of each moving target in 
each frame.  In hindsight, we should have also generated a bounding box to represent the size of 
each moving target and assigned unique name tags to differentiate all moving targets in a given 
sequence.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14.  The graphical user interface used for the FPSS ground-truthing effort. 
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Performance and analyses 

For a given video input sequence, the FPSS algorithm produces the location and estimated size 
of each potential moving target on each frame.  An acceptance window is defined as a rectangle 
centered at a given FPSS detection with a dimension equal to the target size estimated by FPSS 
for that detection.  This definition of an acceptance window is used here because the ground-
truth size of moving targets is not available for the FPSS dataset, and the target size estimated by 
FPSS is deemed to be quite comparable to actual target size based on visual comparisons.  If a 
ground-truth target falls within the acceptance window of any FPSS detection, it is declared as a 
hit.  Multiple detections on the same target are counted as only one hit, but multiple ground-truth 
targets within the acceptance window of an FPSS detection are considered as a hit for each of 
those targets.  Any ground-truth target that is not linked to any FPSS detection is considered as a 
miss, while a false alarm (FA) occurs when an FPSS detection cannot be associated with any 
ground-truth target for that frame.   

For the initial detection runs in this experiment, the minimum acceptance threshold of FPSS was 
set to 500.  In other words, only the pixels with a value of 500 or higher in the post-processed 
DPI were considered as potential target locations.  At this setting, 63,017 of the 70,540 ground-
truth targets in the 35,565 color images were associated with 47,059 of the 62,747 detections 
generated by the FPSS.  This detection performance is translated into a hit rate of 89.34% or a 
miss rate of 10.66%.  Given the 15,688 FA generated in this run, the FA rate can be expressed as 
15,688/35,565 = 0.441 per frame.  When the minimum acceptance threshold of FPSS is raised, 
the number of detections is decreased, and so are the numbers of hits and FA.  The resulting 
receiver operating characteristic (ROC) curve for the detection performance on the color 
sequences is shown as the top graph in figure 15, where a low hit rate of 14.63% is obtained for a 
small FA rate of 0.066 per frame.  Depending on the perceived or actual penalty of missing an 
important target and the cost of processing an additional FA, human operators may choose 
different zones on this ROC curve to operate the detection system.   

For the FLIR sequences, 66,951 of the 73,187 targets in the 35,565 FLIR images were correctly 
detected by FPSS when its minimum acceptance threshold was set to 500.  In other words, the hit 
(miss) rate of 91.48% (8.52%) was achieved in this case, while the accompanying 9,284 FA 
resulted in a FA rate of 0.261 per frame.  Because a number of detections were linked to more 
than one ground-truth target, there were only 62,619 detections generated by the FPSS in this 
case.  By changing the minimum acceptance threshold, an ROC curve was also generated for the 
detection performance on FLIR sequences.  The resulting FLIR ROC curve, which is shown as 
the bottom graph in figure 15, shows a hit rate of 29.01% at a FA rate of 0.032 per frame at its 
conservative end.  
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Figure 15.  The ROC curve for the color (top) and FLIR (bottom) sequences, respectively. 
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The two ROC curves in figure 15 may look alike at the first glance, but the FLIR ROC curve 
indicates that the number of FA was reduced by more than 40% by performing detection on the 
FLIR sequences, while achieving slightly higher hit rates along the way.  This significant 
reduction of FA in FLIR imagery can be attributed to the absence of nuisances associated with 
shadows, glares, and reflections, while these distractions often generate many FA in the color 
sequences.  On the same number of image frames, the FLIR sequences also have 2,647 more 
ground-truth targets than the color sequences have, mainly due to the consistent presence of 
FLIR target signatures in night scenarios, whereas the color targets may appear in lighted areas 
but disappear into darkness periodically.  Clearly, the FLIR sensor has certain advantages in 
security surveillance applications.  

Because the color targets are more readily blended into their background due to darkness, fog, 
and clothing, they are more likely to be omitted during the ground-truthing process, as well.  
Although they were omitted from the ground-truth files, these evasive color targets may still be 
correctly detected by FPSS but wrongly labeled as FA due to the absence of ground-truth 
information.  This is another potential reason for the higher miss and FA rates for the FPSS 
performance on the color sequences. 

In order to avoid spurious tracks, FPSS ignores all transient moving objects that appear on just a 
few frames, even though some of these short-lived transient moving objects may, indeed, be 
legitimate targets registered in the ground-truth files.  FPSS also starts to track a moving object 
only after its consistent appearance is firmly established.  During this wait-and-see period, no 
detection is produced and all the ground-truth targets in these “tentative” frames were declared as 
misses by default.  Although this “built-in” loss of detections negatively affects both the color 
and FLIR sequences, its effect is somewhat limited if the typical tracks of interest are sufficiently 
long as compared to the number of tentative frames.   

Unlike some tracking algorithms, FPSS was designed for real-time performance and, hence, does 
not perform backtracking to recover potential misses and update the track based the detection 
results right before and after those misses.  If a delay of several seconds in producing the 
tracking output is tolerable, then the performance of FPSS can be significantly improved by 
recovering many of the missed detections, including those omitted during the wait-and-see 
period in the beginning of each track, using newer information obtained after those misses.  With 
the advantage of looking ahead and the resulting higher track consistency, many FA can be 
eliminated as spurious noises and inconsistent movements.  As a result, the overall tracking 
performance is improved by achieving a higher detection rate and a lower FA rate.  
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4. Conclusions 

Although human experts may be able to monitor one or two video surveillance cameras 
effectively by extracting meaningful information on moving and changed targets, recognizing the 
behavior and activities present in the scenes, and predicting the next movement or outcome with 
high confidence level, it is impossible to have enough human eyes and minds to process millions 
of video surveillance data continuously, efficiently, and economically.   

The FPSS algorithm provides a practical solution that reduces the workload of security 
surveillance personnel, and increases the physical security of the monitored facilities by alerting 
the security personnel on moving and changed targets that satisfy some predefined characteristics 
and conditions.  Based on these valuable and highly compressed alerts, the security personnel 
may respond to the potential threats in an informed and timely manner. 

This report provides a rather detailed description and explanation of the FPSS algorithm in 
section 2, which is supplemented with the FPSS algorithm flowcharts in appendix A.  The FPSS 
algorithm, as described in this report, was submitted to the U.S. Patent and Trademark Office in 
2005 in order to be recognized as a valuable intellectual property.  Eventually, United States 
Patent Number US 7,460,689 B1 titled “System and Method of Detecting, Recognizing, and 
Tracking Moving Targets” was granted in 2008, with the author of this report as the sole 
inventor of this technology. 

The FPSS detection results provided in this report were the first set of quantitative measurements 
on the performance of FPSS.  Using a large, ground-truthed, and security-oriented video dataset, 
the detection results of FPSS were found to be comfortably high and reliable, detecting about 
90% of all known moving targets at a rather low false rate for both color and FLIR sequences.  
With additional research and improvements, such as short-term backtracking, long-term track 
analyses, and multi-sensor fusion, the FPSS may be further enhanced in terms of tracking 
accuracy and robustness in event characterization.  
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Appendix A.  Flowcharts for the FPSS Algorithm 
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List of Symbols, Abbreviations and Acronyms 

AGC  Automatic gain control  

ASCII  American Standard Code for Information Interchange  

CCTV  Closed-circuit television 

DPI  Difference-product image 

DVR  Digital video recorder 

FA  False alarm 

FIFO  First-in first-out 

FLIR  Forward-looking infrared 

FOV  Field-of-view 

FPA  Focal plane array 

FPSS  Force protection surveillance system 

GUI  Graphical user interface  

IED  Improvised explosive device 

LCD  Liquid crystal display 

LWIR  Long-wave infrared 

MTI  Moving target indication 

NTSC   National Television Standards Committee  

POD  Personnel observation device 

ROC  Receiver operating characteristic 
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NO. OF 
COPIES  ORGANIZATION 
 
1 ADMNSTR 
ELECT DEFNS TECHL INFO CTR 
 ATTN  DTIC OCP 
 8725 JOHN J KINGMAN RD STE 0944 
 FT BELVOIR VA 22060-6218 
 
2 DARPA 
 ATTN  F  PATTEN 
 ATTN  J  RICKLIN 
 3701 N FAIRFAX DR 
 ARLINGTON VA 22203-1714 
 
1 NGA 
 ATTN  R S  RAND 
 12310 SURSISE VALLEY DR 
 MAIL STOP DN 11 
 RESTON VA 20191-3449 
 
1 CD OFC OF THE SECY OF DEFNS 
 ATTN  ODDRE (R&AT) 
 THE PENTAGON 
 WASHINGTON DC 20301-3080 
 
1 US ARMY RSRCH DEV AND ENGRG  
 CMND 
 ARMAMENT RSRCH DEV & ENGRG  
 CTR  
 ARMAMENT ENGRG & TECHNLGY  
 CTR 
 ATTN  AMSRD AAR AEF T   
 J  MATTS 
 BLDG 305 
 ABERDEEN PROVING GROUND MD  
 21005-5001 
 
1 US ARMY TRADOC  
 BATTLE LAB INTEGRATION &  
 TECHL DIRCTRT 
 ATTN  ATCH B 
 10 WHISTLER LANE 
 FT MONROE VA 23651-5850 
 

NO. OF 
COPIES  ORGANIZATION 
 
6 CECOM NVESD 
 ATTN L. GRACEFFO 
 ATTN M. GROENERT 
 ATTN M. HERDLICK 
 ATTN E  EFKEMAN 
 ATTN F  PETITO 
 ATTN D  BRYSKI 
 BLDG 305 
 10221 BURBECK RD 
 FT BELVOIR VA 22060-5806 
 
2 CECOM NVESD 
 ATTN C  WALTERS 
 ATTN J  HILGER 
 BLDG 307 
 10221 BURBECK RD 
 FT BELVOIR VA 22060-5806 
 
1 US MILITARY ACDMY 
 MATHEMATICAL SCI CTR OF  
 EXCELLENCE 
 ATTN  MAJ J  HARTKE 
 PHOTONICS CENTER 
 WEST POINT NY 10996-1786 
 
1 PM TIMS, PROFILER (MMS-P)  
 AN/TMQ-52 
 ATTN  B  GRIFFIES  
 BUILDING 563 
 FT MONMOUTH NJ 07703 
 
2 US ARMY ABERDEEN TEST  
 CENTER 
 ATTN  TEDT AT WFT  F  CARLEN 
 ATTN  CSTE DTC AT TC N   
 D L  JENNINGS 
 400 COLLERAN ROAD 
 ABERDEEN PROVING GROUND MD  
 21005-5059 
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NO. OF 
COPIES  ORGANIZATION 
 
1 US ARMY ERDC 
 ATTN  CEERD TR S 
 7701 TELEGRAPH RD BLDG 2592 
 ALEXANDRIA VA 22315 
 
1 US ARMY INFO SYS ENGRG CMND 
 ATTN  AMSEL IE TD  A  RIVERA 
 FT HUACHUCA AZ 85613-5300 
 
3 US ARMY MATERIEL SYS ANAL  
 ACTVTY 
 ATTN  AMSRD AMS SC  G  KISTNER 
 ATTN  AMSRD AMS SC  J  MAZZ 
 ATTN  AMSRD AMS SC   
 R  WHEELER 
 392 HOPKINS RD 
 ABERDEEN PROVING GROUND MD  
 21005-5071 
 
1 US ARMY NATICK RDEC ACTING  
 TECHL DIR 
 ATTN  SBCN TP  P  BRANDLER 
 KANSAS STREET BLDG 78 
 NATICK MA 01760-5056 
 
1 US ARMY PM NV/RSTA 
 ATTN  SFAE IEW&S NV 
 10221 BURBECK RD 
 FT BELVOIR VA 22060-5806 
 
3 COMMANDER 
 US ARMY RDECOM 
 ATTN  AMSRD AMR  J  MILLS 
 ATTN  AMSRD AMR  K  DOBSON 
 ATTN  AMSRD AMR   
 W C  MCCORKLE 
 5400 FOWLER RD 
 REDSTONE ARSENAL AL 35898-5000 
 
1 US ARMY RDECOM AMRDEC 
 ATTN  RDMR WS PL   
 W  DAVENPORT 
 BLDG 7804 
 REDSTONE ARSENAL AL 35898 
 

NO. OF 
COPIES  ORGANIZATION 
 
2 US ARMY RDECOM TARDEC 
 ATTN  AMSRD TAR R   
 G R  GERHART 
 ATTN  AMSRD TAR R  J  JASTER 
 6501 E ELEVEN RD MS 263 
 WARREN MI 48397-5000 
 
1 US ARMY SOLDIER & BIOLOGICAL  
 CHEM CTR 
 ATTN  AMSSB RRT DP  B  LOEROP 
 EDGEWOOD CHEM & BIOLOGICAL  
 CTR BLDG E-5544 
 ABERDEEN PROVING GROUND MD  
 21010-5424 
 
1 COMMANDER 
 USAISEC 
 ATTN  AMSEL TD    BLAU 
 BUILDING 61801 
 FT HUACHUCA AZ 85613-5300 
 
1 US GOVERNMENT PRINT OFF 
 DEPOSITORY RECEIVING SECTION 
 ATTN  MAIL STOP IDAD  J  TATE 
 732 NORTH CAPITOL ST NW 
 WASHINGTON DC 20402 
 
3 SITAC 
 ATTN  H  STILES 
 ATTN  K  WHITE 
 ATTN  R  DOWNIE 
 11981 LEE JACKSON MEMORIAL  
 HWY STE 500 
 FAIRFAX VA 22033-3309 
 
1 US ARMY RSRCH LAB 
 ATTN  RDRL CIM G  T  LANDFRIED 
 BLDG 4600 
 ABERDEEN PROVING GROUND MD  
 21005-5066 
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NO. OF 
COPIES  ORGANIZATION 
 
5 DIRECTOR 
 US ARMY RSRCH LAB 
 ATTN  AMSRD ARL RO EL  L  DAI 
 ATTN  AMSRD ARL RO M   
 D  ARNEY 
 ATTN  AMSRD ARL RO MI   
 R  ZACHERY 
 ATTN  AMSRD ARL RO MM   
 M-H  CHANG 
 ATTN  RDRL ROI M  J  LAVERY 
 PO BOX 12211 
 RESEARCH TRIANGLE PARK NC  
 27709-2211 
 
59 HCS US ARMY RSRCH LAB 
1 CD ATTN  IMNE ALC HRR MAIL &  
 RECORDS MGMT 
 ATTN  RDRL CIM L TECHL LIB 
 ATTN  RDRL CIM P TECHL PUB 
 ATTN  RDRL D 
 ATTN  RDRL D  J  CHANG 
 ATTN  RDRL SE  J  PELLEGRINO 
 ATTN  RDRL SE  J  RATCHES 
 ATTN  RDRL SEE  P  GILLESPIE 
 ATTN  RDRL SES E  D  ROSARIO 
 ATTN  RDRL SES E  G  SAMPLES 
 ATTN  RDRL SES E  H  KWON 
 ATTN  RDRL SES E  J  DAMMANN  
 ATTN  RDRL SES E  A  CHAN  
 (40 HCS, 1 CD) 
 ATTN  RDRL SES E  M  THIELKE 
 ATTN  RDRL SES E  N  NASRABADI 
 ATTN  RDRL SES E  P  RAUSS 
 ATTN  RDRL SES E  R  RAO 
 ATTN  RDRL SES E  S  HU 
 ATTN  RDRL SES E  S  YOUNG 
 ATTN  RDRL SES  J  EICKE 
 ADELPHI MD 20783-1197 
 
TOTAL: 104 (101 HCS, 2 CDS, 1 ELEC) 
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