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1. Introduction 

The experiment described in this report was conducted to support the Improved Mobility and 
Operational Performance through Autonomous Technologies Army Technology Objective 
(IMOPAT ATO).  The goal of the IMOPAT ATO is to enhance vehicle and platoon mobility 
performance and local-area/battlespace situation awareness for the vehicle crew and dismount 
infantry through the development and integration of:  indirect vision-based intelligent manned 
and unmanned vehicle mobility, advanced crew stations, 360°/90° (horizontal/vertical) 
situational awareness (SA) systems, crew and dismount scalable interfaces, and 
neurophysiologically-based and behavior-based Soldier monitoring and workload management 
technologies.  This experiment focused on one facet of the ATO goals, 360°/90° SA. 

In modern battlespace concepts, it is believed that available technology does not provide a 
sufficient field of view (FOV) to enable indirect vision systems to support mobility and 
situational awareness functions required to meet changing force needs.  The indirect vision 
systems that are necessary for closed-hatch operations do not currently provide full SA of the 
battlespace for vehicle crew or dismount Soldiers, which is especially problematic in complex, 
dynamic urban environments.  That is, current sensor and information display systems are unable 
to provide contiguous, simultaneous 360°/90° imagery for vehicle crews.  Moreover, the current 
hemispheric (360°/90°) imaging systems require continuous manual intervention by operators 
(i.e., scanning through successive camera views) to maintain local area awareness.  This proves 
especially demanding in urban environments where the presence of three-dimensional (3-D) 
terrain (i.e., threats above ground, such as in tall buildings) increases scanning workload 
requirements.  Additional mitigations and enhancements remain challenged as well.  Automatic 
event/target detection technologies are limited, acoustic gunfire detection is made more difficult 
by many acoustically reflective surfaces in urban environments, and flash detection requires line 
of sight.  The integrated on-the-move (OTM) moving-target indicator (MTI) cue for detection of 
pop-up and fleeting targets has not been demonstrated with hemispheric imaging systems in 
realistic environments. 

To overcome the current sensor system limitations, the IMOPAT ATO partners (U.S. Army 
Tank-Automotive Research, Development and Engineering Center [TARDEC] and 
Communications and Electronics Research Development and Engineering Center [CERDEC]) 
are developing and integrating a 360°/90° sensor system for a manned ground vehicle.  The 
partners will position multiple imaging sensors around the vehicle to provide day/night capability 
for manual scanning and control for vehicle crews.  Additional technologies under consideration 
for integration are gunfire detection/localization, pop-up target cueing, image capture to aid the 
vehicle occupants in detection of immediate threats, and a digital video recording (DVR) 
capability to capture video of the threat at the time of detection as well as immediately prior to 
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the event.  Technology that will provide the Soldier automatic and manual imagery logging for 
past event revisit and interrogation during or after missions is also being considered to aid the 
Soldier in maintaining local SA.  Summarily, the vision for this sensor system is that the field of 
regard will allow the commander to avoid threat-weapons fire, day or night, in complex urban 
environments and that the crew and squad members can manually detect threats or be cued by 
the detection algorithms to an immediate threat.  Cueing of the vehicle occupants to 
detection/location of immediate threats is considered essential to vehicle protection and 
management of crew workload. 

The U.S. Army Research Laboratory Human Research and Engineering Directorate’s (ARL-
HRED) role is to support the development of the display concepts for the 360°/90° sensor system 
and to conduct experiments to evaluate the effect of the technology and its implementation on 
operator performance. 

The first step to providing enhanced SA to the operator is to provide enhanced visual displays. 
To this end, CERDEC developed a 360°/90° sensor system.  This system is comprised of six 
cameras affixed at various positions around the vehicle.  The sum of the six camera views 
provides the enhanced view, which is displayed on the vehicle commander’s 17-in screen. 
Unfortunately, there is not sufficient display space to show the full 360°/90° view at one time. 
Thus, a novel approach to displaying the 360°/90° information is needed.  The next step in the 
development process was the generation of design concepts for the vehicles commanders 
display.  DCS, in support of TARDEC, CERDEC, and ARL, lead this design process.  The 
objective was to develop concepts that enabled the commander to have the greatest field of view 
at all times with the greatest resolution possible. 

Four design concepts were generated.  All of the concepts incorporated a central sensor view that 
provided 64/48° field of view (see figure 1).  This view could be changed by selecting a different 
camera.  The banner provided a wider horizontal field of view (hFOV = 180°) for the operator 
with poorer resolution (see figure 2).  The design concept was thus:  through a banner an 
operator could gain an overall awareness of the area and then use the central sensor to further 
investigate an area of interest. 

 

 

Figure 1.  Central sensor concept. 
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Figure 2.  Banner concept TC. 

 
The objective of this research was to evaluate the effect of a 360° sensor system, similar to that 
developed by TARDEC and CERDEC, on the vehicle commander’s ability to maintain local area 
awareness and disseminate the SA information to his crew.  In addition to this primary objective, 
cognitive aspects of the operator’s ability to maintain SA were also investigated.  To this end, the 
influence of target features and environmental characteristics on the operator’s ability to 
maintain local SA was objectively measured by various aspects of threat detection performance 
(detection rates, reaction time, and accuracy).  Through this experiment, we planned to determine 
what combination of displays and interface tools constitutes the optimal interface design for 360° 
vision as it relates to local situational awareness.  Results can be further used to identify 
performance bottlenecks that may require additional technology beyond a 360° field of view. 

 

2. Method 

2.1 Participants 

Seventeen male individuals (n = 7 military and 10 civilian) participated in the experiment, which 
was conducted at TARDEC systems integration laboratory facilities in Warren, MI.  Participants 
were recruited from the local population in Warren.  Each participant read and signed a volunteer 
agreement affidavit (appendix A) and completed a demographics questionnaire (appendix B) 
prior to beginning the experiment. 

2.2 Questionnaires 

2.2.1 Demographic and Computer Experience Questionnaire 

The demographic and computer experience questionnaire (appendix B) was an 11-item survey 
that requested information regarding age, vision and hearing, military service, and computer 
experience.  This questionnaire was scored after the experiment was completed and was used to 
gain basic demographic information on the participants for potential use as covariates in 
subsequent data analyses.
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2.2.2 The National Aeronautics and Space Administration (NASA) Task Load Index 
(NASA-TLX) 

The NASA-TLX (Hart and Staveland, 1998) is a multidimensional rating procedure that derives 
an overall workload score based on a weighted average of ratings on six subscales (mental 
demand, physical demand, temporal demand, own performance, effort, and frustration) and was 
administered after each mission.  The NASA-TLX is included in appendix C. 

2.2.3 Usability Questionnaire and Exit Interview 

The usability questionnaire was a 53-item questionnaire that assessed the ease of learning the 
different interface configurations and how each configuration affected field of view and 
performance.  The exit interview was comprised of a set of 19 questions that were asked by the 
experimenter.  Using the open ended questions, an experimenter queried the participant about the 
strengths and weaknesses of the configurations, their impact on mission performance, and 
suggestions for improvement.  The usability questionnaire and exit interview were administered 
at the end of the experiment to obtain user feedback on the 360° system and the associated 
interface configurations; both are provided in appendix D. 

2.3 Experimental Environment 

The layout for the experimental environment and test bed is shown in figure 3.  For this 
experiment, the actual Common Crew Station (CCS), which has been developed by TARDEC 
and CERDEC, was not available; therefore, it was decided to conduct the study using a surrogate 
system.  The chosen surrogate for this work was an Alienware laptop computer, which provided 
the same screen size (17 in) and resolution (1920 × 1200) as the CCS, but did not provide a 
touch screen interface.  Therefore, for this experiment, participants were required to use a mouse 
to interact with the system when using all interface configurations. 

The Alienware laptop functioned as the Warfighter Machine Interface (WMI) and provided both 
sensor displays and controls.  Sensor display was handled using the system’s internal graphics 
processor, while sensor control was enabled through an interactive graphic positioned in the 
upper-right corner of the central concept sensor (figure 4). 

The Embedded Simulation System (ESS) connected to the WMI and provided two major 
services:  communication with the rest of the system and the vehicle dynamics model.  The 
communication provided by the ESS was crucial for synchronized information interchange, 
while the vehicle dynamics models were used to maintain an absolute position of the vehicle 
within the simulated environment. 

The Intelligent System Behavior Simulator (ISBS) was another process that ran on the Alienware 
laptop and provided vehicle control and ensured route following.  The ISBS drove the vehicle 
using information received from the ESS and then provided the ESS with the appropriate 
actuator data to keep the vehicle inside the pre-specified route conformance parameters.  
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Figure 3.  Experimental testbed. 

 

 

Figure 4.  Sensor view with sensor control.  
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The Event Server controlled execution of all events by receiving vehicle location information 
from the ESS and using pre-defined trip lines as triggers for event onsets.  The trip lines were 
used to indicate where the participant was in the current scenario and the location of each trip 
line was specified prior to the experiment using a custom-designed interactive tool, Scenarion. 
Once an event was triggered, it was sent either to the scenario populator or to the sound player, 
dependent on whether the event called for image generation or audio commands.  In cases where 
an audio command was needed, a pre-recorded audio file (.wav) appropriate to the event was 
triggered.  All events were recorded and time-stamped in event log files for later use during data 
reduction and analysis. 

The Scenario Populator ran on the Alienware laptop and received events from the Event Server 
and output distributed interactive simulation (DIS) packets representing a set of entities moving 
around the database, mostly along routes predefined using Scenarion.  These DIS packets were 
interpreted by the ESS, which passed them back to the internal graphics running the WMI.  The 
DIS packets were also recorded by the DIS Recorder for post-processing. 

During the experiment, eye tracker data were gathered for each participant using the Smart Eye 
Pro system (Smart Eye AB; Göteborg, SE), a commercial eye tracking system that provided 
infrared (IR) cameras, IR emitters, and software tools for researchers.  The Smart Eye system 
allowed completely non-contact operation in order to provide observation of a participant’s 
natural eye and head movement behavior at adequate spatial resolution (~0.5°).  Eye and head 
movements, along with measurement reliability data, were logged in real time and synchronized 
with performance data from the other systems.  The system was individually calibrated for each 
participant prior to training, a process that was completed in the approximate 10–15-min window 
while participants were briefed about experiment protocols.  Once calibrated, the Smart Eye 
system was used to gather data for the entire experiment at a rate of 60 Hz.  For these 
experiments, two IR cameras (and emitters) were used, which were positioned just to the left and 
right of the experimental display screen. 

During the experiment, six log files were generated by the overall system.  The log files 
included:  (1) event times and descriptive tags from the event server, (2) user screen interactions 
from the WMI, (3) entity positions and movements from the DIS Recorder, (4) vehicle state from 
the ESS, and (5) eye position data from the Smart Eye.  At the end of each mission a final tool, 
the line-of-sight (LOS) checker was used to read the vehicle state log and the DIS recorder log in 
order to determine the times and locations at which the vehicle had LOS to each of the entities as 
well as to provide information about in which of the six 360° vision sensors each LOS was 
present.  This created the sixth and final artifact of the experiment, the LOS log. 

2.4 Procedure 

The overall flow of the experiment and the procedure, along with a general timeline, is shown in 
figure 5.  At any time during the experiment, the participant was allowed to take a break.
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Figure 5.  Experiment procedure flow diagram. 

Prior to the start of the experiment, the participants were briefed on the purpose and procedures 
of the experiment and were read the volunteer agreement affidavit (appendix A).  They were 
given the required brief regarding confidentiality as indicated on DA Form 5303-R.  In 
anticipation of possible concerns regarding personal answers on some of the questionnaires, the 
investigators also described the deliberate actions taken when handling research data.  In order to 
ensure that individual data were not reported or revealed to anyone, each form was reviewed 
upon receipt by one of the investigators.  If any identifying information appeared on the 
questionnaires (such as name, social security number, birth date, etc.), the investigators deleted 
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the identifying information and replaced it with a neutral code number.  This code number 
became the participant identification number used in data files. 

When recruiting military research participants, concerns about actual willingness to volunteer for 
a given study may arise if higher-ranking personnel suggest participation.  To avoid the 
possibility that volunteers may have been compelled to participate through their chain of 
command, participants were reminded that they could refuse or withdraw from the study at any 
time without penalty.  Participants were given an opportunity to communicate with investigators 
“off the record” and were provided several opportunities for refusing or withdrawing in a private 
manner.  Participants who agreed to take part in the study signed the volunteer agreement 
affidavit.  The participants then completed the demographic and computer experience 
questionnaire. 

Next, the purpose of the experiment was described to the participants, and then they were given 
an overview of the baseline scanning system display and the advanced 360° scanning system 
displays (described in section 3 of this report).  The experimenter reviewed the functionality of 
the interface, and how to use the scanning systems for local security and target identification.  
After receiving the overview, the eye tracker was set up for each participant.  Following the 
initial calibration with the eye tracker, the participant was then shown training slides and 
familiarized with the scanning system while a second researcher performed a detailed calibration 
of the Smart Eye system.  The training slides presented a description of the following: 

• Purpose of the study. 

• What is 360°/90° Situation Awareness? 

• Pictorial and verbal descriptions of each configuration. 

• Steps on how to change the camera views of the 360° system for each configuration. 

• Pictorial and verbal descriptions of the types of targets to be identified. 

• Steps on how to report targets on the interface. 

 
Once the participant completed the training slides and the researcher finished final calibration of 
the Smart Eye system, the participant was then required to complete two training missions:  one 
with condition A and one with condition D, described later.  Participants were required to repeat 
the training missions if they failed to detect at least 50% of the targets for that mission.  This was 
determined by a subject matter expert on the technology who was present during the training 
missions.  In addition, participants could repeat a training mission if they desired.  After being 
trained on the system, participants then completed four experimental missions. 

After the completion of each mission, the participant filled out a NASA-TLX questionnaire 
while the experimenter collected and saved the mission-specific data logs.  Once the fourth 
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NASA-TLX was completed after the final mission; participants were given the usability 
questionnaire and the exit interview to assess their overall impressions and preferences with 
regards to the system.  The final exit interview was open-ended, which also allowed the 
participants an opportunity to provide voluntary feedback that may otherwise have been missed 
by the questionnaires. 

 

3. Experimental Design 

The experiment was a within-subjects design.  There was one primary independent variable of 
interest, display condition, with four levels.  The four levels were: 

1. Condition A = sensor only:  full-screen mode. 

2. Condition B = sensor with a single banner:  full-screen mode. 

3. Condition C = sensor with a single banner:  small-portal mode. 

4. Condition D = sensor with two banners:  full-screen mode. 

The different screen configurations for each of the conditions used in this experiment are 
described next, and a summary of the screen configurations is shown in table 1. 
 

Table 1.  Condition breakdown. 

Condition 
Sensor 

Window 
Top  

Banner 
Bottom 
Banner 

Full-Screen 
Mode 

Small-Portal  
Mode 

A × — — × — 
B × × — × — 
C × × — — × 
D × × × × — 

 
Condition A = sensor only:  full-screen mode (figure 6). 

• Single 64 × 48 FOV sensor:  1024 × 768 resolution. 

• User could pan sensor, using a control in the upper-right corner of the sensor view, through 
six discrete steps to obtain 360° vision. 

• No extended view banners (see configurations B–D for banner concepts). 

• Full-screen mode:  no small portals occupying screen space (see configuration C for small 
portal mode). 
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Figure 6.  Condition A – sensor only:  full-screen mode. 

 
 
Condition B = sensor + single banner:  full-screen mode (figure 7). 

• 64 × 48 FOV sensor + 180° hFOV forward facing (top) banner. 

• User could pan single sensor (not banner) through six discrete steps to obtain 360o vision. 

• Full-screen mode:  no small portals occupying screen space.  

 
 

 

Figure 7.  Condition B – sensor with single banner:  full-screen mode. 

 

Condition C = sensor + single banner:  small portal mode (figure 8). 

• 64 × 48 FOV sensor + 180° hFOV forward facing (top) banner. 

• User could pan single sensor (not banner) through six discrete steps to obtain 360o vision. 
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• Small-portal mode:  placeholder for small portals on the left side of the screen provides 
smaller space for imagery.  For the experiment, this area was left blank. 

 

 

Figure 8.  Condition C – sensor with single banner:  small-portal 
mode. 

Condition D = sensor + two banners:  full screen (figure 9). 

• 64 × 48 FOV sensor + 180° hFOV forward-facing (top) banner = 180° hFOV rear-facing 
(bottom) banner. 

• User can pan single sensor (not banners). 

• Full-screen mode – no small portals occupying screen space. 

 

 
 

Figure 9.  Condition D – sensor with two banners:  full-screen mode. 
 

Each level of the independent variable was completed one time, meaning that participants 
experienced each screen configuration once.  In order to prevent confounds due to learning 
and/or familiarization effects, four separate, but statistically similar mission scenarios were 
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created.  Assignment of each display condition to a mission scenario was counterbalanced and 
the order of condition presentations was randomized across participants (see table 2). 
 

Table 2.  Participant-condition-mission pairings. 

Participant Mission 1 Mission 2 Mission 3 Mission 4 
1 B C A D 
2 C D B A 
3 A B D C 
4 D A C B 
5 B C A D 
6 C D B A 
7 A B D C 
8 D A C B 
9 B C A D 

10 C D B A 
11 A B D C 
12 D A C B 
13 B C A D 
14 C D B A 
15 A B D C 
16 D A C B 
17 B C A D 

 

3.1 Mission Objectives 

Each mission was 12 min in duration, with 8 min spent in the urban core and 4 min in outskirts 
of the city.  The objective was to identify targets while either stationary or on the move through 
the use of the sensor systems on board the simulated vehicle.  Prior to each mission, the 
experimenter performed scenario specific setup and initialization.  After the completion of each 
mission, the experimenter performed data collection (i.e., saving log files) while the participant 
filled out the NASA-TLX questionnaire.  

Once a target was identified the participant had to send a threat report via a report panel 
interface.  For each threat, the participant had to enter the object type (armed human, unarmed 
human, or improvised explosive devise [IED]) and location (vehicle-relative clock position in 
integer increments from 1 to 12).  The threat report options and interface are shown in figure 10.
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Figure 10.  SA report panel for selection of target type (A) and target location (B). 

3.2 Targets and Events 

The events and targets were developed based on discussion with two subject matter experts on 
current operations in the Middle East.  In addition, significant independent research was 
conducted involving review of materials from several sources including Soldier blogs from the 
internet, current periodicals and news sources regarding present-day military activities, U.S. 
Army photo archives, and formal documents such as U.S. Army field manuals and other such 
operational/doctrinal materials.  Figure 11 shows examples of the presented targets. 
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Figure 11.  Sample entities used for populating mission scenarios. 

 
Participants were required to report targets that were either armed humans, IEDs, identified high-
value targets (HVTs), unarmed individuals performing suspicious behaviors, or unarmed humans 
detected in the city outskirts (which were designated as free-fire zones).  All types were 
designated as a threat and reported as either an unarmed human, armed human, or IED. 
Non-threats were not reported.  A description of the events and entities as well as the total 
number of each occurrence within each mission is provided in table 3. 

The information in table 3 describes a set of over 100 basic events, with a total of 38 threat 
events that should have been reported per scenario.  However, in the first scenario one of the 
armed humans never became visible (due to variable scenario dynamics) and thus, in that 
scenario only, there were 16 (as opposed to 17) armed humans.  
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Table 3.  Summary of entities and events comprising the mission scenarios. 

Label Description Constituent Entities/Events 
No. in Each 

Scenario 

Crowd 
Group of 10+ non-
threatening humans 

Market, protest, children 
playing, complaints to local 
sheik, going into mosque, 

clinic, hospital 

1 

Hidden IED 

Various objects with 
large wires trailing 

out, included in both 
urban core and 

outskirts 

Dirt piles, defunct vehicles, 
small electronics, etc.; 1 

hidden IED was specified as an 
HVT 

8 

Decoy IED 
Various objects 

without large wires 
sticking out 

Dirt piles, concrete barriers, 
concrete piles, defunct 
vehicles, carpets, etc. 

~50 

High-value target 
(HVT) 

Targets that are not 
threatening until radio 
communiqué warning 

of danger 

Vehicles, people, or objects 
meeting specific descriptions 
(i.e., IEDs being made from 

broken televisions) 

3 

Vehicle stop 
Instances where 

vehicle motion pauses 

Two stops in urban core (1 
near suspicious formation of 

people) and 2 stops in the 
outskirts 

4 

Suspicious behavior 
Unarmed humans 

behaving in 
threatening manner 

Coordinated movement of 
people along multiple axes or 
individuals staring at vehicle 

as if spotting for IED 
detonation 

5 

Ambush 

Group of humans that 
remained concealed 

until vehicle was near; 
no engagement 

Armed humans in varying 
numbers; 1 ambush in urban 

core and 1 in outskirts 
2 

Cut off 
Blockage of nearest 
escape or main route 

Vehicle, road closed signs, 
concrete barriers; 1 in urban 

core and 1 in outskirts 
2 

Armed human 
Humans visibly 

carrying weapons 

Armed humans carrying any of 
an array of weapons, all were 

large and visible (RPG 
launchers, machine guns, etc.) 

17 

Unarmed human I 
Unarmed humans that 

were considered 
threats 

Unarmed humans behaving in 
a threatening manner or 

indicated as HVTs 
13 

Unarmed human II 
Unarmed humans that 
were not considered 

threats 

Regular humans in native dress 
that either remained static or 
were moving along a path not 

directed in coordinated fashion 
towards the vehicle (i.e., could 

not be confused with a 
suspicious formation) 

~10–20 
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3.3 Data Collection 

As previously described, a variety of data were collected during this experiment.  The objective 
measures were based on data contained in table 4. 

 

Table 4.  Summary of data artifacts generated during the current experiment. 

Source Description Sampling Rate Contents 

Crew station log 
Data for all WMI button 

presses 
Asynchronous, 
event-driven 

 Simulation time 
 Unique button identifiers 

Sensor view log 
LOS detections for each 
environmental entity, per 

each of the six sensor views 
4 Hz 

 Simulation time 
 Unique entity identifier 
 Location 
 Heading 
 Speed 
 Sensor from which entity has 

LOS 

Trip line log 
Data for all trip line 

crossings 
Asynchronous, 
event-driven 

 Simulation time 
 Unique trip line identifier 

Vehicle status log Vehicle state data 100 Hz 

 Simulation time 
 Distance travelled 
 Speed (current) 
 Acceleration (current) 
 Location 
 Orientation 
 Heading 

Smart Eye data log Eye position data 60 Hz 

 Simulation time 
 Head position (6D) 
 Eye position (3-D) 
 Gaze orientation 
 Gaze-screen intersection 

coordinates (x, y) 
 
The subjective measures corresponded to the information provided by the NASA-TLX, the 
usability assessment, and post-experiment exit interview. 

3.4 Dependent Variables 

All dependent measures were calculated from a reduced, collated, and time-synchronized set of 
variables extracted from the raw data (i.e., the data logs) set.  All data processing and 
synchronization were handled by a custom written program called the Data Analysis and 
Reduction Tool (DART).  Beginning with merging all data logs into a single binary format, all 
events and entity characteristics were codified and subsequently collated using a common time 
stamp (called “simulation time”).  Before any dependent variables could be calculated, the 
merged and collated data for each event had to be associated with each SA report.  That is, for 
each SA report, it had to first be established which of the many entities appearing on the screen 
was the subject.  In cases where there was no scripted threat available to correspond with a 
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report, a false alarm was noted.  To facilitate the process of verifying report-entity associations, 
an automated algorithm was applied and its output was verified manually by trained 
experimenters.  For the sake of simplifying the presentation, the SA report-entity association 
algorithm is described in detail in appendix E.  Following the application of the report-entity 
association algorithm, the following variables were calculated from the reduced data: 

 
• Task Performance  

o Threat Detection – Was a target detected?  Yes or no? 

o Reaction Time – Time between target onset and initiation of the threat report. 

o False Alarms – Number of non threats reported as threats. 

o Accuracy – Calculated based on target type and location accuracy. 

 Overall Accuracy - Calculated as (target type accuracy + clock position 
accuracy)/2. 

 Target Type Accuracy.  

   • 1.0, if completely correct. 

  • 0.5, if participant entered armed human and the target was a unarmed human, or vice  
 versa. 

    • 0.0, if participant entered armed/unarmed human and the target was an IED, or vice  
  versa, or if it was not a target at all. 

 Clock Position Accuracy.  

   • 1.0, if reported clock position was within 1 clock increment of the correct value. 

   • 0.0, if reported clock position was more than 1 clock increment from the correct value. 

o Sensor Usage.  

 Proportional Usage – Percent of total mission duration spent looking at each sensor 
view. 

 Number of Sensor View Changes – Total number of changes between the six sensor 
views. 

• Physiological Measurement 

o Eye-tracking data throughout completion of each mission scenario.
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• Subjective Responses 

o Workload measured with the NASA-TLX. 

o Usability assessment and exit interview. 

 

4. Analyses and Summary of Statistical Results 

Because of the multivariate nature of the data collected in the current experiment, an analytic 
method was needed that allowed the use of as much data in a non-reduced format as was 
possible; that is, to the extent possible, data were examined in raw-reduced format (i.e., per 
individual threat presentation events) without averaging across threat presentations within 
different levels of each of the independent variables.  For the current experiment, this meant 
using the success or failure on each threat event presentation, reaction time, and accuracy as the 
dependent variables.  The various threat, participant, and environment characteristics (scenario, 
display condition, threat type, participant type, etc.) served as potential independent variables. 
Owing to the binary nature of the dependent variable for threat detection (detected or not), 
logistic regression was employed as the primary analytic tool.  For both reaction time and 
accuracy, linear mixed model analyses were conducted.  For both types of statistical models, the 
analysis proceeded in two stages, beginning with model building and concluding with the 
application of the selected model for within-subject analysis of performance. 

For logistic regression modeling, the model building stage began by computing estimates on the 
most complex model, herein referred to as the full model, and then, through the use of partial 
sums-of-squares F-tests (Draper and Smith, 1998), decisions were made as to which effects 
could be excluded.  The basic methodology was executed as follows.  For each parameter 
(independent variable) considered for inclusion in the final model, the logistic regression was re-
calculated with a reduced model that excluded its influence and then the residual sums of squares 
of the reduced model was compared with the residual sums of squares observed with the full 
model.  If the exclusion of the parameter under consideration resulted in a significant loss of 
explained variance (i.e., if the increase in the residual sums of squares over that observed with 
the full model was significant as judged by an F-test), then it was considered evidence that the 
parameter should be included in the model.  This process was repeated iteratively until all of the 
terms in the full model were assessed.  After the full model was examined in this way, simpler 
models were assessed in the same manner and this process was repeated until a model was 
obtained in which all terms were significant.  Once a sufficiently simple model was obtained, 
some conceptually motivated three-way interactions were added to explore potential higher-order 
relationships among the variables.  Because of the sheer number of repeated F-tests (36 on the 
full model for threat detection alone), the criteria for significance was set fairly stringently based 



 

19 

on a Bonferroni correction.  Specifically, for the first level assessment, the p value used as the 
threshold for inclusion was 0.0014 and as subsequent model building passes were completed on 
successive models, the inclusion criteria became more stringent.  All terms included in the final 
logistic model were significant to a level of p < 0.0006.  Of course, for cases where interaction 
terms were included, all main effects for that term also remained in the model even if they were 
non-significant.  The final logistic regression analysis then applied the simplest selected 
regression model to the threat detection data while nesting all terms and interactions in the 
participant variable; effectively creating a within-subjects logistic regression. 

For the linear mixed models, a similar model building approach was employed.  In essence, the 
same concept was applied, involving first a computation of the full linear mixed model (with all 
possible dependent variables and covariates included); the initial mixed linear model was run for 
all the dependent measures of interest which included condition, threat target type, target range, 
vehicle mobility, and target environment as predictors.  Then, in backwards elimination fashion, 
subsequent models were assessed with fewer parameters.  Instead of using partial sums of 
squares F-tests as with the logistic approach, the linear mixed model analysis simply worked 
backwards from the full model by eliminating terms that were non-significant.  In the case that 
significant interactions were observed, all associated main effects terms remained in the model 
(even if they were non-significant).  All of the mixed models, participant type (civilian or 
military), scenarios (1–4), and viewing time (threat presentation time) were entered as covariates 
and all tests were run as within-subject designs.  The reported significant effects were from the 
final linear mixed model. 

For sake of simplicity, all results presented herein were based on the final statistical models, 
those which only contained significant predictors and interactions.  For more details regarding 
the initial full models for each analysis, as well as for more details regarding the predictor 
variables and their selection, please refer to appendix F (overall operator threat detection 
analysis). 

Based on the results of the model building stage, a final model for the logistic regression 
included the following terms:  participant type, display condition, threat target type, threat 
location, vehicle mobility, target mobility, range, inter-threat interval, viewing time, condition 
× location, large type × location, target type × range, location × target mobility and location 
× viewing time.  Table 5 summarizes the results of the final logistic regression model.
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Table 5.  Summary of the final logistic regression model.  

Source SS Difference 

Numerator 
(Degrees of 
Freedom) F(dfreg, 2538) 

Significance 
Level 

Participant type 43 1 46.577 0.0000 

Condition 128 6 23.248 0.0000 

Threat target type 74 6 13.489 0.0000 

Threat location 96 8 13.019 0.0000 

Vehicle mobility 21 1 23.137 0.0000 

Target mobility 59 2 32.183 0.0000 

Minimum range after onset 460 3 167.221 0.0000 

Inter-threat interval 19 1 20.445 0.0000 

Viewing time 262 2 142.743 0.0000 

Condition × location 36 3 12.993 0.0000 

Threat target type × location 30 2 16.456 0.0000 

Threat target type × min range 30 2 16.480 0.0000 

Threat location × target mobility 46 1 50.150 0.0000 

Threat location × viewing time 31 1 33.923 0.0000 

 
 
The final statistical model for reaction time included significant terms for:  range, vehicle 
mobility, and threat location as well as several interactions.  Shown in table 6, the significant 
interactions with range included threat target type, threat environment, vehicle mobility, and 
threat location.  Interactions with threat target type, beyond its interaction with range, included 
threat environment and threat location (note that the interaction with vehicle mobility was  
non-significant).  Additional interactions included threat environment × threat location, vehicle 
mobility × threat location, and range × threat target type × threat environment.



 

21 

Table 6.  Final linear mixed model results for reaction time. 

Source 

Numerator 
(Degrees of 
Freedom) 

Denominator 
(Degrees of 
Freedom) F 

Significance 
Level 

Range 2 1213 13.971 0.000 

Threat target type 2 1213 1.830 0.161 

Threat environment 1 1213 0.313 0.576 

Vehicle mobility 1 1213 14.337 0.000 

Threat location 1 1213 5.021 0.025 

Range × threat target type 4 1213 10.718 0.000 

Range × threat environment 2 1213 21.992 0.000 

Range × vehicle mobility 2 1213 5.208 0.006 

Range × threat location 2 1213 11.878 0.000 

Threat target type × threat environment 2 1213 9.643 0.000 

Threat target type × vehicle mobility 1 1213 1.894 0.169 

Threat target type × threat location 2 1213 3.436 0.032 

Threat environment × vehicle mobility 1 1213 1.422 0.233 

Threat environment × threat location 1 1213 8.083 0.005 

Vehicle mobility × threat location 1 1213 6.131 0.013 

Range × threat target type × threat environment 4 1213 6.786 0.000 

 
As shown in table 7, the final model for analysis of accuracy included significant effects for 
range, threat target type, and vehicle mobility.  Two interactions were also observed as 
significant, including range × threat target type and threat target type × vehicle mobility. 

Table 7.  Final linear mixed model results for accuracy. 

Source 

Numerator 
(Degrees of 
Freedom) 

Denominator 
(Degrees of 
Freedom) F 

Significance 
Level 

Range 2 1230 5.350 0.005 

Threat target type 2 1230 53.962 0.000 

Threat environment 1 1230 0.013 0.908 

Vehicle mobility 1 1230 11.117 0.001 

Threat location 1 1230 2.893 0.089 

Range × threat target type 4 1230 14.546 0.000 
Threat target type × vehicle mobility 1 1230 31.049 0.000 

 
Although few effects attributable to the primary independent variable, condition, were 
significant, an initial discussion of the results will focus on its influence in the context of human 
performance.  Subsequently, data regarding other factors influencing threat detection 
performance are also presented to allow for a thorough understanding of the domain within 
which technology may positively influence human performance on a local SA task.
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4.1 Effect of Interface Configuration 

Overall, the data from the current experiment provided scant evidence of an influence of display 
condition on threat detection performance.  As will be discussed shortly, it appeared as if 
performance varied based on participant, environment, and target characteristics more than based 
on the influence of a particular display configuration.  One effect, however, provided some 
insight suggesting that the influence of display condition differed contingent on the location at 
which a given threat was initially presented.  Specifically, the condition × location interaction, 
plotted in figure 12, appears to have been influenced by variations in threat detection 
performance to targets presented to the rear of the vehicle. 
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Figure 12.  Significant condition × threat location 
interaction effect for threat detection rate. 

The conclusion that detection performance for targets presented to the rear of the vehicle affected 
the efficacy of display condition, while not overtly apparent from the graphical evidence in 
figure 12; it is supported by the data presented in table 8.  From the data that are shown, it seems 
that the variation in the amount of performance change due to threat location was driven by how 
much detection rates dropped when threats were presented to the rear of the vehicle.  This trend 
can be seen in the column labeled % in table 8.  The largest decrease in detection performance 
between targets presented in the front and rear was seen in C and D (31% lower for rear targets), 
followed by condition A (28% lower).  Given that the least change in performance was observed 
in condition C (24% lower), which was the condition with the worst performance on targets 
presented in the front, it could be argued that condition B was the best by a small margin.  That 
is, condition B was associated with the second highest forward threat detection performance 
(nearly equivalent to condition A) and yet it also had the best detection performance when 
examining targets to the rear. 
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Table 8.  Threat detection differences revealed in a significant condition × threat location interaction. 

Condition 
Threats in Front Threats in Rear 

% Detections Presentations % Detections Presentations % 
A 284 500 56.80 40 140 28.57 28.23 
B 286 507 56.41 40 132 30.30 26.11 
C 257 505 50.89 37 136 27.21 23.68 
D 269 505 53.27 30 135 22.22 31.05 

Mean 54.34 Mean 27.08 27.27 
St. deviation 2.792 St. deviation 3.475 3.133

Coefficient of variation 0.051 Coefficient of variation 0.128 0.115
 
Unlike threat detection rates, linear mixed model analyses showed no significant difference in 
reaction time or accuracy performance between display conditions, p’s > 0.10.  Interface 
condition did not significantly interact with any predictor variables of interest, p’s > 0.10.  Table 
9 shows the mean accuracy for each configuration by threat target type.  Table 10 shows the 
mean reaction time organized in the same manner. 

 

Table 9.  Mean (±Standard Error [SE]) accuracy performance by display condition. 

Interface 
Configuration 

Accuracy 
Armed Humans Targets 

Accuracy 
Unarmed Human Targets Accuracy IEDs 

A 74.5 (2.65) 89.4 (3.21) 88.7 (4.62) 
B 70.4 (3.18) 87.3 (3.36) 89.1 (3.73) 
C 78.8 (3.42) 84.9 (4.19) 90.9 (3.60) 
D 70.6 (3.44) 82.5 (3.97) 88.6 (3.14) 

 

Table 10.  Mean (±SE) reaction time performance by interface configuration. 

Interface 
Configuration 

RT 
Armed Humans 

Targets 
RT 

Unarmed Human Targets RT IEDs 
A 12.9 (0.68) 10.0 (0.82) 18.6 (1.18) 
B 11.24 (0.81) 10.2 (0.86) 16.7 (0.95) 
C 12.2 (0.87) 10.8 (1.07) 18.0 (0.92) 
D 15.03 (0.88) 11.51 (1.01) 18.9 (0.80) 

 
Though the statistics did not reveal significant patterns for conditions, visual inspection of the 
means did suggest some interesting patterns that may have been eclipsed by variation due to 
other factors.  The presence of banners in condition B appeared to be associated with shorter 
reaction times to targets, which was especially evident for armed humans.  

In order to gain further insight into how the users interacted with the different display conditions, 
analyses were conducted on the number of times the operator changed the sensor views (see 
table 11).  Results showed that there was a significant difference between configurations in the 
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number of sensor view changes, F (3, 64) = 10.95, p < 0.001.  Paired comparisons of the 
interface configurations revealed that configuration A had significantly more changes than all of 
the other configurations, p’s < 0.001.  There was no significant difference between configuration 
B, C, and D, p’s > 2.  For example, there were 55% more sensor changes in the condition with 
only a sensor view (A) than one where the operator had at least one banner (B–D).  These data 
suggest that the presence of banners influenced the efficiency in the utilization of the simulated 
360° SA system.  That is, display conditions with banners revealed similar detection 
performance (especially in terms of reaction time and accuracy), but at least half the workload 
(screen interactions) as the sensor view only condition. 

 

Table 11.  Mean (±SE) sensor changes by display condition. 

Display Condition 
Total Sensor 

View Changes 
Sensor Views 
per Minute 

A 381.5 (33.7) 28.2 
B 171.4 (33.7) 12.6 
C 189.2 (33.7) 13.8 
D 131.0 (33.7) 9.6 

 
In a similar manner, analyses focused on the proportional use for each sensor view also revealed 
a display condition effect.  Shown in figure 13, this effect was manifested in the proportion of 
time spent looking to the front sensors versus the rear sensors that varied systematically across 
display condition.  Specifically, it appeared that in both conditions A and D, participants tended 
not to pan the sensor around to the rear camera views whereas in conditions B and C, they more 
evenly distributed their viewing time throughout the 360° set of views (though remained biased 
to look straight forward and backward rather than to the sides).  That is, in the conditions with 
only a forward-oriented banner, participants appeared to use the sensor portal to view the rear of 
the vehicle during a greater proportion of the missions. 
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Figure 13.  Proportional use of the six sensor portals across the four display conditions.  Darker 
shading indicates a viewing proportion closer to 1.0.
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Summarily, there were three important (and related) pieces of information to be gleaned from 
analysis of the effects in performance due to display condition.  First, threat detection 
performance varied based on whether targets were presented to the front or the rear of the 
vehicle.  More to the point, however, was that certain conditions (B, C) seemed to be associated 
with a lower rate of performance degradation for rear targets than the other conditions (A, D).  In 
complimentary fashion, the second observation was that participants tended to work harder, as 
indexed by number of sensor view changes, in condition A as compared with all other 
Conditions that included the use of banners.  Finally, the third effect noted was that participants 
used their sensor to look to the rear of the vehicle more frequently in the two display conditions 
in which they were given a forward-oriented banner (B and C).  This increased usage of the 
sensor portal in this manner may, in part, explain why performance degraded less in these two 
conditions with respect to the viewing of threats presented to the rear of the vehicle. 

4.2 Effects of Participant, Environment and Target Characteristics 

Beyond the performance effects just outlined, many of the other factors (discussed in appendix 
F) appeared to exert strong influences over the various aspects of threat detection performance 
that were studied.  It is estimated that these effects are important because:  (1) they proved 
stronger indicators of performance than the primary independent variable (condition) and (2) 
they may have indicated important areas in which future technology design and development 
needs to compensate for potential deficiencies in human perceptual-cognitive performance. 

As far as baseline threat detection capabilities (whether an operator can distinguish between a 
real threat and a decoy), it seems the strongest performance indicators other than display 
condition involved variables related to threat target type, range and location of threat onset, and 
time available to view and process visual information.  Additional factors, such as participant 
type (civilian, Soldier), vehicle mobility, target mobility, and inter-threat interval also appeared 
to affect specific aspects of threat detection performance (i.e., detection rates vs. reaction time, 
etc.). 

As shown previously in table 5, there were three main effects for threat detection rates that were 
not involved in any interactions.  The participant type main effect appears to have been driven by 
Soldiers having a higher threat detection rate than civilian participants.  Overall, the Soldiers 
detected 574 out of 1056 potential threatening events, which was a 54.4% detection rate.  By 
comparison, the civilian participants detected 669 out of 1504 potential threatening events, a 
detection rate of 44.5%.  Similarly, a main effect was also observed for vehicle mobility.  The 
detection rate for targets presented when the vehicle was on the move was 50.91% (1140 out of 
2239 threatening events) as compared with 32.09% (103 out of 321 threatening events) for 
targets presented when the vehicle was stationary.  As with the effect for participant type, 
absence of vehicle mobility interaction effects suggests that this difference between detection 
rates when the vehicle was stationary or on the move was consistent across all levels of other 
independent variables.  The final threat detection rate main effect was due to a tendency for 
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detection performance to increase (t2538 = 4.434, p < 0.001) as inter-threat interval increased 
across a range from ~1.5 s to ~90 s.  That is, with more time in between threat detection events, 
threat detection rate increased slightly.  In addition to the performance differences due to front 
versus rear-presented targets as in the condition × threat location interaction previously 
discussed, a significant threat target type × threat location interaction revealed a clear additional 
effect of target type on threat detection. 

Shown in figure 14, it seems that IEDs were always detected more frequently than they were 
missed, although presentations of IEDs to the rear of the vehicle were rather infrequent 
(constituting 1.33% of all targets presented).  For both front and rear presentations of IEDs, 
detection rates were high (IEDs in front = 78.43%, IEDs in rear = 88.24%) compared with those 
for human threats.  However, detection differences existed between armed and unarmed humans 
as well.  That is, detection rates always appeared below 50% for armed humans (armed humans 
in front = 39.14%, armed humans in rear = 29.14%) whereas the detection rate for unarmed 
humans was higher when presented in the front (55.57%) and declined more sharply when 
presented behind the vehicle (15.58%). 
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Figure 14.  Threat target type × threat location interaction. 

Based on mathematical analyses of sensor characteristics, it was expected that detection 
performance would also be reduced as a function of the range at which the threats were 
presented.  This was supported by the data.  Detection performance appeared to decline as threat 
range increased, particularly for human targets.  The threat target type × range interaction was 
most likely to have been driven by a lack of longer range observations for IED threats.  In figure 
15, all IED targets appeared to onset and be maintained within a fairly close range of the vehicle, 
at or below 25 m, whereas the human targets were distributed across a range from 5 to 180 m. 
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Figure 15.  Average threat detection performance as a function of threat target type 
and range.  Target types include (A) armed humans, (B) unarmed 
humans, and (C) IEDs. 

Some evidence was also present for an interaction between armed and unarmed human threats.  
There appeared to have been fewer observations of low detection performance at close range for 
unarmed as compared with armed humans (compare figures 15A and 15B at ranges below 40 m, 
especially examine the left-most portion of the linear fits).  This observation was likely a 
function of a design difference in what made armed and unarmed humans considered “threats”; 
unarmed humans were considered threatening by their behavior (either staring at or moving 
towards the vehicle), whereas armed humans were considered threats by virtue of carrying a 
weapon.  However, the fact that unarmed humans were defined as “threatening” by moving 
towards the vehicle while an armed human could be standing still or even moving away from the 
vehicle and still be considered a threat points to a possible differential in target salience. 

Part of the difficulty in resolving whether such effects were due to target salience is that range 
exerted a strong influence over performance and thus represented one potential major confound. 
For example, additional data that would seem to speak to a target salience effect would be a case 
where moving threats were detected at a higher rate than stationary ones.  Salience in such a case 
would be assumed to go with the target motion; moving entities were likely more attention 
grabbing than non-moving entities.  Yet, the data obtained for the current experiment revealed 
just the opposite of what would be expected.  As shown in figure 16, moving targets were 
actually detected at a lower rate, on average, than were stationary ones.
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Figure 16.  Threat detection rate as a function of threat 
mobility and threat location. 

The reason this effect may represent a potential confound, rather than a counter-result (counter to 
what was expected), is that observations at different range values were unevenly distributed 
across the threat mobility factor.  In short, there were more threats presented at shorter ranges for 
stationary targets than for moving targets.  This is shown in figure 17, which presents histograms 
indicating the number of target observations across range within threat mobility and threat onset 
location factors.  Explicitly, because there was a strong tendency for threats presented at shorter 
ranges to be detected at a higher rate, and because more of the stationary threats were presented 
at shorter ranges (such as in the urban core), it becomes less surprising that stationary threats 
were detected at a higher rate than were moving threats.  A similar confound was observed for 
the previously-mentioned main effect for vehicle mobility a greater proportion of threats 
presented while the vehicle was moving were at shorter ranges than threats presented while the 
vehicle was stationary, thus explaining part of the improvement in detection performance when 
the vehicle was moving as compared to when it was stationary (yet another unexpected result). 
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Figure 17.  Distributions of threat presentations across range for stationary threats (A, 
B) and moving threats (C, D).  Left panels show front-presented threats and 
right panels show rear-presented threats. 

As previously shown (table 6), for reaction time, the final linear model included threat 
environment, threat target type, threat location, range, and vehicle mobility as significant 
predictors of performance.  Of the more complicated effects was a three-way interaction of threat 
environment × threat target type × range.  To resolve the interaction, linear models were 
conducted within each target range.  All permutations to resolve this interaction were significant, 
p’s < 0.001.  Visual inspection of the mean as displayed in figure 18 showed two general patterns 
of results.  For those targets that recognition was relatively less challenging (armed humans 
carrying large guns in the urban core, IEDs with long, large fuses in both environments), there 
was a clear scaling of reaction time across range from near to far.  That is, for relatively easily 
recognized threats, reaction time simply increased as range increased.  However, for targets 
where detection was a little more challenging, such as unarmed humans in the urban core or all 
humans in the outskirts, there seemed to be an optimal range for threat identification wherein 
reaction time was the fastest to those threats presented at a middle range and increased for threats 
presented very close to and very far from the vehicle.  While entirely speculative, it is likely that 
this interaction reflects different limitations on the perceptual and cognitive processes associated 
with simple versus complex threat detection events.
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Figure 18.  Mean reaction time for target type, range, and threat environment. 

As shown earlier in table 6, additional interactions were observed as a function of threat range. 
To resolve the range × threat location interaction, linear models were conducted, selecting for 
target range.  For mid- and long-range targets, there was a difference between front and rear 
target locations.  More specifically, the increase in reaction time observed across range was 
considerably greater for threats presented to the front than for threats presented to the rear (table 
12).  This result likely relates to the sensor usage.  Views to the rear of the vehicle were less 
frequent than views to the front of the vehicle.  Moreover, detection rates were lower for threats 
to the rear.  However, it is reasonable to infer that if a threat was successfully detected in the rear 
of the vehicle, it was probably detected relatively quickly because the consequence of waiting 
longer to make a decision (which would result in a longer reaction time) for a target to the rear is 
that, due to vehicle motion, the threats get further away.  Conversely, participants may have 
waited a little longer to make a decision to the front of the vehicle because the consequence of 
waiting longer was that, on average, the targets would get closer. 

 

Table 12.  Mean (±SE) reaction time for targets by threat location and range. 

Target Location Near Mid Far 
Front 5.99 (0.15) 14.67 (0.58) 20.43 (0.67) 
Rear 5.79 (0.38) 7.17 (2.01) 9.43 (1.85) 
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To resolve the interaction of vehicle mobility × range, linear models were conducted, selecting 
for vehicle mobility and range.  All comparisons were significant, p’s < 0.001.  As target range 
increased, RTs increased.  This increase was greater when the vehicle was moving relative to 
when it was stationary (see table 13).  As with the result shown in figure 18, this may have 
reflected a strategy where, while on the move it was, on average, beneficial to wait longer to 
report on further away targets to the front of the vehicle because, as one waited longer the threats 
would, on average, get closer to the vehicle and become easier to identify. 

Table 13.  Mean (±SE) reaction time for targets by vehicle mobility and range. 

Vehicle Mobility Near Mid Far 
Stationary 4.05 (0.46) 7.65 (0.89) 8.16 (0.50) 
Moving 6.10 (0.26) 14.41 (0.42) 21.41 (0.48) 

 
The linear mixed model analyses also revealed significant interactions with vehicle mobility and 
threat location as predictors.  The following sections describe the results of the simple effects 
analyses for those interactions. 

To resolve the interaction of vehicle mobility × threat location, linear models were conducted 
within target sensor location.  If targets were presented in the rear sensors, there was no 
difference in reaction time to threats regardless of whether the vehicle was moving or not. 
Targets in the rear of the vehicle were more difficult to detect and identify in general and, as 
discussed above, responding slowly usually meant that they moved further away from the vehicle 
and thus there was a premium on responding quickly to threats presented in the rear of the 
vehicle.  In contrast, for targets presented in the front sensors, detections occurred twice as fast 
when the vehicle was stationary (X = 5.25, SE = 1.17) relative to when it was moving (× = 11.1, 
SE = 0.28), p < 0.001.  The results suggest that when performing threat detection with the vehicle 
on the move, operators might have waited to approach threats in the front before deciding on 
how to fill out the appropriate SA report. 

To resolve the interaction of threat environment × threat location (table 14), linear models were 
conducted, selecting for threat location and environment.  Continuing the previous pattern, all 
comparisons were significant, ps < 0.001.  In general, if targets were detected in the rear sensors, 
reaction times were faster.  Finally, reaction times for both front and rear sensors were higher in 
the outskirts than the urban core, another result that was likely confounded by the previously 
discussed range effect. 

Table 14.  Mean (±SE) reaction time for targets by threat 
location and threat environment. 

Target Location City Outskirts 
Front 10.31 (0.33) 11.56 (0.42) 
Rear 5.74 (1.039) 7.59 (1.00) 
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Final linear model analyses revealed that threat target type, range and vehicle mobility 
significantly affected accuracy.  More specifically, the final model for overall accuracy (results 
in figure 18) included threat environment, threat target type, threat location, range, and vehicle 
mobility as predictors.  It revealed a significant interaction of threat target type × range for 
detection accuracy, f (4, 1230) = 14.5, p < 0.001 and threat target type × vehicle mobility,  
f (1, 1230) = 31.0, p < 0.001, the main effects of threat target type, range, and mobility were also 
significant, F (2, 1230) = 53.9, p < 0.001, F (2, 1230) = 5.3, p < 0.001, and F (1, 1230) = 11.1,  
p < 0.001, respectively.  

To resolve the interaction of threat target type × range, linear models were conducted for each 
target range.  There was no difference in target detection accuracy at short range, however there 
was a difference at mid and far ranges, F (2, 272) = 11.0, p < 0.001 and F (2,237) = 44.8,  
p < 0.001.  In the mid range, detection accuracy regarding armed humans was significantly 
poorer than for either unarmed humans or IEDS, ps < 0.001.  For long-range detection, all pairs 
were significantly different, ps < 0.001.  Results are shown in table 15. 

Table 15.  Mean (±SE) detection accuracy for threat target type × range. 

Target Range Armed Humans 
Unarmed 
Humans IEDS 

Near 88.0 (1.61) 88.7 (2.63) 85.4 (1.51) 
Mid 72.9 (2.69) 85.1 (2.90) 87.4 (2.86) 
Far 59.2 (3.26) 85.5 (5.58) 94.4 (4.31) 

 

To resolve the interaction of threat target type × vehicle mobility (table 16), linear models were 
conducted for each target range.  There was no difference in target detection for IEDs since these 
were always present when the vehicle was moving.  However, there was a difference for armed 
and unarmed humans:  F (2, 272) = 11.0, p < 0.001 and F (2,237) = 44.8, p < 0.001.   

Table 16.  Mean (±SE) detection accuracy for threat target type × vehicle mobility. 

Vehicle Mobility Armed Humans 
Unarmed 
Humans IEDs 

Stationary 40.3 (5.13) 91.5 (2.64) — 
Moving 82.9 (1.32) 87.4 (1.30) 87.6 (1.04) 

 
There were many complex, interacting factors affecting the behavioral variability observed in the 
present experiment.  Among the variables that appeared to exert the strongest influences were 
characteristics of the task context.  Variables included the location of a threat onset (whether 
front or rear of the vehicle), the range from the vehicle to the threat, and whether the vehicle was 
stationary or on the move.  Here was a generalized reduction in performance for detecting threats 
that onset to the rear of the vehicle and there appeared to be a decrease in detection performance 
that varied as a function of range.  Detection rates and accuracy decreased, on average, as the 
range between the vehicle and threat increased and reaction time tended to increase.  However, 
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the reaction time data suggest that a general strategy was used in terms of responding to threats 
that onset to the front versus those that onset to the rear of the vehicle.  Specifically, when threats 
were detected at the rear of the vehicle, decisions were made relatively quickly because, 
especially when the vehicle was moving, they were likely to get further away as the mission 
progressed.  When threats onset to the front it seems that participants may have been waiting a 
little bit longer to complete their SA reports; the likely interpretation is that they were waiting for 
the vehicle to approach the target so they could resolve its type for the SA report.   

Viewing time also significantly affected performance.  If participants were making their 
reporting decisions, in part based on how long they could view the targets, then one would 
expect to find a strong relationship between the threat detection performance variables and 
viewing time (defined as the amount of time each threat was visible on screen before it was 
reported; see appendix E).  As such, the last aspect of the threat detection results closely assesses 
how viewing time factored into the results of the current study. 

4.3 Effects of Viewing Time 

A final interaction term that was included in the logistic regression model involved a threat 
location x viewing time interaction, which is plotted in figure 19.  Figure 19 shows that targets 
presented to the rear of the vehicle were typically viewable in either a sensor or a banner for less 
time than targets presented in the front.  The slope of the increase in detection performance with 
increased viewing time was greater for the targets presented to the rear of the vehicle (slope 
= 0.812, t2538 = 5.163, p < 0.001) than for the targets presented to the front (slope = 0.660, t2538 
= 10.139, p < 0.001), indicating that participants benefited more from additional viewing time 
when detecting targets appearing to the rear than when detecting forward-presented targets.  

There was also a positive relationship between viewing time and detection performance for both 
sets of target locations, confirming an expected result that given more time with the target in a 
sensor or banner display, participants would have a higher likelihood of detecting that target. 
While not profound, this result is important to consider relative to the additional dependent 
variables, particularly analysis of reaction time. 
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Figure 19.  Threat detection performance shown as a function of viewing time and threat 
onset location for (A) front- and (B) rear-presented targets. 

Because of the observation of a relatively strong effect for viewing time on basic threat detection 
performance, the linear mixed model analyses were conducted while explicitly including viewing 
time as a covariate.  The inclusion of viewing time as a covariate was intended to be a direct 
acknowledgement of its influence over threat detection performance and, in particular, as a 
primary determinant of reaction time.  This relationship is illustrated in figure 20, showing a 
strong correlation between viewing time and reaction time. 
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Figure 20.  Reaction times for all threat detections plotted as a function of viewing time. 

 

4.4 Concluding Remarks on Target Detection Analysis 

Overall, there appeared to be a number of factors influencing the ability of the participants in the 
current study to detect potential threats of varying characteristics.  Perhaps the most influential of 
these variables were the characteristics of the targets themselves.  For example, factors such as 
location of threat onset, whether the threat was moving or stationary, and the minimum range 
between the threat and the vehicle following threat onset all exerted strong influences on 
detection performance.  Moreover, there appeared to be some moderate to strong mitigating 
influences of other factors, such as whether the participant was a Soldier or civilian and whether 
or not the vehicle was stationary or moving. 

Among all of the variables influencing detection performance, perhaps the most powerful 
predictor of whether or not a target was detected was its location at threat onset.  In particular, 
there were many interactions observed that involved the location variable (i.e., whether the threat 
first appeared in the front or the back of the vehicle) suggesting an important consideration for 
system design.  Specifically, an effective 360° indirect vision system will be one that not only 
easily allows (as all display conditions in this study did), but also encourages the operator to scan 
areas behind the vehicle as frequently as they scan the forward path.  In addition to the location 
variable, range and viewing time also seemed to have significant influence over detection 
performance.  That is, those threats that appeared at longer distances from the vehicle and those 
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threats that appeared in a sensor for a shorter period of time were the ones that were most likely 
to be missed by the participants.  Therefore, if an indirect-vision system is to be effective for 
threat detection, it will be necessary to improve or enhance range performance as well as 
maximize or optimize the amount of time the operator potentially can view the target. 

Finally, some results indicated that target salience may have been an important factor affecting 
detection performance, although it was difficult in the current study to definitively identify its 
influence because of the effects with threat range and other factors.  Certainly as intelligent 
visualization development efforts proceed, aided target/threat recognition tools may become 
necessary to improve performance beyond passive systems that rely solely on optimizing the 
images for the human visual system.  Rather than making images better and hoping that the 
operators detection performance will improve with training and visual scanning experience, 
systems could be designed to actively enhance those features of the environment that make 
targets more salient, such as contrast enhancement and automated motion detection, especially as 
applied to detection and identification of humans who may or may not be potential threats to 
local security. 

Although the analysis of performance variables such as detection rates, reaction times, and 
accuracy was highly informative, some of the conclusions drawn relied heavily on informed 
interpretation rather than direct observation.  Therefore, the final sections of this report address 
how the display interfaces were used by the participants.  In particular, information gleaned from 
eye movements assessed on a subset of the experimental participants is examined and then 
conclude the report by discussing subjective questionnaires regarding workload and user 
preferences. 

4.5 Eye Tracker Performance 

For this experiment, two infrared (IR) cameras and emitters were used.  They were positioned 
just to the left and right of the experimental display screen, as shown in figure 21.  Eye-scanning 
behavior was measured throughout the experiment. 

 

 

Figure 21.  Smart Eye camera placement 
with illuminated IR emitters.
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4.6 Quality Analysis and Data Processing 

In order to use the acquired eye tracker data for analysis, it was necessary to assess the quality of 
each data set obtained.  Despite the fact that eye detection and gaze estimation has received a 
considerable amount of attention over the past few decades and significant progress has been 
made, eye tracking in general remains a very difficult problem and each system/approach has 
associated limitations (Hansen and Ji, 2010).  Some of the most prevalent limitations 
encountered with this work included: 

1. The use of IR emitters caused unwanted distortions, reflections, and glare in participants 
who were wearing glasses.  This made it difficult for the software algorithms to identify the 
pupils for participants that had glasses and greatly reduced the reliability of their associated 
data sets. 

2. The Smart Eye system was designed to work with up to six IR cameras; however, for eye 
tracking, both of the participant’s eyes must be visible in at least two cameras at the same 
time.  For this research, only two cameras were available and, therefore, eye tracking 
measurement was difficult for participants who were either restless (i.e., tended to 
constantly move about in their seat) or who tended to turn their head outside of the 
calibrated viewing range. 

3. World models were used to obtain intersections between eye gaze and display screen 
coordinates; however, subtle differences in calibration for each participant often resulted in 
slight errors, which often appeared as translational shifts in the data.  

Given these limitations, a number of pre-processing steps were used to determine the quality and 
usability of each data set.  The first step involved filtering out all data points that occurred 
outside of the experimental time window (i.e., prior to the start or after the completion of each 
condition), as well as all points in which no reading was possible due to the fact that one, or both 
of the participant’s eyes were not visible in both cameras.  The second step involved creating a 
heat map for each data set and then subjectively assessing each set to determine its usability.  
The results of this step were used to provide initial reports on participant behavior, to guide 
further analysis, and to provide a point of comparison for later quantitative analysis techniques.  

The manual inspection of the eye-tracking data sets involved overlaying each heat map with a 
wire-frame model of the current experimental condition (i.e., screen layout) and then labeling 
that data set as high, medium, or low quality.  Figure 22 shows examples of high, medium, and 
low quality data.  For reference, eye-tracker data were considered to be of high quality if, upon 
visual inspection, it appeared to be virtually noise free (i.e., very few points outside of viewing 
regions) and there was an apparent strong spatial correlation between the individual patterns of 
activity and screen layout.  Eye-tracker data were considered to be of medium quality if there 
was good spatial correlation between the observed patterns of activity and the screen layout, and 
if the apparent noise did not mask these patterns of activity.  Eye-tracker data were considered to
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be of low quality if no discernable relationship could be identified between the patterns of 
activity and the screen layout, or if there appeared to be more noise than data.  As an example, 
consider figure 22A, which was labeled high quality, the strongest patterns of activity can be 
intuitively matched to the center of the sensor view and the sensor control (i.e., the small square 
in the upper-right corner of the sensor view).  In addition, another pattern of activity is observed 
over the report panel at the right side of the screen, and there were very few points that occurred 
outside of these three regions of interest.  In figure 22B, which was labeled medium quality, 
there appeared to be patterns of activity corresponding to the top banner, sensor view, and report 
panel, but there was also a noticeable amount of noise that made these patterns appear slightly 
more diffuse than one would expect, given the screen layout.   

Of course, it was difficult to filter or simply remove these points from the data set because it was 
possible that in this particular experiment the participant had trouble staying focused on the task 
and as a result their eyes tended to “wander” more.  In figure 22C, however, there was no 
apparent correlation between the patterns of activity and the screen layout, and this data set was 
subsequently labeled as low quality. 

 

 

Figure 22.  Heat maps of (A) high-, (B) medium-, and (C) low-quality eye-tracker data. 

 

Once the individual missions were labeled for data quality, an overall participant label was 
assigned by aggregating the results over all four missions for a single participant (in a  
winner-take-all fashion).  In other words, if a participant had three missions that were labeled 
medium quality and one labeled low quality, then the participant’s overall rank was medium.  
Ties were broken manually by re-examining the data.  This approach was taken because the 
variables most affecting data quality (i.e., participant, eye-tracker calibration, and presence of 
glasses) were consistent across an individual participant’s four missions.  Table 17 presents the 
results of this process. 
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Table 17.  Results of manually ranking 
participant eye-tracker quality. 

Participant Rank – Manual 
4 High 
7 High 
1 Medium 
2 Medium 
3 Medium 
5 Medium 
6 Medium 

11 Medium 
14 Medium 
15 Medium 
17 Medium 
8 Low 
9 Low 

10 Low 
12 Low 
13 Low 
16 Low 

 
After each participant’s data had been manually labeled, the third pre-processing step was 
designed to perform a less subjective analysis of data quality.  However, this was a difficult 
process due to the unsupervised nature of the problem:  there was no labeled training, or 
calibration, data set with which to develop a system model.  Therefore, to obtain labeled training 
data this processing step focused on eye activity immediately prior to button presses.  Because 
participants interacted with the system using a mouse, it was assumed that when a participant 
pressed a button that there was a high probability the participant had to look at the button to do 
so.  For this analysis, the ‘Spot/BDA’ button was chosen due to its location on the report panel 
(i.e., it was spatially isolated from the rest of the screen regions) and because unlike the buttons 
used to indicate target type and location, the ‘Spot/BDA’ button had to be pressed for every 
report. 

The algorithmic analysis process began by isolating each ‘Spot/BDA’ button press for each 
mission and then extracting a small segment of the eye-tracker data, Δi

m, that occurred 
immediately prior to that button press.  Here, m  M denotes mission number and i  I indexes 
each button press.  The time window was set to 500 m/s, ending at the moment the button was 
pressed.  For each Δi

m set of data, the mean viewing location, vi
m, was calculated as a 2D vector 

of {x, y} screen coordinates.  Figure 23 shows two examples in which all vi have been plotted for 
two separate missions.  In the example on the left, the entire set vi was tightly packed near the 
‘Spot/BDA’ button indicating that the data from the eye tracker agreed with the participant’s 
behavior.  In the example on the right, the set vi appeared randomly distributed across the entire 
screen leading to the conclusion that either (1) the participant could successfully and repeatedly 
use the mouse cursor to press the ‘Spot/BDA’ button while looking in another direction or (2) 
that the data from the eye tracker were not reliable.
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Figure 23.  Example data plotting vi
m, for all i  I, (*) along with screen layout 

and the coordinates of the ‘Spot/BDA’ button (+). 

 
Once the vi

m data sets had been obtained, three descriptive parameters were extracted from each 
set.  The first two parameters extracted were the variances along each of the two principal 
component dimensions, while the third parameter extracted was the difference between the 
overall mean of vi for each m = {1, 2, …, M} and the known screen location for the ‘Spot/BDA’ 
button.  These parameters were chosen to provide a measure of both the amount of noise and 
translational error present in the data.  By normalizing these parameters on the scale [0, 1] and 
using them to represent the eye-tracker data, each mission was ranked from best to worst, or 
from 1 to 68, and an overall participant rank was determined by taking the average of each 
participant’s four missions.  The overall participant rank is shown in table 18, along with 
whether or not the participant had glasses as well as the previously determined subjective rank.  
As can be seen in table 19, participants with glasses tended to produce the lowest quality eye-
tracker data and there was strong agreement between the results from the algorithm and the 
previously described manual approach. 

Table 18.  Algorithmically derived participant rank. 

Participant Rank – Algorithm Rank – Manual Glasses? 
7 1 High No 
4 2 High No 

14 3 Medium No 
17 4 Medium Yes 
2 5 Medium No 

15 6 Medium No 
1 7 Medium No 
6 8 Medium Yes 
3 9 Medium Yes 
8 10 Low Yes 

11 11 Medium No 
13 12 Low Yes 
10 13 Low Yes 
5 14 Medium No 
9 15 Low Yes 

12 16 Low Yes 
16 17 Low No 
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Using the algorithmically determined ranks, the seven participants with the best eye tracker data 
were chosen for more detailed analyses.  This selection provided a combined total of 28 missions 
to analyze four Soldiers and three civilians and limited the number of participants with glasses to 
one.  Once these missions had been selected, the fourth and final pre-processing step involved 
manually translating each data set to improve the overall alignment with the screen layout.  This 
was done on a case-by-case basis and involved mapping the observed patterns of activity 
(identified via heat maps) to individual screen regions.  An example is shown in figure 24 in 
which a large vertical translational error appeared in an arguably otherwise usable data set.   

 

 

Figure 24.  Example showing the need for data translation of eye-tracker data.  Original 
data shown in (A) and translated data in (B). 

 
As a final note on the pre-processing steps, it is understood that there remains considerable 
uncertainty when assessing the exact {x, y} screen locations for a participant’s eye gaze at a 
specific instance of time.  However, it is believed that the selected data should be still useful for:  
(1) identifying general search patterns, (2) assessing the degree to which participants utilized 
different screen regions, and (3) analyzing relative patterns of eye movement as they occurred 
independently of screen region. 

4.7 Screen Usage and Performance Analysis 

Tables 19–22 summarize the viewing proportion for each screen region, as well as threat 
detection per condition.  For each condition, the viewing proportion was normalized to exclude 
all points that did not lie in one of the four screen regions:  top banner, sensor view, bottom 
banner, and report panel.  It should also be noted that the value for threat detection is only 
representative of the seven participants selected, and not of the whole participant set.  Therefore, 
any deviations from earlier results should be viewed as an effect of down sampling the available 
participant set to obtain a subset of only those participants with usable eye-tracker data.
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Table 19.  Viewing proportion and threat detection for condition A. 

 All Participants Soldier Civilian 
Top banner (%) — — — 
Sensor view (%) 93.31 93.93 92.47 

Bottom banner (%) — — — 
Report panel (%) 6.69 6.07 7.53 

Threat detection (%) 54.35 58.30 49.07 
 

Table 20.  Viewing proportion and threat detection for condition B. 

 All Participants Soldier Civilian 
Top banner (%) 26.90 25.41 28.89 
Sensor view (%) 66.45 67.62 64.89 

Bottom banner (%) — — — 
Report panel (%) 6.66 6.98 6.23 

Threat detection (%) 56.09 60.26 50.54 
 

Table 21.  Viewing proportion and threat detection for condition C. 

 All Participants Soldier Civilian 
Top banner (%) 19.64 15.94 24.57 
Sensor view (%) 72.91 74.60 70.67 

Bottom banner (%) — — — 
Report panel (%) 7.45 9.47 4.76 

Threat detection (%) 54.30 62.91 42.82 
 

Table 22.  Viewing proportion and threat detection for condition D. 

 All Participants Soldier Civilian 
Top banner (%) 24.23 27.28 20.17 
Sensor view (%) 66.22 64.70 68.26 

Bottom banner (%) 3.30 2.28 4.66 
Report panel (%) 6.25 5.75 6.91 

Threat detection (%) 52.65 54.96 49.57 
 
Two initial observations available from tables 19–22 are:  (1) in all conditions, the sensor view 
received the most attention from both soldiers and civilians, and (2) in condition D, the bottom 
banner received very little attention and could, for the most part, be considered neglected.  
Further analysis yielded no direct, discernable relationship between screen viewing strategy and 
threat detection per condition.  As an example, figure 25 plots threat detection as a function of 
increasing sensor view (%) for each condition.  Though they are not shown here, similar results 
were obtained when including participant type, accuracy, detection range, or reaction time.
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Figure 25.  Threat-detection rates as a function of sensor portal viewing percentage. 

 
The conclusion drawn from this initial investigation was that different individuals employed 
different search strategies, but that search strategy itself did not predict performance.  However, 
it was noticed that as participants spent more time using the banners, the number of sensor view 
changes decreased (figure 26).  The conclusion drawn is that while performance did not vary 
given search strategy, participants who heavily relied on the sensor view had to maintain a higher 
level of interaction with the system to reach the same performance levels as participants who 
tended to use the banners more.  

Following this analysis, the investigation proceeded to considering where participants were 
looking immediately prior to filling out a report.  The intention was to determine to what degree 
participants used the banners as a detection aid rather than as their sole means of detection.  For 
each report submitted, analyses were performed on the previous 2 s of eye-tracker data and then 
a voting scheme was used to determine the screen region to which attention had last been given.   
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Figure 26.  Sensor changes as a function of sensor portal viewing percentage, with 
linear trend line. 

 
As shown in figure 27, as the usage of a particular screen region increased, the likelihood that a 
participant was using that screen prior to initiating a report also increased (note:  figure 27 
represents averages across conditions, thus the leveling off observed for the sensor view-based 
reports).  From this trend, and the point noted earlier that mean reaction time did not differ with 
screen region usage, it was concluded that participants tended to not use the banners as a 
detection aid, but rather when participants used the banner they relied on it for extracting all 
information related to the report.  In other words, the behavior—detect target in banner, use the 
sensor to get a closer look, and then initiate the report—was not observed.  Instead, operators 
tended to submit reports immediately following detection of a threat, regardless of the screen 
region being used at the time. 

Additional investigations, such as analyzing the probability of detecting moving targets, human 
targets, or IEDs when the vehicle was stationary or moving, or when target onset was in the front 
180o or rear 180o of the vehicle also yielded no direct relationship between banner usage and 
performance that could not otherwise be explained as a difference between soldiers and civilians 
or between conditions. 
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Figure 27.  Percentage of threats detected in which participant’s last recorded gaze position was on the (A) top 
banner, (B) sensor portal, or (C) bottom banner. 

 

4.8 Eye Tracker Workload Analysis 

Following the assessment of the specific relationship between eye position and screen usage, the 
investigation shifted focus on to other potential uses of eye tracker data for inference of the 
operators experience in using the 360° sensor system.  In particular, following work presented in 
Fidopiastis et al. (2009), eye-movement patterns were investigated by using the Nearest 
Neighbor Index (NNI).  The NNI is a metric for assessing distributions of point-based patterns 
originally developed by Clark and Evans (1954).  The value of each NNI was obtained by first 
extracting eye fixations, or periods in which visual gaze was maintained at roughly the same 
location, and then analyzing eye movements between fixation points (Di Nocerra et al., 2006; 
Salvucci and Goldburg, 2000).  The final NNI value was then determined to be the ratio of the 
sum of nearest neighbor distances (for all points) and the distance one would expect if the 
fixations had been generated randomly.  NNI values near 1.0 suggest a random distribution, or 
potentially low workload, while values less than 1.0 suggest focused searching, and thus 
potentially high workload (Fidopiastis et al., 2009).  The intent with investigating NNI was to 
determine if there was a noticeable difference in the behavior patterns (and possibly workload) 
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for participants with better overall detection rates, accuracies, and reaction times.  For a more 
complete discussion and review of how eye-movement patterns and other eye-related metrics 
(e.g., blink duration and pupil dilation) may be related to operator workload, the interested reader 
is directed to Andreassi (2000), Van Orden et al. (2001), Marshall et al. (2003), and De Greef et 
al. (2009).  

NNI scores were extracted for each of the 28 missions in the reduced data set.  Fixations were 
identified using a velocity filter set to 10o/s, with minimum allowable fixation duration of 
150 m/s.  The size of the search area was chosen to be the size of the convex hull surrounding all 
fixations.  The results shown in figure 28 indicate that as participant’s search patterns became 
more random (i.e., NNI values closer to 1.0), threat detection tended to decrease.  This trend, 
however, was less apparent with regards to mean accuracy (figure 29) and mean reaction time 
(figure 30).  
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Figure 28.  Threat detection across condition as a function of NNI, with 
linear trend line. 
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Figure 29.  Mean accuracy across condition as a function of NNI, with 
linear trend line. 
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Figure 30.  Mean reaction time across condition as a function of NNI, with 
linear trend line. 
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Figure 31 separates threat detection into a function of both NNI and condition.  Similar trends 
were seen for conditions A, B, and C that were observed for the entire data set, but interestingly 
in condition D, the same trend is not observed.  That is, the participants whose eye movements 
were measured to be more random did not appreciably perform worse with respect to threat 
detection in condition D.  The most likely explanation for this result is that search strategy was 
less of an influencing factor on performance in this condition, where participants had both top 
and bottom banners providing a 360o FOV. 
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Figure 31.  Threat-detection rate as a function of NNI and condition, with linear trend 
lines.  Panels correspond with (A) condition A, (B) condition B, (C) condition 
C, and (D) condition D. 

 
 
Finally, figure 32 plots the observed NNI values versus the computed workload measures from 
the NASA-TLX for each of the four conditions.  While a word of caution is warranted when 
interpreting these results (due to the overall reduced data size and various uncertainties attached 
to the quality of the eye tracker data), it is still intriguing to note that the recorded eye tracker 
data shows potential as surrogate measure of workload and can also potentially be related to 
performance. 
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Figure 32.  Reported workload as a function of NNI and condition, with linear trend 
lines.  Panels correspond to (A) condition A, (B) condition B, (C) condition 
C, and (D) condition D.  

4.9 Concluding Remarks on Eye-Tracker Analysis 

Through the current analysis of the available, and usable, eye tracker data, some initial 
conclusions can be drawn:  (1) the use of banners was not a good predictor of overall 
performance, (2) in condition D, the bottom banner was used rarely, if at all, and (3) the data 
obtained from the eye tracker has the potential to be used for workload analysis and, under 
certain conditions, participant’s search patterns may be indicative of performance.  However, as 
previously stated, these results are only tentative due to a number of reasons, specifically the 
reduced size of the available data set and the difficulties removing noise and simultaneously 
proving the reliability of the measured eye gaze information. 

For improved reliability and quality of eye tracker data in future experiments, it would be 
worthwhile to obtain specific calibration information from each participant.  This would require 
additional experimental preparation time, but would provide labeled training points which would 
allow an algorithmic process to be designed that assesses, and corrects, data quality with respect 
to known values.  Furthermore, reducing the number of participants with glasses, or requesting 
that participants who can wear either glasses or contacts to wear their contacts for the experiment 
would reduce a lot of the currently observed noise effects.  It is, of course, understood that 
obtaining participants who do not wear glasses may not always be possible, and thus some noise 
may need to be tolerated.  This further enforces the need to obtain participant-specific calibration 
data.
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4.10 Subjective Workload 

A repeated measures MANOVA was performed to examine the participants’ perceived workload 
(weighted NASA-TLX scores), with interface condition as the within-subject factor.  There were 
no significant differences in perceived workload between the interface conditions, Fs < 1.0.  (See 
figure 33 and table 23.) 
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Figure 33.  Mean workload rating for the NASA-TLX subscales. 

 

Table 23.  Mean overall workload by condition. 

Condition Overall Workload 
A 56.6 (3.83) 
B 60.0 (3.07) 
C 59.5 (3.54) 
D 57.1 (3.22) 

 

4.11 Usability Assessment:  Operator Preferences 

While, in general, usability data are highly subjective, in this case, operators’ opinions of the 
technologies used in this study line up very well with their corresponding performance measures. 
Of particular interest here is the relationship that the usability data have with sensors view 
changes.  Participants were asked to rank order the sensor system used in this study according to 
preference (from 1 to 4).  These results were then averaged across all participants and the 
outcome of these calculations shows that condition A (the sensor only configuration) was 
overwhelmingly chosen as the least favored option (mean score = 3.88).  Condition C (the sensor 
+ top banner, small-portal configuration) was the second-least favored option with a mean score 
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of 2.88.  Condition B (the sensor + top banner, full-screen configuration) and condition D (the 
sensor + 2 banner, full-screen configuration) rated the best with mean scores of 1.65 and 1.59, 
respectively, with condition D scoring the greatest number of first-place votes (11 out of 17, or 
67%).   

When matching this data up with the scores for sensor view changes, you can see that the 
conditions rank order in the same way (table 24).  Given that overall, target identification 
performance was not dramatically different from one sensor condition to the next, the quasi-
workload measure of sensor view changes shows that operators were more efficient in the task 
when working with those systems that included at least one banner, in a full screen mode (i.e., 
conditions B and D).  Further, combining this outcome with the usability data supports the idea 
that operators were cognizant of this increase in efficiency. 

 

Table 24.  Comparison of operator’s rank of experimental displays against sensor view changes. 

Interface 
Configuration 

Total Sensor View 
Changes 

Sensor Views Per 
Minute 

Operators Average 
Rank Order of 

Interface 
A 381.5 28.2 3.88 
B 171.4 12.6 1.65 
C 189.2 13.8 2.88 
D 131.0 9.6 1.59 

 
 

In addition to these findings, exit interviews were conducted to establish any additional 
preferences or concerns expressed by the operators in this study (table 25).  While completely 
subjective in nature, data such as these can indicate areas of success and potential failure within 
system design.   

In the case of the current study, every one of the 17 operators expressed a preference toward 
using the display interface configurations that included a banner as opposed to those without a 
banner display.  Further data from the exit interviews show that only five of the 17 participants 
expressed a sense of being overwhelmed by information during the study.  However, only one of 
those five was a non-civilian (i.e., having a military background).  Both of these findings support 
the use of banners in display configurations as a useful and wanted display feature.
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Table 25.  List of preferences and concerns organized by participant (1–17). 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

% 
All 

% 
Sld 

Banner 
preferred 

× × × × × × × × × × × × × × × × × 100 100 

Wants zoom — × — × × — — — × — × × — — × — × 47.1 71.4 

Sa report 
problem 

× — — × — × × × — — — — — — × × × 47.1 42.9 

Sensor control 
(clicking) 
problem 

× — × — — — — × × — — — — × — — — 29.4 28.6 

Wants 
continuous 

panning 
— × — — — — — — — × — × — — — × × 29.4 14.3 

Sensor aimed 
at rear 

— — × — — × — × — — × — — — × — — 29.4 14.3 

Wants 
interactive 
targeting 

— — — — — × × × — — — — — × — — — 23.5 14.3 

Overwhelmed 
by information 

— — — — — × — — — — × — × — — × × 29.4 14.3 

Notes:  Shaded columns indicate Soldiers, % All is calculated as a percentage of 17 participants, and % Sld is a percentage of 
the seven Soldiers. 

 

Still some potential issues may have been exposed by the exit interviews.  While none of the 
areas mentioned by the operators were expressed by the majority, the issues are still important to 
point out as potential pitfalls for the implementation of a display system based on the designs 
found in this study.  Table 25 shows a complete listing of the preferences and areas of concern 
generated from the exit interviews of operators in this study. 

 
 

5. Conclusions 

The main objective of the experiment was to compare four different interface configurations for 
representing 360° SA.  In general, the data suggest that the presence of banners has potential for 
improving efficiency of operators maintaining local area awareness.  However, even with a 360° 
FOV available to the operator, target detection remains a difficult task. 

We anticipated that the presence of banners would enhance target detection performance. 
Overall, there was no resounding evidence for dramatic effects of display condition on target 
detection in the main overall analyses.  Several smaller effects were observed, but were clearly 
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not the main sources of influence over the variability in observed performance.  However, 
inspection of operator interactions with the SMI and other variables in the experiment showed an 
advantage for the use of banners.  Though overall performance did not differ radically, more 
interactions with SMI were required to obtain the same performance in condition A as compared 
to conditions B through D.  Fifty-five percent more sensor changes occurred in the condition 
with only a sensor view (A) than one where the operator had a forward looking banner (B).  
Soldier preferences mirrored these results, noting that the no banner condition was more difficult 
to use, even though the banner condition took more time to learn. 

When banners were present, operators looked more frequently to the rear of the vehicle than 
when no banners were present, which is an important component of local area awareness.  This 
fact was confirmed by the sensor usage data and eye tracking data which showed that rear views 
were infrequent without banners.  The banners allow operators to keep their eyes forward while 
on the move and still scan the rear of the vehicle.  Banners provide partially redundant display 
information, increasing the possible viewing time and allowing for threat detection as well as 
identification.  Importantly, Soldiers showed a preference for the two conditions that included 
banners and single sensor portal view.  In fact, in exit interviews, Soldiers described a useful 
technique in which the front 180° banner was used to observe forward for targets and vehicle 
mobility, while a sensor view at the 6 o’clock position was used to simultaneously scan for 
targets to the rear of the vehicle. 

Poor performance for threats presented to the rear despite available technology to view the rear 
of the vehicle indicates that rear target detection is an important issue and warrants further 
investigation.  In addition to display factors, task factors were also important determinants of 
threat detection and identification performance.  Threat type, threat range, location of threat 
onset, threat density (inter-threat interval), and mobility were all factors affecting performance.  
There was a generalized decrease in probability of detection with increased range, but a 
generalized increase in detection probability with increased time to view a threat.  Threat onset 
location, as previously mentioned, also affected performance such that performance was poor for 
threats that onset to the rear of the vehicle.  Viewing time was an important organizer of 
performance; increased viewing time increased the likelihood there would be detection because 
the operators had more time make discrimination.  The presence of redundant displays (banner + 
sensor portal) increased viewing time and in turn could enhance detection.  Mobility also 
affected performance.  Target detection was improved when the vehicle was on the move relative 
to stationary.  One explanation for this may be that, on the move, operational tempo 
(OPTEMPO) is really high which can heighten operator awareness.  In addition, when on the 
move the viewing time for a target is increased and as the vehicle get closer to a target the 
probability of correct detection increases since the target is more clearly discernable. 

These data provide a justification for operators choosing a display that maximizes the 
opportunity to view threats and thus, redundant displays would be predicted to lead to benefit 
based on current data.  Indeed, usability data on Soldiers’ preference indicates that they would 
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agree with this statement:  choosing the display configurations with the largest primary viewing 
area and most judicious use of banners (conditions B and D).   

In addition to the traditional human factors measures of objective performance and subjective 
workload, a non-invasive physiological measure (eye tracking) was included in the paradigm. 
Eye movement patterns were successfully tracked in seven of the 17 participants.  Screen region 
usage was assessed with the performance data.  The screen usage data showed that the bottom 
banner was mostly neglected.  There were no identified relationships between banner usage and 
any of the selected performance variables.  There was, however, a relationship between banner 
usage and interaction with sensor (number of sensor view changes).  Participants that neglected 
the banners had to rely on constantly changing sensor position to achieve similar results.  This 
was validated by the significant effect of display configuration on sensor view changes.  The eye 
tracking and sensor use data also indicated variation in workload throughout the experiment, 
with some variation attributable to display condition.  Eye-tracking data indicated, based on NNI 
results, that increasing workload may have a deleterious impact on threat detection performance. 

The final recommendation from these results is to provide a banner solution for the 360° system.  
The use of the banner combined with a sensor portal view allows for both enhanced field of view 
as well as enhanced range performance.  Further study is needed to resolve optimal display and 
usability characteristics for appropriate banner technology.  Technology is needed to aid the 
operator in target detection especially for mid- and long-range targets across the 360° spectrum 
and when the vehicle is on the move.  Range performance is an important factor and sacrificing 
range for the sake of FOV is not recommended for maintaining local area awareness.  Real-time 
image processing may ultimately be necessary to account for other factors affecting detection 
and identification performance and particularly useful would be ways of enhancing target 
salience in cluttered environments. 
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Appendix A.  Informed Consent

                                                 
 This appendix appears in its original form, without editorial change. 
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Consent to Participate in Research Informed Consent Form 
Army Research Laboratory, Human Research & Engineering Directorate 
Aberdeen Proving Ground, MD 21005 
 

Title of Project: Impact of 360° Sensor Information on Vehicle 
Commander Performance 

 
Principal Investigator:   Keryl A. Cosenzo 
    Soldier Performance Division 
    Cognitive Sciences Branch 
    Robotics Program Team 
    410-278-5885, kcosenzo@arl.army.mil 
 
    Jillyn Alban  

Intelligent Ground Systems   
U.S. Army Tank Automotive Research, Development, and 
Engineering Center   
Soldier Machine Interface Team 
586-574-3941, jillyn.alban@us.army.mil 

      
Purpose of the Study: The objective of this research is to evaluate the effect of the new 360/90° sensor system on 
the vehicle commander’s ability to maintain local area awareness and disseminate the information to his crew.  
 
Procedures to be followed: Upon arrival at the lab, the experimenter will brief  you on the purpose of the 
experiment and to determine if you would like to participate. You will then be given  a description of the local 
security systems and interface and the primary goals of the experiment will be briefly outlined. You will be asked to 
play the role of a vehicle commander and conduct security on the move in complex urban terrain using two different 
indirect vision sensor systems. After receiving the overview you will be set up with the eyetracker and Lifeshirt. 
You will then complete four training missions to ensure that you understand the task. You can repeat the training if 
needed. After training, you will complete four missions. Following each mission you will complete the NASA-TLX 
to assess your subjective workload.  
 
Discomforts and Risks:  The risks that will be encountered in this study are minimal. There are minimal risks 
associated with the head and eye-tracking apparatus used in this experiment. The infrared eye-tracking pods used in 
this experiment are well within the Maximum Permissible Exposure (MPE) limit, based on the International 
Electrotechnical Commission (IEC) Standard 60825-1 V1.2. Also, the pod’s minimum operating distance is well 
beyond the distance that represents an ocular hazard (based on the IEC Standard 60825-1 V1.2.).There are minimal 
risks associated with the physiological recording equipment. There is no risk of shock from the LifeShirtTM. You 
may develop skin irritation in response to the skin preparation, electrode gel, or electrode adhesive. This possible 
irritation is similar to what you might develop in response to a bandage or skin lotion that you do not typically use.   
 
Benefits:  Although there are no direct benefits for your participation in this experiment, you will contribute to our 
understanding of how a 360/90° sensor affects Soldier performance. You will receive the personal satisfaction of 
providing valuable information to the Army’s manned and unmanned ground vehicle research robotics research. 
 
Duration:  It will take ~4 hours to complete this experiment. A 5 minute break is scheduled between each mission. 
Breaks can be taken as often as needed during the experiment. 
 
Payment for participation:   You will not be paid for your participation in this study in addition to your regular 
salary.   
 
Confidentiality:

IRB USE ONLY: ARL-20098-
Institutional Review Board 
Aberdeen Proving Ground, MD 
Approval Date: 
Expiration Date: 
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Your participation in this research is confidential. The data will be stored and secured at Building 459 at Aberdeen 
Proving Ground, MD, in a password protected computer file.  Publication of the results of this study in a journal or 
technical report or presentation at a meeting will not reveal personally identifiable information.  This consent form 
will be sent to Army Research Laboratory’s Institutional Review Board, where it will be retained for a minimum of 
three years.   
 
No personally identifiable information will be shared with anyone outside the research staff.  Officials of the U. S. 
Army Human Research Protections Office and the Army Research Laboratory’s Institutional Review Board may 
inspect the records obtained in this study to insure compliance with laws and regulations covering experiments using 
human subjects.  
 
Participation terminated by the investigator:  N/A 
 
Contact Information for Additional Questions: 
 
You have the right to obtain answers to any questions you might have about this survey research both while you take 
part in the study and after you leave the research site.  Please contact the researcher listed at the top of the first page 
of this consent form for more information about this study.  You may also telephone Dr. Paul Rose of the Army 
Research Laboratory Human Research and Engineering Directorate Institutional Review Board at (410) 278-5992 
with questions, complaints, or concerns about this survey research. He can also answer questions about your rights 
as a research participant. You may also call this number if you cannot reach the research team or wish to talk to 
someone else. 
 
Voluntary Participation: Your decision to be in this research involving completing questionnaires and interview is 
voluntary. You can stop at any time. You do not have to answer any questions you do not want to answer. Refusal to 
take part in or withdrawal from answering these questions will involve no penalty or loss of benefits you would 
receive by staying in it. 
 
Military personnel cannot be punished under the Uniform Code of Military Justice for choosing not to take part in or 
withdrawing from this study, and cannot receive administrative sanctions for choosing not to participate. Civilian 
employees or contractors cannot receive administrative sanctions for choosing not to participate in or withdrawing 
from this study. 
 
You must be 18 years of age or older to take part in this research study.  If you agree to take part in this research 
study based on the information outlined above, please sign your name and indicate the date below.   
 
You will be given a copy of this consent form for your records. 
 
______________________________________________ _____________________ 
Participant Signature       Date 
 
 
______________________________________________ _____________________ 
Person Obtaining Consent      Date 
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Appendix B.  Demographics Questionnaire

                                                 
 This appendix appears in its original form, without editorial change. 
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Participant ID# __________ 

 
Demographic and Computer Experience Questionnaire 
 
1.  AGE:  _____ 
2.  GENDER:  ___Male   ___ Female 
3.  Do you wear glasses? ___ Yes ___ No 
 
4. Do you have any reason to believe that you have a hearing impairment? ___Yes  ___ No 
 
5. Do you have an apparent hearing impairment?  ___Yes  ___No 
 
6. Please indicate your highest level of education: 

___ High School Diploma 
___ Undergraduate Degree  

      ___ Some graduate courses  
      ___ Graduate Degree  
      ___ Other 
   
7. Are you in the military?  ___Yes  ___No   If yes, what Branch?  _________________ 
 

For how many years?  ___Less than 5 years  ___5-10 years ___ 11-15 years ___16-20 years ___ 20 years or 
more 
 
What is your rank?  _____  What is your MOS?  ___________________ 

 
8. Does your job require you to use a computer on a regular basis?  ___Yes  ___No 
 
9. How long have you been using a computer?   
 
__Less than 1 year  ___ 1-3 years ___4-6 years  ___7-10 years  ___10 years or more 
 
10. How often do you use a computer?   
 
___Daily  ___Weekly  ___Monthly  ___Once or twice a year 
 
11. . Do you have a computer in your house?   ___Yes  ___No 
 
12. . Do you use the computer to play games?   ___Yes  ___No 
      
     If yes, how often?  ___Daily  ___Weekly  ___Monthly  ___Once or twice a year 
 
13. Do you have operational experience in complex urban terrain? ___Yes  ___No 

 
If yes, where _________________________________________________ 

 
14.  Have you ever conducted security patrols in complex urban terrain? ___Yes  ___No 

 
                If yes, where _________________________________________________ 
 
15. Have you ever used an indirect vision system to conduct local security? ___Yes  ___No 

 
If yes, which systems _____________________________________________ 
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Appendix C.  National Aeronautics and Space Administration Task Load 
Index (NASA-TLX) Questionnaire 

                                                 
 This appendix appears in its original form, without editorial change. 
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NASA TLX Questionnaire 
 
 
Participant ID:________________ 
 
TLX Workload Scale 
 
Please rate your workload by putting a mark on each of the six scales at the point which matches your experience.  
 
 
 
 
Mental Demand 
 
 
 
 
 
 
Physical Demand 
 
 
 
 
 
Temporal Demand  
 
 
 
 
 
Performance 
 
 
 
 
 
Effort 
 
 
 
 
 
Frustration 
   

Good   Poor 

Low   High 

Low   High 

Low   High 

Low   High 

Low   High 
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Appendix D.  Usability and Exit Interview Questionnaires

                                                 
 This appendix appears in its original form, without editorial change. 
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Usability 
PIN__________ Date_____________  Time___________           Comments 
1. Text size was large enough to read 

         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
       Disagree                                                                            Agree 

 

2. It was hard to select some items when using the mouse 
         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
      Disagree                                                                            Agree 

 

3. Buttons/controls are arranged conveniently so that I can quickly find the 
ones I need at any given time 

         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
       Disagree                                                                            Agree 

 

4. The terminology used throughout the interface was appropriate 
         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
      Disagree                                                                            Agree 

 

5. The sensor orientation icon was easy to interpret 
         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
      Disagree                                                                            Agree 

 

Sensor Only WMI Configuration 
Please fill out this section for the Sensor Only Configuration  

 

6. The Sensor Window size was appropriate for the tasks I completed 
         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
       Disagree                                                                            Agree 

 

7. The Sensor Window field of view was appropriate for the tasks I 
completed 

         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
       Disagree                                                                            Agree 

 

8. I always knew where my sensor was pointed relative to my vehicle 
         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
      Disagree                                                                            Agree 

 

9. It was difficult to determine where a target was relative to my vehicle 
         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
       Disagree                                                                            Agree 
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10. The Sensor Only configuration allowed me to effectively search for 
targets 

         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
       Disagree                                                                            Agree 

 

11. The Sensor Only configuration allowed me to effectively identify targets 
         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
       Disagree                                                                            Agree 

 

12. The interface allowed me to effectively control sensor orientation 
         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
      Disagree                                                                            Agree 

 

13. Overall, I think the Sensor Only WMI configuration was easy to learn 
         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
      Disagree                                                                            Agree 

 

Sensor + Top Banner Configuration, Full Screen 
Please fill out this section for the Sensor +Top Banner, Full Screen Configuration 
only 

 

14. The Sensor Window size was appropriate for the tasks I completed 
         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
       Disagree                                                                            Agree 

 

15. The Sensor Window field of view was appropriate for the tasks I 
completed 

         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
       Disagree                                                                            Agree 

 

16. The Banner size was appropriate for the tasks I completed 
         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
      Strongly                                                                           Strongly 
      Disagree                                                                            Agree 

 

17. The Banner horizontal field of view was appropriate for the tasks I 
completed 

         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
      Strongly                                                                           Strongly 
     Disagree                                                                            Agree 

 

18. The Banner vertical field of view was appropriate for the tasks I 
completed 

         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
      Strongly                                                                           Strongly 
     Disagree                                                                            Agree 
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19. The Banner orientation was appropriate for the tasks I completed 
         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
      Strongly                                                                           Strongly 
     Disagree                                                                            Agree 

 

20. I always knew where my sensor was pointed relative to my vehicle 
         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
      Disagree                                                                            Agree 

 

21. It was difficult to determine where a target was relative to my vehicle 
         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
       Disagree                                                                            Agree 

 

22. The Sensor + Top Banner, Full Screen configuration allowed me to 
effectively search for targets 

         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
       Disagree                                                                            Agree 

 

23. The Sensor + Top Banner, Full Screen configuration allowed me to 
effectively identify targets 

         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
       Disagree                                                                            Agree 

 

24. The Sensor + Top Banner, Full Screen configuration allowed me to 
effectively use the vehicle sensor system 

         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
      Disagree                                                                            Agree 

 

25. Overall, I think the Sensor + Top Banner, Full Screen configuration was 
easy to learn 

         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
      Disagree                                                                            Agree 

 

Sensor + Top Banner Configuration, Small Portal Mode 
Please fill out this section for the Sensor +Top Banner, SP Configuration only 

 

26. The Sensor Window size was appropriate for the tasks I completed 
         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
       Disagree                                                                            Agree 

 

27. The Sensor Window field of view was appropriate for the tasks I 
completed 

         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
       Disagree                                                                            Agree 

 



 

69 

28. The Banner size was appropriate for the tasks I completed 
         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
      Strongly                                                                           Strongly 
      Disagree                                                                            Agree 

 

29. The Banner horizontal field of view was appropriate for the tasks I 
completed 

         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
      Strongly                                                                           Strongly 
     Disagree                                                                            Agree 

 

30. The Banner vertical field of view was appropriate for the tasks I 
completed 

         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
      Strongly                                                                           Strongly 
     Disagree                                                                            Agree 

 

31. The Banner orientation was appropriate for the tasks I completed 
         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
      Strongly                                                                           Strongly 
     Disagree                                                                            Agree 

 

32. I always knew where my sensor was pointed relative to my vehicle 
         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
      Disagree                                                                            Agree 

 

33. It was difficult to determine where a target was relative to my vehicle 
         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
       Disagree                                                                            Agree 

 

34. The Sensor + Top Banner, SP mode configuration allowed me to 
effectively search for targets 

         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
       Disagree                                                                            Agree 

 

35. The Sensor + Top Banner, SP mode configuration allowed me to 
effectively identify targets 

         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
       Disagree                                                                            Agree 

 

36. The Sensor + Top Banner, SP mode configuration allowed me to 
effectively use the vehicle sensor system 

         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
      Disagree                                                                            Agree 
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37. Overall, I think the Sensor + Top Banner, SP mode configuration was 
easy to learn 

         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
      Disagree                                                                            Agree 

 

Sensor + 2 Banner Configuration, Full Screen 
Please fill out this section for the Sensor +Top Banner Configuration only 

 

38. The Sensor Window size was appropriate for the tasks I completed 
         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
       Disagree                                                                            Agree 

 

39. The Sensor Window field of view was appropriate for the tasks I 
completed 

         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
       Disagree                                                                            Agree 

 

40. The Banner size was appropriate for the tasks I completed 
         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
      Strongly                                                                           Strongly 
      Disagree                                                                            Agree 

 

41. The Banner horizontal field of view was appropriate for the tasks I 
completed 

         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
      Strongly                                                                           Strongly 
     Disagree                                                                            Agree 

 

42. The Banner vertical field of view was appropriate for the tasks I 
completed 

         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
      Strongly                                                                           Strongly 
     Disagree                                                                            Agree 

 

43. The Banner orientation was appropriate for the tasks I completed 
         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
      Strongly                                                                           Strongly 
     Disagree                                                                            Agree 

 

44. I always knew where my sensor was pointed relative to my vehicle 
         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
      Disagree                                                                            Agree 

 

45. It was difficult to determine where a target was relative to my vehicle 
         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
       Disagree                                                                            Agree 
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46. The Sensor + 2 Banner, Full Screen configuration allowed me to 
effectively search for targets 

         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
       Disagree                                                                            Agree 

 

47. The Sensor + 2 Banner, Full Screen allowed me to effectively identify 
targets 

         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
       Disagree                                                                            Agree 

 

48. The Sensor + 2 Banner, Full Screen configuration allowed me to 
effectively use the vehicle sensor system 

         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
      Disagree                                                                            Agree 

 

49. Overall, I think the Sensor + 2 Banner, Full Screen configuration was 
easy to learn 

         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
      Disagree                                                                            Agree 

 

General  
50. Overall, I liked the banner concept for displaying extended field of view 

         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
      Disagree                                                                            Agree 

 

51. I sometimes felt lost in the banner imagery 
         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
      Disagree                                                                            Agree 

 

52. It would like to tailor the presentation of banners (appearance, field of 
view, orientation) throughout a mission or from mission to mission 
depending on goals 

         |-----------|-----------|-----------|-----------|-----------|-----------|         N/A  
         1             2             3             4              5             6              7 
       Strongly                                                                           Strongly 
      Disagree                                                                            Agree 

 

53. Please rank the test conditions in terms of your preference for the 
missions you completed ( 1= best, 4 = worst) 
____ Sensor Only 
____ Sensor + Top Banner, Full Screen 
____ Sensor + Top Banner, Small Portal Mode 
____ Sensor + 2 Banners, Full Screen 
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Exit Interview 
PIN__________  Date_____________  Time___________ 
Note: This questionnaire is to be given verbally by the experimenter.   
Sensor Window Only Configuration – Show participant screen shot 
1. What would you improve about the Sensor Only WMI configuration that you used? 
 
2. What are the strengths of the Sensor Only WMI configuration? 
 
3. What was your general strategy or technique for searching for targets with the Sensor 

Only WMI configuration? 
 
Sensor + Top Banner Configuration, Full Screen – Show participant screen shot 
4. What would you improve about the Sensor + Top Banner, Full Screen WMI 

configuration that you used? 
 

5. What are the strengths of the Sensor + Top Banner, Full Screen WMI configuration? 
 
6. Where did you generally first see a target of interest on the WMI (sensor window or 

banner)? 
 
7. What was your general strategy or technique for searching for targets with the Sensor 

+ Top Banner, Full Screen WMI configuration? 
 
Sensor + Top Banner Configuration, SP Screen Mode – Show participant screen shot 
8. What would you improve about the Sensor + Top Banner, SP Screen Mode WMI 

configuration that you used? 
 
9. What are the strengths of the Sensor + Top Banner, SP Screen Mode WMI 

configuration? 
 
10. Where did you generally first see a target of interest on the WMI (sensor window or 

banner)? 
 
11. What was your general strategy or technique for searching for targets with Sensor + 

Top Banner, SP Screen Mode WMI configuration? 
 
Sensor + 2 Banner Configuration, Full Screen – Show participant screen shot 
 
12. What would you improve about the Sensor + 2 Banner, Full Screen WMI configuration 

that you used? 
 
13. What are the strengths of the Sensor + 2 Banner, Full Screen WMI configuration? 
 
14. Where did you generally first see a target of interest on the WMI (sensor window or 

banner)? 
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15. What was your general strategy or technique for searching for targets with Sensor + 2 
Banner, Full Screen WMI configuration? 

 
General 
16. Would you use a 360 SA sensor system similar to this on a vehicle today?  
_____  Yes 
_____  No 
17. Do you have any recommendations for additional features or information that would 

help you use a 360 SA sensor system? 
 
18. The biggest issue I had during the missions was…. 
 
19.  The feature I liked best about the system I experienced was… 
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Appendix E.  Situational Awareness Report – Entity Association Algorithm
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Advanced development of technologies and systems for use in the military operational 
environment persistently challenges scientists and engineers to make use of increasingly 
complex experimental scenarios for testing and technology evaluation.  Traditionally, simulation 
environments used for testing behavioral and psychological performance have involved minimal 
complexity in terms of the operational events requiring action by experiment participants.  For 
example, events in simulated operational scenarios have been controlled in a manner such that 
stimuli were presented sequentially with no overlap in time and/or were confined to a limited 
spatial distribution.  Even if the event sequence unfolded at a demanding temporal pace and 
spatial frequency, experimenters using such paradigms could nearly always identify a unique 
mapping between stimulus and response by virtue of such highly controlled and simplified 
emulations of the operational environment.  In cases where interpretation was confounded by 
overlapping events, the standard protocol would be to simply discard both events from further 
analyses (provided enough other data points existed for analysis). 

Despite the importance of experimental control during development, modern technologies are 
designed to enable successful Soldier-system performance in tasks and environments that are not 
nearly as clean, or uncluttered, as those that have been applied in previous experimental 
endeavors.  Such new systems are meant to enable Soldiers to manage multiple, temporally and 
spatially overlapping events unfolding in a distributed and extended task space.  As a result, 
designers of experimental scenarios and engineers that implement such scenarios in high-fidelity 
three-dimensional simulation environments must respond by developing tools and techniques to 
allow presentation of stimuli of increasing correspondence with the real operational environment 
during experimental test and evaluation activities. 

Inherently, the incorporation of temporally and spatially overlapping operational events amidst a 
myriad of possible decoy/distracter events (e.g., ambush activity, suspicious “spotter”-type 
behavior of individuals in a crowd, presence of a partially disguised IED, etc.) in a distributed 
spatial layout leads to ambiguity in interpretation and understanding of the operator’s behavior. 
In the current experiment, such ambiguity was manifest in the assessment of Spot/BDA reports 
submitted by experimental participants as they were maneuvered through a complex 
environment with simultaneous presentation of multiple entities that could or could not constitute 
a military-relevant threat.  In order to assess performance measures such as “response time” and 
“report accuracy” in such an environment, someone or some automation (ultimately, a 
combination of both) had to judge specifically which environmental entity was the subject of 
each report.* 

In addition to the complexity inherent in the scenario was complexity due to variability in the 
performance of each individual experimental participant.  That is, although significant time and 
effort were expended to carefully script controlled-but-complex scenarios, there were no 

                                                 
* In the current study, there were over 1400 Spot/BDA reports across 17 participants operating in four scripted scenarios.  
Indeed, assessing each of the 1400+ reports would be a laborious and error-prone process if left to the default solution of human 
manual intervention. 
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guarantees at run time that a given participant would respond to the scenario as it was scripted 
(and as they were trained).  In fact, as with many well-designed experiments on human 
performance, error-free behavior was not expected and would have been less informative about 
experimental manipulations were it observed.  Among ways in which the participants could 
diverge from the “script” were behaviors such as:  (1) reporting on targets out of scripted 
sequence, (2) correctly or incorrectly identifying characteristics of an entity or entities designed 
to be a non-threatening decoy, (3) incorrectly identifying aspects of an otherwise correctly 
identified threat, (4) failing to report on a scripted event, and/or (5) generating duplicate reports 
for events already spotted and reported.  Indeed, even with the advantage of complex tools for 
continuously keeping track of all entities on which the human could be reporting (e.g., automated 
line of sight [LOS] entity detection), conclusively associating a single entity with a single 
Spot/BDA report in light of possible human error/behavioral variation was rather challenging. 

To facilitate this step in the data reduction, that is, the association of reports with entities, an 
algorithm was developed using both quantitative and Boolean logic.  In essence, the algorithm 
assessed all possible entities present in the environment at the time a Spot/BDA report was 
initiated – defined as spanning 10 s prior until the moment when the report was initiated – and 
then determining which entity was most likely to be the subject of the report.  The main 
assumption on which the algorithm was developed was that, at any given moment in the 
simulated scenario, there was a finite subset of entities among which one was distinguished as 
the entity of interest.  Second, it was assumed that the entity being reported on would, on 
average, share many characteristics in common with the information contained in the report 
(even in the presence of reporting errors) and would have characteristics relative to the 
observer/vehicle (such as distance and bearing) that would increase the likelihood that it would 
be identified as the subject of the report.  The challenge, therefore, was to develop a 
methodology that would accurately characterize the likelihood of a positive relationship between 
a given report and each candidate entity in the environment at the time the report was generated. 

Quantitatively, the algorithm made use of variables describing relatively simple assumed 
relationships between entity characteristics and the likelihood of being a subject of a given 
report.  For example, entities located within a small range of the clock position reported were 
judged as more likely to be the subject of the report than those that were in another location. 
Likewise, entities that were located at a shorter range from the vehicle were considered to be 
more likely to be observed and reported on than those that were further away.  In short, for the 
quantitative logic portion of the algorithm, each entity was scored on seven such variables, with 
increases in each variable representing an increase in the likelihood of being the subject of the 
current report.  To be conservative, most variables were binary in nature; either the characteristic 
was present (score = 1) or absent (score = 0).  However, as will be discussed momentarily, some 
variables appeared to demand more complex functions to account for presumed nonlinearities in 
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perceptual and cognitive aspects of target identification.*  Regardless, all scores were confined to 
a maximum range of +1 to facilitate standardization of the relative contributions of each variable 
to the total score indicating likelihood that a given entity was the subject of the report being 
assessed. 

Table E-1 provides a description of the variables used in the quantitative portion of the 
algorithm.  Of the variables used to represent the likelihood of being the subject of a given 
report, only three were specified as non-binary; these variables included TypeMatch, viewing 
proportion and InRange.  Each of these variables was included specifically to account for some 
of the complexities (i.e., apparent nonlinearities and cross-variable interactions) of judging 
whether an entity was a good candidate for a particular report.  For each of the binary values, the 
null answer (false) was represented with a zero.  One of the binary variables, is moving, used a 
value of 0.5 rather than 1.0 to describe an answer of “true” simply because it was judged as 
having less weight than the other decision factors; that is, the intermediate value of 0.5 was used 
to give a small advantage to moving entities under the assumption that moving entities were 
slightly more salient during target detection tasks than are static entities.  For the other two 
binary variables, Current LOS and InClockPosition, buffers were used to define acceptable 
ranges of error before assigning a null value.  

 

Table E-1.  Summary of the variables used to assign quantitative scores to each entity serving as a candidate 
for a particular Spot/BDA report. 

Variable Name Description Range of Values 
IsATarget Was the entity a scripted target? {0, 1} 
IsMoving Was the entity moving? {0, 0.5} 

Current LOS Was current line of sight (LOS) established? {0, 1} 
InClockPosition Was the entity in the reported threat position? {0, 1} 

TypeMatch Did the entity match the reported threat type? {–1, 0, 0.5:  1.0} 

ViewingProportion 
During what proportion of the previous 10 s was the 
entity visible in one of the operator’s sensor views? 

{0:  1} 

InRange 
Was the entity within viewing range of the simulated 

vehicle? 
{–1:  1} 

Note:  Curl brackets denote an inclusive range of values adopted by a variable, a comma separates an instance of a 
discrete value or set of values from another discrete value or set of values, and a colon is used to represent a 
continuous range between two numbers in a set. 

 
For current LOS, an entity was judged as having a current LOS if such was established within 
the prior 1.5 s.  This was included to give some advantage to entities that were most recently 
within LOS of the vehicle.  Similarly, it was desirable to give extra weight to entities that were 
closer to the reported location at the time of report initiation, but because bearing was specified 

                                                 
* Before developing this algorithm, a team comprised of five engineers and scientists scrutinized all Spot/BDA reports associated 
with one of the four experimental scenarios (383 valid and invalid reports).  In this process, the factors used to judge the reports 
as well as the entities associated with each report were noted and those factors were later translated into elements of the 
algorithm.  The complex functions used for some variables resulted from complex considerations used in the decision process as 
discussed among the data processing team. 
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as integer increments of positions on a clock face (1–12), some ambiguity was expected in the 
correspondence between reported and actual entity clock position.  Thus, the in-clock position 
variable only adopted a null value when the candidate entity was greater than 2 integer 
increments from the reported bearing.  For example, if the reported entity was identified at 
1 o’clock and a candidate entity was actually located at 12 o’clock, it was scored with a 1.0 
indicating that it was within an acceptable range of the reported bearing.  However, an entity 
located at 10 o’clock would have been judged as too far from the reported bearing to be a likely 
candidate based on position.  Of course, because this was only one of seven variables, a null 
score on in-clock position (or any other variable for that matter) would not necessarily remove a 
given entity from candidacy for being the subject of a report; instead, it would lower the 
likelihood that the entity would end up being judged as the subject of the report.  This allowed 
for positive association to occur despite potential confusion about (or errors in) judging the 
correct clock label to use for describing the entities bearing.   

The type match variable was designed to allow for cases in which the experimental participants 
became confused when generating a report.  For instance, it was possible that an armed human – 
due to viewing angle and viewing time restrictions – could have been confused for and reported 
as an unarmed human (or vice-versa).  At the same time, given our experimental scenario and 
participant training protocols, it was highly unlikely that a human target of either type (armed or 
unarmed) could have been confused with an IED.  Moreover, the likelihood of certain types of 
confusion was increased by the range factor.  That is, as viewing distance increased, the visual 
distinctiveness of armed versus unarmed humans diminished altogether.  Therefore, the potential 
for confusion among different target types was compounded by a dynamic function across 
viewing distance. 

Table E-2 shows the “confusion matrix” implemented for determination of the type match 
variable in the current study.  Arranged along columns are values associated with the known 
candidate entity types and arranged along the rows are the possible values that could have been 
included in the Spot/BDA report.  The numbers in the different cells give the score allotted to 
each combination.  Where single values are shown, that is what was assigned for that type of 
match, regardless of vehicle distance from the entity.  As can be seen, exact matches were 
represented with the highest value (= 1.0) and complete mismatches, such as human vs. IEDs, 
were represented using the minimum possible value (= –1.0).  For cases of possible confusion, 
scores ranged between 0.5 and 1.0.  This feature was included to account for the diminishing 
distinctiveness between armed and unarmed humans as vehicle distance from the entity 
increased.  These “partial credit” scores were determined as an exponential function of the range 
(x), in meters, from the vehicle to the entity (equation E-1).  No score was given in cases where 
the participant omitted the type variable from his or her Spot/BDA report.
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Table E-2.  Depiction of the “confusion matrix” used to account for potential confusion in Spot/BDA 
reports regarding different entity types. 

 
Candidate Entity Type 

Decoy 
Armed 
Human 

Unarmed 
Human IED 

Reported entity 
type 

No 
answer 

0 0 0 0 

Armed 
human 

{0.5:  1.0} 1.0 {0.5:  1.0} –1.0 

Unarmed human 1.0 {0.5:  1.0} 1.0 –1.0 
IED –1.0 –1.0 –1.0 1.0 

Note:  All decoys were unarmed humans but were distinguished from threatening unarmed humans by their 
behavior as described in the main body of this report. 

 
Figure E-1 shows the form of the function defined by equation E-1.  An exponential function 
was used to capture the fact that as distances grew progressively longer, the distinction between 
armed and unarmed humans disappeared.  That is to say, whether armed or unarmed, if an 
operator was identifying a human at 200 m, there was no way to distinguish whether that human 
was indeed carrying a weapon or not.  At the longest distances, no score was detracted for 
confusing armed for unarmed humans or vice-versa.  At the shortest distances then, we allowed 
for partial credit to be given if a human was identified at all, even if incorrectly.  Thus, even at a 
viewing distance of 0 m, incorrectly calling an unarmed human and armed human (or vice versa) 
would earn a score of 0.5; effectively representing partial credit for a partially correct answer.  

Use of the exponential function also allowed avoidance of selecting a breakpoint beyond which 
all values were to equal 1.0.  That is, it was recognized that a linear increase in partial credit with 
increasing viewing distance would have been a slightly more conservative approach, however, to 
achieve a similar “plateau” characteristic as the exponential would have required the selection of 
a point where the score was to level off at 1.0.  Absent any data to drive the selection of such a 
breakpoint, use of a more continuous characterization was considered more appropriate.  Using 
the exponential provided for a gradual transition between a score of 0.5 (partial credit) and a 
score of 1.0 (full credit) as viewing distance increased. 
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Figure E-1.  The exponential function modulating partial type match credit as a function of 
increasing range. 

For reasons similar to those underlying selection of the form of the dynamic allotment of partial 
credit for the type match variable, an exponential function was used to define the score allotted 
based on viewing proportion, that is the proportion of the previous 10 s that the entity was in 
view in either the banner or sensor portal (represented by x in equation E-2). 
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Because experimental conditions varied in terms of what type of visualization was available to 
the operators, an average viewing proportion was determined from viewing proportions 
calculated on each individual sensor type.  What this variable represented was, for each entity in 
the local area at the time of generation of a report, how much of the previous 10 s was spent 
visible either in the sensor or a banner view.  The form of equation E-2 is shown in figure E-2.  
Succinctly, use of the exponential in this case allowed two desired characteristics including:  (1) 
a plateau at a maximum score of 1.0 as viewing proportion increased and (2) a faster 
accumulation of score for smaller viewing proportions – implying that small increases in viewing 
time at the lower end of the viewing proportion scale had a greater effect than similar-sized 
increases at the high end.  Otherwise, as with the TypeMatch exponential (equation E-1), there 
was no intended explicit physical or psychological interpretation to be inferred from the form of 
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these functions or from the specific values of their rate-constants.  Both functions were 
implemented as approximations of the perceptual judgment processes based on how well they 
worked in the algorithm and should not be interpreted in terms of psychophysical properties of 
the neurocognitive system. 
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Figure E-2.  The exponential function modulating viewing proportion score as a 
function of increasing proportion of the previous 10 s spent in either the 
sensor or banner view. 

Finally, the variable used to capture how increases in likelihood of being recognized as a target 
varied as a function of distance from the vehicle to the entity, or Range, a piecewise linear 
function was used as shown in figure E-3.  Unlike with the previous two variables, we utilized 
two assumptions to drive selection of breakpoints in the linear function for assigning score to 
specific range values.*  That is, the low end of the range (below 30 m; dash-dot line in figure 
E-3) encompasses all viewing distances encountered during portions of the mission spent in 
urban zones.  As such, the range from 0–30 m was considered the range where all entities should 
be relatively equally detectable and thus were given an InRange score of 1.0.  Conversely, all 
entities located beyond 200 m were considered equally less identifiable and were thus given 

                                                 
* Whereas the exponential “partial credit” function used in assigning the TypeMatch variable appears to conflict with the 
piecewise linear function used to assign the InRange score, they were included to separately account for the difference between 
stimulus detection and object identification.  In the current study, the InRange variable was meant to characterize likelihood of 
detection of any target as a function of distance whereas the TypeMatch variable was meant to characterize variation in object 
identification (armed vs. unarmed human vs. IED) as a function of distance. 
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InRange scores equal to –1.0.  For all ranges falling in between 30 and 200 m, InRange 
decreased linearly with a slope of –0.0118 points/meter; this linear portion of the InRange 
variable transitioned from increasing likelihood (positive values) to decreasing likelihood 
(negative values) at a range equal to 114.65 m (dashed lines in figure E-3). 
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Figure E-3.  Piecewise linear function representing change in range score as a function of entity range 
from the vehicle in meters. 

Using all of these variables, a final score for each candidate entity was determined simply by 
adding all variable values together and then ranking the entities according to their overall score. 
This step concluded the quantitative logic portion of the algorithm by returning a set of up to five 
entities for each Spot/BDA report; it was always possible that there were fewer than five, but at 
least one, candidate entities at the time of a given report.  Each of the top candidate entities was 
accompanied by its script ID number (a unique number indicating the scripted target event of 
which it was a part) and a confidence value.  The confidence value was simply the proportion of 
total possible points achieved based on the values from each of the variables described above.  In 
short, there were a total of 6.5 points possible (see table E-1) and thus the confidence value was 
defined as entity total score/6.5. 

A Boolean structure was applied to examine relationships between the top candidates provided 
by the quantitative logic described above in order to determine a final set of suggested entities 
corresponding to the set of submitted SPOT/BDA reports.  This Boolean logic had two 
exclusionary decision points as well as three basic conditions that could lead to a return of an 
ambiguous result requiring manual intervention from an informed human supervisor.  Shown in 
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figure E-4, the first exclusionary criterion was whether or not the operator pressed the cancel 
button at any point during completion of the report.  If the cancel button was pressed, the report 
was flagged to be omitted from the data analysis phase and, therefore, the report-entity 
association algorithm was not applied.  The second exclusionary criterion was applied within the 
quantitative logic section of the algorithm.  As each entity was processed for assignment of its 
quantitative score, its associated raw viewing proportion variable was assessed to determine if it 
was actually zero, indicating that an LOS could be drawn between the entity and the vehicle but 
the entity was never in the LOS of any sensor that the operator was looking at.  If a given entity 
showed a raw viewing proportion of zero, which meant the operator had no opportunity to report 
on it because they had no chance to view it and thus, that entity was excluded from consideration 
as a candidate for the current report being assessed. 

Other than the two exclusionary criteria, there were three conditions under which the algorithm 
would return an “ambiguous result” for a given report.  The presence of an ambiguous result was 
intended to be a flag to the experimenter that manual intervention was needed to resolve the 
subject of the report in question; this was meant to provide a means of catching potentially false 
positives and prevent them from distorting the analysis of performance variables.  As can be seen 
in figure E-4, the three conditions leading to the return of an ambiguous result included:  (1) the 
case where more than one entity received a perfect score from the quantitative logic, but each 
entity was associated with a different target event, * (2) the case where none of the top candidate 
entities had confidence values exceeding a preselected confidence threshold (), or (3) the case 
where the top two entities were associated with different target events, received confidence 
scores above the preselected confidence threshold, but they did not differ from one another by 
the preselected difference threshold ().  In each of these three cases, the algorithm essentially 
“decided” that no one entity stood out as an obvious choice for the target event associated with 
the submitted report.  It should also be noted that, because the Boolean phase of the decision 
algorithm proceeded iteratively on a report-by-report basis, it was able to adjust the candidates 
for successive reports based on those selected in the current iteration.  That is, there were many 
instances when certain entities appeared as candidates for multiple reports.  In order to allow for 
likely, association for successive reports. 

                                                 
* Note that multiple entities could be part of the same target event, such as during an ambush or during the suspicious movement 
of a crowd. 
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Figure E-4.  A summary of the Boolean logic used to finalize recommendations as to which entities were associated 
with which SA report. 

The final processing step in this entity-report association algorithm was a manual one; that is, 
trained human experimenters examined all reports to verify correct selections.  Of course, owing 
to the use of this algorithm, this manual processing was more efficient and less error prone than 
having a human (or team of humans) complete the entire process unassisted by computational 
intelligence.  The primary roles of the human experimenters in this manual step involved:  (1) 
manual selection of the correct entity for reports deemed by the algorithm as a multiple entity 
ambiguity and (2) verification of reports deemed by the algorithm as false alarms (i.e., reports 
submitted about decoy entities).  In the process of resolving the ambiguities, the human 
experimenters were also able to perform quick checks to verify correct associations between all 
entities and targets made by the algorithm.
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Worthy to note, after the current algorithm was developed, its results were compared against the 
selections made by a team of five engineers and scientists on 339 valid reports for one of the 
experimental scenarios (some of the original 383 were omitted from this comparison for 
technical problems associated with a single participant who did not perform the reporting task 
consistent with instructions).  This comparison showed 83% of the reports were accurately 
associated with entities by the algorithm, 12% were returned as ambiguous and thus required 
manual confirmation/intervention, and 5% were judged as erroneous associations.  Of the 5% 
erroneous associations, 2.6% were false negatives that would be caught by manual verification 
(as they were flagged as “false alarms” and would trigger manual inspection) and another 2.4% 
were false positives, of which ~1/2 would have been rectified as a consequence of resolving false 
alarms and ambiguous results.  So the ultimate rate of “undetectable error” by the algorithm, 
according to this assessment, was ~1%–2% of all reports. 
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Appendix F.  Statistical Analysis Details 
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Because the current experiment aimed to achieve a relatively high degree of ecological validity 
(i.e., correspondence with real military operational environments), there were many factors and 
variables that acted to influence the human performance results.  Variable factors that were 
intrinsic to the experiment included the following: 

1. Condition – This was the main independent variable of interest in the current study.  There 
were four unique display conditions within which experiment participants performed their 
threat detection task. 

2. Scenario – Four scenarios were created by the teamwork of two different engineers and it 
was considered that there could have been subtle (or not so subtle) differences between 
scenarios. 

3. Threat Target Type – There were three different types of targets utilized as both threats and 
decoys.  These included armed humans, unarmed humans, and IEDs.  Each of these target 
types, because they had their own unique behaviors, were considered to potentially exert 
unique influence on threat detection performance. 

4. Threat Location – In addition to different threat target types, each threat onset in a different 
location (bearing) relative to the vehicle.  While it was possible to quantify threat location 
based either on clock position (1–12) or based on which sensor view (1–6) it first appeared 
in, initial analyses suggested that the effect on performance was structured based on 
whether the threat onset to the front or to the rear of the vehicle.  Thus, when entered as a 
factor into the statistical models, threat location was treated as a binary variable with 
0 = front and 1 = rear onset. 

5. Threat Range – As with location, range (distance from the target to vehicle) was also an 
important variable.  There were several ways in which range could have been accounted for 
which included:  range at threat onset, range at threat report, minimum range after onset, 
and range category (near = range < 50 m, mid = 50 m < range < 100 m, far = range  
> 100 m). For some variables such as threat detection, initial analyses indicated that 
minimum range at threat report was the most highly influential variable while for others, 
such as reaction time and accuracy, analyses ended up focusing on range category. 

6. Vehicle Mobility – There was reasonably strong qualitative and quantitative evidence that 
the state of vehicle motion (stationary, on the move) had a significant overall impact on 
performance and, in some cases, interacted with other influential variables. 

7. Target Mobility – While less influential in an overall sense, whether or not targets were 
moving was another variable that interacted with other factors in determining detection 
performance. 

8. Inter-threat Interval – Because of the manner in which the scenario unfolded dynamically, 
there was a variable amount of time in between each successive threat presentation.  As 
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such, it was considered important to assess whether or not the time in between threat 
presentations was a factor that needed to be accounted for in the statistical models. 

9. Viewing Time – Owing to different display conditions having a different number of 
“viewing portals” (sensors, banners), an important variable that was affected was the 
amount of time entities were present to and viewable by the operator.  In condition A, for 
example, there was only one sensor view and the operator had to have the sensor pointed 
directly at a target for some minimum amount of time before he detected it.  However, in 
the other conditions, the presence of a banner increased this viewing time because it could 
be capturing imagery that was not present in (or was redundant with) that shown in the 
sensor view.  Finally, because the scenario was dynamic and both the vehicle and targets 
were potentially moving, there was also a variable amount of time that each threat appeared 
to the operator.  As it turns out, this was a major factor affecting threat detection 
performance for most variables. 

10. Threat Environment – because the reporting criteria varied depending on whether the 
vehicle was located within the city or within the outskirts, it was considered possible that 
threat environment (city, outskirts) affected some of the performance results. 

11. Interactions – beyond the individual, independent effects of the previously mentioned 10 
factors on performance was the fact that each of the factors could have impacted or exerted 
an influence on any of the other variables.  For example, viewing time could have had a 
different effect for threats presented to the front than for threats presented to the rear 
(which would indicate a viewing time x threat location interaction).  As such, at a 
minimum, initial models considered all possible two-way (two variable) interactions as 
well as main effects.  As models were simplified, some higher order (three-way) effects 
were assessed as possibly influential. 

Given the number of potentially influential variables outlined above, it was desirable to assess all 
factors for potential significant influences over variations in human performance, at least at an 
omnibus level.  Yet, with as many variables as were potentially influencing the data, it was also 
impossible to run a full factorial statistical model that would simultaneously account for all 
possible sources of variation.  In short, a methodology was needed that would allow for a 
selection of a subset of variables/factors that were most significantly impacting the performance 
results.  Thus, from the outset, statistical analysis of the data from the current experiment was 
both concept-driven as well as exploratory and required a stepwise, decision-based approach that 
would lead to the application of tractable statistical models which could be applied for reliable 
data analysis.   

As described in the main body of the current report, the basic methodology was relatively 
straightforward.  As a first pass, a large omnibus model that included a majority of the factors 
thought to be most related to threat detection performance was assessed.  Afterwards, successive 
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models were examined that were simplified by the removal of parameters (variables) that did not 
appear to exert a significant influence on the results.  These successive models were iteratively 
assessed and parameters removed until the point where a smaller, more tractable model was 
achieved.  The results of the initial models are presented in tables F-1 through F-3.  

 

Table F-1.  Overall linear mixed model results for reaction time.  Shaded rows indicate parameters considered 
significant and were passed on to subsequent model reduction steps. 

Source Numerator df Denominator df F Sig. 

Intercept 1 1162 846.916 0.000 

Condition 3 1162 1.149 0.328 

Threat environment 1 1162 30.881 0.000 

Threat target type 2 1162 45.915 0.000 

Range (mid, near, far) 2 1162 114.797 0.000 

Vehicle mobility 1 1162 19.211 0.000 

Condition × threat environment 3 1162 0.576 0.631 

Condition × threat target type 6 1162 0.185 0.981 

Condition × range 6 1162 0.698 0.652 

Condition × vehicle mobility 3 1162 0.374 0.772 

Threat environment × threat target type 2 1162 8.176 0.000 

Threat environment × range 2 1162 22.138 0.000 

Threat environment × vehicle mobility 1 1162 0.402 0.526 

Threat target type × range 4 1162 10.046 0.000 

Threat target type × vehicle mobility 1 1162 0.822 0.365 

Range × vehicle mobility 2 1162 11.020 0.000 

Condition × threat environment × threat target type 6 1162 1.046 0.394 

Condition × threat environment × range 6 1162 1.566 0.154 

Condition × threat environment × vehicle mobility 3 1162 0.291 0.832 

Condition × threat target type × range 12 1162 0.971 0.474 

Condition × threat target type × vehicle mobility 3 1162 0.636 0.592 

Condition × range × vehicle mobility 6 1162 0.152 0.989 

Threat Environment × threat target type × range 4 1162 5.468 0.000 

Threat target type × range × vehicle mobility 1 1162 0.003 0.954 
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Table F-2.  Overall linear mixed model results for accuracy.  Shaded rows indicate parameters considered significant 
and were passed on to subsequent model reduction steps. 

Source Numerator df Denominator df F Sig. 

Intercept 1 1162 2438.068 0.000 

Condition 3 1162 0.655 0.580 

Threat environment 1 1162 0.451 0.502 

Threat target type 2 1162 15.039 0.000 

Range 2 1162 0.638 0.529 

Vehicle mobility 1 1162 5.646 0.018 

Condition × threat environment 3 1162 0.731 0.534 

Condition × threat target type 6 1162 1.515 0.170 

Condition × range 6 1162 0.665 0.678 

Condition × vehicle mobility 3 1162 0.691 0.558 

Threat environment × threat target type 2 1162 0.756 0.470 

Threat environment × range 2 1162 0.986 0.374 

Threat environment × vehicle mobility 1 1162 0.227 0.634 

Threat target type × range 4 1162 8.475 0.000 

Threat target type × vehicle mobility 1 1162 4.787 0.029 

Range × vehicle mobility 2 1162 0.420 0.657 

Condition × threat environment × threat target type 6 1162 0.349 0.911 

Condition × threat environment × range 6 1162 0.581 0.745 

Condition × threat environment × vehicle mobility 3 1162 0.512 0.674 

Condition × threat target type × range 12 1162 1.323 0.199 

Condition × threat target type × vehicle mobility 3 1162 1.264 0.285 

Condition × range × vehicle mobility 6 1162 1.199 0.304 

Threat environment × threat target type × range 4 1162 1.273 0.279 

Threat target type × range × vehicle mobility 1 1162 1.576 0.210 
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Table F-3.  Summary of the logistic regression model and partial sums-of-squares f tests for threat 
detection.  Shaded rows indicate parameters considered significant and were passed on to 
subsequent model reduction steps. 

Source SS Difference df reg F(dfreg, 2499) Sig. 
Scenario 6 3 2.0495 0.1049 

Participant type 63 12 5.8368 0.0000 
Condition 164 24 7.6205 0.0000 

Threat target type 95 18 5.8685 0.0000 
Threat location 103 11 10.3761 0.0000 

Vehicle mobility 27 10 3.0226 0.0008 
Target mobility 11 8 1.5188 0.1453 

Minimum range after onset 368 9 45.4816 0.0000 
Inter-threat interval 23 7 3.7049 0.0005 

Viewing time 287 8 39.8973 0.0000 
Participant type × condition 6 3 2.2665 0.0788 

Participant type × threat target type 5 2 2.9305 0.0536 
Participant type × threat location 1 1 1.5531 0.2128 

Participant type × vehicle mobility 
0 1 0.0003 0.9855 

Participant type × target mobility 0 1 0.0004 0.9843 
Participant type × min. range 

0 1 0.2169 0.6414 

Participant type × inter threat interval 0 1 0.0692 0.7925 
Participant type × viewing time 0 1 0.0770 0.7814 

Condition × threat location 24 3 8.8535 0.0000 
Condition × vehicle mobility 1 3 0.3976 0.7548 
Condition × target mobility 6 3 2.0875 0.0998 

Condition × min. range 5 3 1.9371 0.1214 
Condition × inter-threat interval 1 3 0.4231 0.7364 

Condition × viewing time 17 3 6.3462 0.0003 
Threat target type × threat location 26 2 14.6222 0.0000 

Threat target type × vehicle mobility 6 2 3.1169 0.0445 
Threat target type × target mobility 1 2 0.4936 0.6105 

Threat target type × min. range 23 2 12.9712 0.0000 
Threat target type × inter-threat interval 2 2 0.8896 0.4109 

Threat target type × viewing time 4 2 2.3579 0.0948 
Threat location × vehicle mobility 7 1 7.4223 0.0065 
Threat location × target mobility 29 1 32.6323 0.0000 

Threat location × min. range 2 1 1.7350 0.1879 
Threat location × viewing time 27 1 30.2822 0.0000 

Vehicle mobility × target mobility 0 1 0.0000 1.0000 
Vehicle mobility × min. range 4 1 4.7783 0.0289 
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