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1. Introduction 

Recently, there has been a significant increase in the need for enhanced materials for 

multifunctional power-generation and energy-storage applications.  The progress in the power 

industries has resulted in a demand for compact, high-energy, and multifunctional components, 

which are the keys for large power and integratable multifunctional batteries (1–5).  Today, the 

lithium ion battery is widely used because of its ideal charge/discharge capability.  Nevertheless, 

in order to meet the critical system-level reductions in mass and volume, a paradigm shift in the 

current battery technology must be developed via multifunctional components that 

simultaneously offer power generation/energy storage and the ability to bear significant 

structural loads.  This interest has promoted extensive research into the materials and fabrication 

science of thin-film based micro-batteries and structural batteries (4, 5).  Spinel lithium 

manganese oxide (LiMn2O4) is an attractive cathode material for Li/Li+ rechargeable batteries 

and has been extensively considered due to its high voltage, low cost, non-toxicity and high 

theoretical capacity (6, 7).  In this report, LiMn2O4 was processed in thin film form via metal 

organic solution deposition on platinum coated silicon substrates (Pt-Si) and then annealed at 

various temperatures from 400 °C to 800 °C to produce crystalline films.  The structure, surface 

morphology, and charge/discharge performance of the LiMn2O4 films were characterized by 

glancing angle X-ray diffraction (GAXRD), atomic force microscopy (AFM), scanning electron 

microscopy (SEM), and electrochemical cycling. 

2. Experimental 

2.1 Base Materials 

All materials and chemicals were obtained from Alfa Aesar. The base materials used were 

manganese acetate (Mn[CH3COOH]2.4H2O) (stock # 12982) , lithium acetate 

(Li[CH3COOH]2.4H2O) (stock # 10802), 2-methoxyethanol (H3COCH2CH2OH), and acetic acid 

(CH3COOH).  

2.2 Process 

LiMn2O4 thin films were obtained by a metal organic solution deposition (MOSD) spin-coating 

technique (8, 9).  Figure 1 shows the general fabrication steps.  Stoichiometric amounts of 

manganese acetate and lithium acetate were individually prepared and dissolved in 2-

methoxyethanol.  Acetic acid was then added to prevent rapid hydrolysis and precipitation of the 

metal oxide.  The viscosity and surface tension of the solution was adjusted by varying the 2-

methoxyethanol content.  This step is necessary to ensure integrity and to allow the solution to 

adhere to the substrate.  The precursor films were coated onto various substrates by spin-coating 
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at 3500 revolutions per minute (rpm) for 30 s using a Headway Research (Model A4700) photo-

resist spinner.  Each layer of deposition was heat treated between coats at 350 °C.  This process 

was repeated for each coat, with multiple coats needed to achieve a desire thickness of 200–250 

nm.  A 0.2 micron syringe filter was used to remove dust and other suspended impurities and 

enhance the quality of the films.  The thickness of the film was about 30 nm per coat and can be 

controlled by adjusting the viscosity of the solution and spin speed.  The films were coated on Si, 

MgO and Pt-Si substrates depending to the measurement requirements (Si and MgO substrates 

for structural analysis, Pt-Si substrates for electrochemical measurement).  Prior to film 

deposition, all the Si substrates were cleaned by a room-temperature spin etching using 2-

methoaethoxide and further treated by using atmospheric ultra violet (UV) plasma treatment to 

remove the native silicon oxide and create hydrogen terminated substrate surface in order to 

enhance reproducibility and consistency of the films.  After spinning each layer of solution onto 

various substrates, the films were heated on a hot plate at 350 °C in air for 60 min to remove the 

solvents and organic components.  This step was repeated after each coating to ensure complete 

removal of volatile matter.  Once the last layer was deposited, the whole film coat was then heat 

treated for 1 hour at 450 °C.  In the as-deposited condition, the films are amorphous and require 

additional annealing for crystallization.  Annealing of the films was carried out in a Varian tube 

furnace at various temperatures, ranging from 400 °C to 800 °C, for 10 min in a flowing oxygen 

atmosphere.  
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Figure 1.  MOSD processing scheme of LiMn2O4. 
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2.3 Characterization  

2.3.1 GAXRD 

The GAXRD data was obtained from a Bruker D5005 Powder Diffractometer, fitted with a thin 

film attachment and Goebel mirrors.  To avoid overlapping contributions from the substrate 

diffraction intensity, which may dominate the contributions from the thin film diffraction peaks, 

the detector scan parameters were used at the angle of 3–10° to ensure the true film properties 

were observed.  The power was set at 40 kV and 40 mA and the detector scan parameters were 

from 15 to 65°.  A step size of 0.002° two theta was used with a dwell time of 1 s per step.  

2.3.2 AFM 

The surface morphology of the films was examined by a Digital Instrument’s Dimension 3100 

AFM using tapping mode with amplitude modulation.  Tapping mode is a common imaging 

technique and is well suited for topographical imaging of surfaces, with vertical resolution 

ranging from one micron down to sub nanometer scales.  Tapping mode involves scanning an 

AFM tip attached to the end of an oscillating cantilever across the thin film surface.  The 

amplitude of oscillation ranges from 20 nm to 100 nm, with the frequency near the resonant peak 

of the cantilever.  The tip lightly taps the films surface, altering the oscillatory motion as the 

scanner moves across the surface.  A surface is imaged by adjusting the vertical position of the 

scanner to maintain a constant root mean square signal of oscillation.  The oscillation is 

measured by a laser positioned by the user to reflect signal into a photodiode detector.  This 

technique is better suited for these films versus contact mode since it allows reproducibility 

without scratching and scrapping the film surface.  The scan area for these films was 1 x 1 

micron.  Both amplitude and height data were collected.  The amplitude data yielded the 2D view 

to obtain surface roughness. 

2.3.3 SEM 

SEM was carried out using a Hitachi S-4700 Field Emission SEM (FESEM) in high resolution 

mode.  The sample thickness was obtained by imaging a freshly cleaved cross section at 90° and 

comparing with the calibrated instrument scale bar.  Samples with Si substrates were imaged at 

10 kV while those with sapphire or MgO substrates were imaged at 2 kV. 

2.3.4 Electrochemical Measurements 

Measurements of electrochemical properties were performed in a coin cell configuration.  For 

this test, thin films solution were directly deposited on a 10 x 10 mm stainless steel mesh disk 

coin cell with a layer of acetylene black carbon to ensure electrical conductivity throughout the 

film (11).  The 10 layers of coated film were placed into 2-electrode coin cells with a lithium foil 

counter electrode and Celgard polypropylene separators.  The electrolyte consisted of 1.0 M 

LiPF6 in 30% ethylene carbonate/70% ethyl methyl carbonate.  Electrochemical capacity was 

measured on a Maccor 4000 battery test system at a constant current for up to 25 cycles.  The 

cells were run at 9.0x10
–5

 A, over the first two cycles during formation of the solid electrolyte 
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inter-phase (SEI).  The remaining cycles were run at 3x10
–4

 A, approximately C/3.  It’s currently 

a challenge to adhere the acetylene black carbon on the mesh screen, although films were 

deposited enough to for mechanical testing; however, such experiments will be further discussed 

in the future findings. 

3. Results and Discussion 

Figures 2 and 3 show the XRD patterns of the LiMn2O4 thin films as a function of annealing 

temperature and number of coats, respectively.  The absence of diffraction peaks in the XRD 

patterns for films annealed up to 400 °C indicated that the films were likely amorphous.  It was 

possible to obtain a well-crystallized phase with sharp (x,y,z) peaks and a minimal full width at 

half maximum (FWHM) at an annealing temperature of 700 °C with no evidence of secondary 

phases.  As the annealing temperature was increased, the LiMn2O4 peak intensity increased, the 

FWHM decreased, and grain size reduces due to the reduction in FWHM.  These peaks are an 

indication of enhanced crystallinity.  The XRD patterns show for films with 2 layers and 4 

layers, shown in figure 3, shows weaker peaks intensity but at 6, 8, and 10 layers XRD 

confirmed crystallinity of the films containing 6 layers or more.  The surface morphology of the 

films appeared smooth in AFM imaging, as shown in figure 4, with no cracks or defects.  AFM 

and FESEM do show large whisker formation in the plane of the film though. 
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Figure 2.  XRD patterns of the as-deposited LiMn2O4 thin films on  

platinum silicon substrates at different annealing temperature  

(a) 400 °C; (b) 700 °C. 
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Figure 3.  XRD patterns of the annealed LiMn2O4 thin films on platinum  

silicon substrates at 750 °C at various layers showing at 6 layers  

and above crystallinity were able to be obtained. 

 

 
 (a) (b) 

Figure 4.  Atomic focus microscope shows the variation of the surface roughness and  

morphology with the annealing temperature (a) At 400 °C, the deposits exhibits  

earthworm-like morphology and (b) At 750 °C deposit exhibits dense and  

well-defined grains and earthworm-like vanished. 
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The films exhibited a dense microstructure and fine grain size.  The average surface roughness 

was found to increase with a rise in annealing temperature with average surface roughness value 

of 40 nm at 750 °C as shown in figure 4.  There was no appreciable effect of the annealing 

temperature on the microstructure of amorphous LiMn2O4 thin films, while crystalline films 

showed an increase in grain size with increasing annealing temperature which is consistent with 

the XRD data.  Larger grain sizes are expected with increasing annealing temperature because of 

amorphous to crystalline phase transformation and increase in surface mobility, thus allowing the 

films to decrease their total energy and grain boundary area by growing larger grains. 

Figure 5 shows the variation of the surface roughness and morphology with the annealing 

temperature.  At 400 °C, the films exhibited a worm-like morphology around 2.0–3.0 micron in 

length and 0.2 microns in width, with a gel-like appearance.  The formation of a layer of under-

composed organic components coating the spinel particles could be the origin of this 

uncharacteristic morphology.  This hypothesis is consistent with the amorphous nature of the 

deposit as revealed by the XRD and AFM data.  As the films are annealed, the worm-like shape 

gradually vanished, and at 750 °C the deposit surface is consisted of uniform polyhedral 

submicron grains.  Above 750 °C, the particles developed a polyhedral morphology with distinct 

edges and features typical of the spinel-type structure and ranging in size from 0.2 to 0.6 

microns.  This observation is in agreement with other reports (10) and supported by the improved 

crystallinity (i.e., reduced FWHM) revealed by the XRD data. 

 

 
 (a) (b)  

Figure 5.  SEM and cross sectional of  LiMn2O4 thin films on platinum silicon substrates at  

different annealing temperature (a) 400 °C and 45 degree cross section (b) 750 °C  

and 45 degree cross section.  
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Figure 6a illustrates electrochemical behavior that was measured for one of the films.  Due to the 

high bulk resistivity of LiMn2O4, the capacity is low and was difficult to obtain suitable 

measurements for many of the other samples.  The drop in capacity over the first few cycles 

corresponds to interfacial resistances that are typically attributed to SEI formation.  This initial 

capacity fade was found to be about 20% for these materials over the first 3 cycles followed by a 

flat region of little variation in which the capacity is reversible.  The data shows a relatively low 

capacity, referred to as the reversible capacity that requires further investigation in the future to 

confirm the results.  Figure 6b shows charges of LiMn2O4 peaks after 2 hours and remains 

constant and stable after 35 hours.  This data shows the charging process was located at 

potentials of about 4.00 and 4.18 volts.  Variation in the potential calculations was due to the 

imprecise weight obtained and we were unable to get an exact measure of specific capacity 

(mAh/g).  By integrating with a stainless steel structural mesh wire to create a strong composite, 

LiMn2O4 cathode thin films may be used in a structural composite battery.   
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 (a) (b) 

Figure 6.  (a) Charge and discharge data curves of 20 cycles illustrate electrochemical behavior of the  

6 layers film annealed at 750C.  (b) Voltage profile over 60 hours of LiMn2O4 films versus time. 

 

4. Conclusion 

Thin films were grown on various substrates and at various synthesis conditions using a solution 

spin coat growth technique.  Spin-coating methodology is a useful tool for preparing 

homogeneous thin film of LiMn2O4.  The morphology, structural and electrochemical analyses 

were performed on all of these films.  The films annealed at 750 °C or above are homogenous 

and possessed good crystallization, morphology, micron-scale particle size, and uniform grain 
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size distribution.  The electrochemical studies show that the films annealed at 750 °C or above 

were able to be cycled and exhibited measureable specific capacity which while not ideal 

indicate that with optimization, this is a promising technological solution to the structural issue.  

New materials or processing techniques will need to be employed to reduce the bulk resistivity 

of the materials; our results suggest that the processes described here could be used to develop 

cathodes that enable structural behavior. 

 



 

9 

5. References 

1. South, J.; Carter, R. H.; Snyder, J. F.; Wetzel, E. D.  130, MRS Paper, 2003. 

2. Scrosati, B.; Croce, F.; Panero, S.  J. Power Sources 2001, 100 (1–2), 93–100. 

3. South, J. T.; Carter, R. H.; Snyder, J. F.; Hilton, C. D.; O’Brien, D. J.; Wetzel, E. D.  

Proceedings of the 2004 MRS Fall Conference, Boston, MA, 851, 2004. 

4. Snyder, J. F.; Carter, R. H.; Wong, E. L.; Nguyen, P. A.; Xu, K.; Ngo, E. H.; Wetzel, E. D.  

SAMPE Fall Technical Conference Proceedings 2006, Dallas, TX, 2006.  

5. Snyder, J. F.; Carter, R. H.; Wong, E. L.; Nguyen, P. A.; Xu, K.; Ngo, E. H.; Wetzel, E. D.  

Proceedings of the 25th Army Science Conference, 2006.  

6. Mohamedi, M.; Takahashi, D.; Itoh, T.; Uchida, I.  Electrochim. Acta 2002, 47, 3483.  

7. Tang, S. B.; Lai, M. O.; Lu, L.; Tripathy, S.  Journal of Solid State Chemistry 2006, 179, 

3831–3838. 

8. Joshi, P. C.; Cole, M. W.  Physics Letters July 2000, 77 (2, 10). 

9. Arrebola, Jose´ C.; Caballero, A´ lvaro; Herna´n, Lourdes; Melero, Montserrat; Morales, 

Juli´an; Castell´on, Enrique R.  Journal of Power Sources 2006, 162, 606–613. 

10. Arrebola, Jose´ C.; Caballero, A´ lvaro; Herna´n, Lourdes; Melero, Montserrat; Morales, 

Juli´an; Castell´on, Enrique R.  Journal of Power Sources 2006, 162, 606–613.   

11. Nazri; Pistoia, G.  Lithium Batteries Science and Technology; Boston, Kluwer Academic 

Publishers, 2004, pp. 99–102, 347–350. 

 



 

10 

List of Symbols, Abbreviations, and Acronyms 

AFM atomic force microscopy 

CH3COOH acetic acid 

FESEM Field Emission SEM 

FWHM full width at half maximum 

GAXRD glancing angle X-ray diffraction 
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