

Establishing an Experimental Testbed with

Software-defined Radios

by Gunjan Verma and Paul Yu

ARL-TR-5896 January 2012

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position

unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or

approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Adelphi, MD 20783-1197

ARL-TR-5896 January 2012

Establishing an Experimental Testbed with

Software-defined Radios

Gunjan Verma and Paul Yu

Computational and Information Sciences Directorate, ARL

Approved for public release; distribution unlimited.

ii

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the

data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the

burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently

valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

January 2012

2. REPORT TYPE

Final

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Establishing an Experimental Testbed with Software-defined Radios
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Gunjan Verma and Paul Yu

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory

ATTN: RDRL-CIN-T

2800 Powder Mill Road

Adelphi, MD 20783-1197

8. PERFORMING ORGANIZATION

 REPORT NUMBER

ARL-TR-5896

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT

 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Software-defined radios (SDRs) provide researchers with a powerful and flexible wireless communications experimentation

platform. GNU Radio is the most popular open-source software toolkit for deploying SDRs, and is frequently used with the

Universal Software Radio Peripheral (USRP). There is significant complexity involved in setting up GNU Radio with the

USRP; therefore, in this report, we describe the key steps to take (and pitfalls to avoid) in order to successfully establish such

an SDR testbed.

15. SUBJECT TERMS

GNU Radio, USRP, software defined radio, testbed

16. SECURITY CLASSIFICATION OF:

17. LIMITATION

OF ABSTRACT

UU

18. NUMBER

OF PAGES

20

19a. NAME OF RESPONSIBLE PERSON

Gunjan Verma

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(301) 394-3102

 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

Contents

1. Introduction 1

2. Preliminaries 2

2.1 Software Overview . 2

2.2 Which Version to Install . 2

2.3 Use of Virtual Machines . 3

2.3.1 Single Machine with Multiple USRPs 3

2.3.2 Single Machine with Multiple VMs 4

3. GNU Radio Installation and USRP Configuration 4

3.1 Prerequisites . 5

3.2 Installation . 6

3.3 USRP Configuration . 7

3.4 Verifying the Installation . 8

3.5 Troubleshooting . 9

4. Understanding USRP Behavior 10

5. Conclusion 11

6. References 12

Distribution 13

iii

List of Tables

1 Key packages of GNU radio . 2

2 Key package dependencies of GNU radio . 2

iv

1. Introduction

There are two “big ideas” behind the software-defined radio (SDR), which make it so

attractive for research in wireless communications:

1. Reconfigurability: With a single radio frontend, SDR uses software packages to

enable multiple capabilities previously available only through separate radios.

2. Development time: Only high-level software adjustments are required to prototype

and test functionality. This is in comparison to the previous need for circuit design

and device-specific code.

Taken together, these two advantages can be summarized as SDR turns highly specialized,

device-specific hardware problems into general, device-independent software problems.

In this report, we provide suggestions to experimenters for setting up a GNU Radio SDR

platform. GNU Radio is an open-source software toolkit started in 2001 for developing

SDR systems (1). We focus on the subtleties of installation and configuration that are

undocumented, or otherwise difficult to find, in the available documentation.

GNU Radio provides implementations of many signal processing algorithms (called GNU

Radio blocks) in C++, with interfaces to some of these blocks available in Python.

Building a custom radio is as easy as connecting the signal processing blocks (e.g.,

modulator to mixer to amplifier) together in Python. If a signal processing capability is

not available, a new block can be implemented in C++.

Although in principle, GNU Radio can be used with almost any hardware digital

acquisition system (DAQ), the best-supported system is the Universal Software Radio

Peripheral (USRP) made by National Instruments (2). In this report, we address the use of

the USRP (first generation) with GNU Radio. The first-generation USRP is a DAQ with

the following features:

• Four 64-megasample per second, 12-bit analog-to-digital converters

• Four 128-megasample per second, 14-bit digital-to-analog converters

• USB 2.0 interface

• Up to 16 MHz wide bandwidth

Various plug-in daughterboards are available to cover spectrum between 0 and 5.9 GHz.

1

2. Preliminaries

2.1 Software Overview

The GNU Radio package can be obtained from the official Web site (1). Before we delve

into configuration specifics, it is useful to take a bird’s eye view of the GNU Radio software

infrastructure. Table 1 lists the main purpose of each key package within the root folder.

Table 1. Key packages of GNU radio.

GNU Radio modules Description

gr-audio-* Soundcard support (acts as DAC and signal sink)

gnuradio-core Code of the core GNU Radio library
gnuradio-examples Example applications (C++ and Python)

gr-utils Useful applications like signal generators, IQ plots
gr-usrp Glue clode connecting USRP to GNU rdaio frame-

work
gr-wxgui wxPython-based GUI tools (including graphical

FFT, oscilloscope)

It is also useful to familiarize oneself with some of the key packages that GNU Radio

depends on. While most users will not use these packages directly, they provide key

functionality behind the scenes to the GNU Radio software system. Table 2 presents an

overview of the most important dependencies of GNU Radio.

Table 2. Key package dependencies of GNU radio.

Package name Description

cppunit Unit testing framework for C++
Boost Software libraries extending functionality of C++

FFTW High performance C subroutine that computes the DFT
GSL Software library for numerical computation

Numpy Python library that adds high performance arrays, linear
algebra, and Fourier transform algorithms

sdcc C-compiler used to build firmware for USRP

SWIG Tool that exposes code written in C/C++ to Python
wxPython GUI toolkit for Python

2.2 Which Version to Install

GNU Radio is a rapidly evolving project. While it may seem that choosing the latest

version is a surefire bet, some words of caution are in order. For example, versions of GNU

2

Radio 3.2.2 and earlier used OMNIthread to provide threading functionality. OMNIthread

is a C++ library providing a thread abstraction, namely, a set of thread operations for use

in C++ programs. GNU Radio 3.3.0, the latest version, abandons OMNIthread in favor of

Boost threads. Therefore, any application using threading that was written for GNU Radio

3.2.2 or earlier will not work with GNU Radio 3.3.0. Other changes that are always being

made are the re-implementation of Python blocks into C++; in fact, Python’s role in GNU

Radio will be completely obsolete in the near future (3).

2.3 Use of Virtual Machines

If one plans on designing one’s own signal processing blocks and/or modifying existing

blocks, we have found that installing GNU Radio inside a virtual machine (VM) (such as

provided by virtualization software like KVM or VMWare) is a very good option. Each

VM can edit the GNU Radio source code base, for a given application, independent of

other VMs. Deployment of the same image over multiple machines is trivial with VMs.

2.3.1 Single Machine with Multiple USRPs

The VM approach permits an easy way of using multiple USRPs on a single machine,

where each USRP is associated with a separate VM running its own GNU Radio

application. Note that the machine must have sufficiently high processing capability and

memory available, otherwise significant slowdown in the form of dropped packets will occur.

When multiple USRPs are installed on a single host, the way to distinguish between them

in Python code is as follows:

usrp1 = usrp.source c(which=0)

usrp2 = usrp.source c(which=1)

However, which USRP gets which code (0 or 1) depends on how they appear on the

universal serial bus (USB) and device, which is affected by which USRP is plugged in or

turned on before the other. This introduces some non-determinism in the numbering of

multiple USRPs on a single host machine. One workaround is to query for the serial

number of the USRP one is working with, and then take an action accordingly. However,

this is an awkward solution.

Virtualization makes it easy to manage to multiple USRPs connected to a single machine;

simply assign each USRP to its own VM using the VM software to selectively connect a

single USRP (which is viewed by the VM software as just a USB device) to a particular

VM instance. This makes testing of new signal processing blocks requiring multiple USRPs

3

extremely easy, so long as one realizes that the 32 MB/s USB bandwidth is being shared

across all the USRPs connected to the host. However, in our experience, in applications

with modest bandwidth requirements involving multiple USRPs, the most rapid

development environment for situations involving the use of multiple USRPs is as follows:

1. Connect the USRPs to a single host.

2. Assign each USRP to its own VM.

3. Configure each VM to mount a directory from the host operating system (OS) (e.g.,

call it “common files”).

4. Place any code to be shared across all USRPs in “common files”.

Now, all VMs have access to the common code (e.g., a new signal processing block) in a

single step, and each can be launched with the appropriate code from a single directory.

This circumvents the need to maintain code synchronization across multiple machines, each

connected to a single USRP.

2.3.2 Single Machine with Multiple VMs

The VM approach also allows side-by-side installation of GNU Radio 3.2.2 and 3.3.0,

respectively, in two separate VMs. In a setup in which there is a mix of USRPs, USRP2s,

and/or other radio devices, one VM containing an installation of GNU Radio can be

created and customized for each radio device. There are several other advantages of using

VMs, including the ability to take snapshots of known functional system states and roll

back changes as needed. This is particularly relevant because software development in

GNU Radio, unlike in conventional software development systems, does not allow for

interactive debug sessions (since C++ libraries must be built for use from Python), so the

likelihood of breaking the GNU radio codebase during development or modification of

signal processing algorithms is essentially guaranteed.

3. GNU Radio Installation and USRP Configuration

Once one has decided which version of GNU Radio to install and whether or not to use

virtual machines, one is ready to begin.

Basic GNU Radio installation guides are available from the official Web site (1). However,

we supplement this with additional useful information not covered in the official

4

documentation. Some distributions, like Ubuntu, offer the GNU Radio package for

installation through a package manager, which circumvents the need for manual

installation. However, there are several advantages to manual installation, which include

the following:

• Package managers only list stable releases (as determined by the repository curator),

so newer (or older) versions of GNU Radio may not be available through them.

• For testing purposes, we may desire to have multiple versions of GNU Radio installed

side by side.

• Source-code modifications of the underlying signal processing blocks (for example, to

test out new algorithms) require manual re-builds anyway, so familiarity with this

process is essential.

In each of the following sections, we present the exact installation procedure for Ubuntu

10.04.

3.1 Prerequisites

The complete list of prerequisites can be found from the install guide (4). In our

experience, we have found GNU Radio to be fairly delicate with respect to the versions of

the various software modules installed. For example, compilation errors may occur when

using newer versions of the g++ compiler. In addition, the exact prerequisites needed can

vary considerably between different distributions of Linux. It is therefore highly

recommended to consult the GNU Radio Web site for distributions with explicit

configuration instructions.

For Ubuntu 10.04: Launch the following command (on a single line) to obtain all

pre-requisite software packages.

sudo apt-get -y install libfontconfig1-dev libxrender-dev

libpulse-dev swig g++ automake autoconf libtool Python-dev

libfftw3-dev libcppunit-dev libboost-all-dev libusb-dev

sdcc sdcc-libraries libsdl1.2-dev Python-wxgtk2.8 git-core

guile-1.8-dev libqt4-dev Python-numpy ccache Python-opengl

libgsl0-dev Python-cheetah Python-lxml doxygen qt4-dev-tools

libqwt5-qt4-dev libqwtplot3d-qt4-dev pyqt4-dev-tools

Python-qwt5-qt4 fort77

5

3.2 Installation

The general installation procedure is to run the following commands in order:

1. ./bootstrap

(a) ./configure

(b) make

(c) make check

(d) make install

Step 4 may generate errors, which depending on their particular type, may not be

consequential. Searching the GNU Radio e-mail archives using an Internet search is

recommended at this point. One common problem after installation may be that the

appropriate path is not set for Python; in order to rectify this, append the following line to

./bashrc

export PYTHONPATH=insert path to gnuradio package directory

For Ubuntu 10.04: Download the .tar.gz release of GNU Radio from (5) and extract to a

directory, e.g. “gnuradio”. Launch the following commands:

cd gnuradio

./configure

make

make check

sudo make install

The “make check” command performs some basic checks to ensure the software built cor-

rectly. To test an actual GNU Radio application, launch the command

/usr/local/share/gnuradio/examples/audio/dial tone.py

which launches a Python application that uses GNU Radio to generate two sinusoids and

send their sum to the speakers, producing the sound of a dial tone.

6

3.3 USRP Configuration

Some Linux distributions do not provide default non-root access to handle hotplug USB

devices. In this case, some care is needed to give the desired user access to the USRP.

Distribution specific instructions are available on the GNU Radio Web site. In summary,

one needs to proceed as follows:

1. Create a new group, call it “usrp”.

2. Add the desired user to group usrp.

3. Create a new USB rule that tells Linux what to do when the USRP is plugged into a

USB port of the machine.

4. Restart the machine.

For Ubuntu 10.04: Launch the following commands:

sudo addgroup usrp

sudo usermod -G usrp -a <YOUR USERNAME>

echo ’ACTION==‘‘add", BUS==‘‘usb", SYSFS{idVendor}==‘‘fffe",

SYSFS{idProduct}==‘̀0002", GROUP:=‘‘usrp", MODE:=‘‘0660"’ tmpfile

sudo chown root.root tmpfile

sudo mv tmpfile /etc/udev/rules.d/10-usrp.rules

Next, restart the machine. To ensure the USRP is recognized, examine /dev/bus/usb after

plugging in a USRP. Issuing the command:

ls -lR /dev/bus/usb | grep usrp

should give an output like:

crw-rw---- 1 root usrp 189, 514 Sep 01 09:46 003

Note well that it has been our experience that sometimes the USRP is not “fully”

recognized after the first insertion into the USB or the first power-up after having been

shut down. Examination of system logs shows that while Linux detects the presence of the

USRP at the kernel level, it does not get configured properly. Applications attempting to

7

use the USRP in this state will generate errors that suggest the USRP is not connected at

all. We have found that the simplest fix to this problem is simply to disconnect

and reconnect the USRP.

3.4 Verifying the Installation

As mentioned earlier, the GNU Radio documentation recommends running “dial tone.py”

to verify proper GNU Radio installation (USRP need not be present). If all goes well, one

should hear a dial tone at the speakers and have a good degree of confidence that GNU

Radio has been correctly installed. We have found that this test does not always succeed,

due to some possible quirks of the script perceiving a contention with the OS for sound

card access. If at this step an error relating to the sound card driver is incurred and your

sound-card works, then sometimes rerunning the command will solve the matter. If not,

skip the audio test and proceed further to test with the USRP directly.

We would also like to verify that GNU Radio does in fact work with the USRP. GNU

Radio provides a test script called “usrp benchmark usb”, which helps in this regard. If

GNU Radio can talk to the USRP, then at the least, this script should run properly.

Otherwise, GNU Radio did not build properly or the USRP is not visible to the OS.

In the usrp/host/apps subdirectory of the GNU Radio home folder, launch the commands:

./test usrp standard tx

./test usrp standard rx

to test both the functionality of GNU Radio and USRP, and also obtain a good estimate of

the maximum throughput between the host computer and the USRP. The maximum

throughput is 32 MB/s.

In our experience, there are certain build configurations that may result in throughput of

less than 32 MB/s. If this is the case, proceed with caution! Application performance may

be very poor in this situation. Ensure that stable builds of the distribution and kernel are

being used, with latest patches for the USB drivers. If operating within a VM like

VMWare, ensure that USB 2.0 support is enabled. Note especially that other virtualization

platforms, like VirtualBox, may have very poor throughputs due to poor implementations

of virtualization for USB.

8

3.5 Troubleshooting

If the system cannot find the GNU Radio software base after installation, it might be that

installation was done in a non-standard directory. In such a case, headers, libraries, and

Python scripts are obscured from the application’s view. To fix this, open the .bashrc file

and append the following:

export PATH=$PATH:/opt/gnuradio/bin

export LD LIBRARY PATH=$LD LIBRARY PATH:/opt/gnuradio/lib

export PKG CONFIG PATH=$PKG CONFIG PATH:/opt/gnuradio/lib/pkgconfig

export PYTHONPATH=$PYTHONPATH:/opt/gnuradio/lib/Python2.6/site-packages

Log out and back in for the changes to take effect.

Some Linux distributions have packages that need to be downgraded in order to be

compatible with GNU Radio. For example, the latest versions of gcc and Python can cause

issues. If errors are encountered during the build process, try downgrading these.

If the error is related to a Python program, read the errors from the bottom up; the

highest level trigger of the error will be found here. If using the GNU Radio built-in

applications, searching the online archives for this error will be most helpful.

If the system is not recognizing the USRP, check the kernel message buffer via command

“dmesg” to understand if the reason has to do with permissions or USB configuration.

If the ./test usrp* scripts work fine, verifying host to USRP communication, but test

applications verifying USRP to USRP traffic (e.g., benchmark rx and benchmark tx in

/gnuradio-examples/Python/digital to test packet transmissions between two USRPs) do

not work, then frequency offset issues are a prime suspect. Most GNU Radio test

applications have a frequency offset correction flag. In order to discover the actual

frequency offset between a pair of USRPs, a coarse but useful estimate can be obtained by

generating a pure tone on the transmitting USRP at a given frequency, doing a fast Fourier

transform (FFT) on the receiver at that same center frequency, and observing the extent of

the shifted peak. In our experience, some pairs of USRPs will work with the GNU Radio

test applications with no further action, but other pairs will have significant relative

frequency offsets, which will cause GNU Radio applications to fail completely unless the

offset is corrected for.

9

4. Understanding USRP Behavior

There are two important aspects of USRP behavior that are useful to know. The first

relates to USRP behavior upon launching a GNU Radio application. When the USRP is

first plugged in, the light-emitting diode (LED) to the right of the USB controller blinks at

a fast rate of about 3 times per second, but slows down to about once per second when a

GNU Radio application is using the USRP. Also, there is an audible change in the sound of

the USRP cooling fan when a GNU Radio application is executing on the USRP. We have

found that sometimes, applications for GNU Radio appear not to execute after being

launched, but give no error messages. The issue comes up, for example, when launching

one application soon after another and seems to have to do with the second application’s

inability to fully secure access to the USRP. In such a case, the obvious clue that the

culprit is the USRP (and not the application) is the LED and fan behaving as if the USRP

is in an idle state. In such a situation, terminate the application, wait a few moments, and

restart it; else, restart the USRP itself.

The second aspect of the USRP that is important to be familiar with is the output of “O”,

“U”, “u”, or “a” characters when running a gnuradio program. These are codes indicating

USRP status, with the following meaning:

• “u” = USRP

• “a” = audio (sound card)

• “O” = overrun (PC not keeping up with received data from the source, e.g., usrp)

• “U” = underrun (PC not providing data quickly enough to the sink, e.g., usrp)

Combining the flags results in a specific indication of PC to USRP communication status,

for example, the following:

• “aUaU” indicates an audio underrun (the PC is not providing samples rapidly

enough to the sound card).

• “uOuO” indicates that the PC is not keeping up with USRP sample rate, so USRP

samples are being dropped.

As of the time of this writing, the frequency with which the symbols (e.g., “uO”) are

printed to the screen is not an indication of the frequency of the underlying error; overrun

or underrun detection is implemented by polling, so the severity of the problem cannot be

10

determined by the frequency with which the above symbols alone are printed to the screen.

This is slated to be corrected in a future release.

5. Conclusion

We have presented a high-level overview of the process of enabling a SDR testbed, covering

the key steps involved in installation and configuration of the USRPs and GNU Radio. We

have focused on those aspects that have received minimal attention in the official

documentation for GNU Radio.

11

6. References

1. GNU Radio Web site. http://gnuradio.org/redmine/wiki/gnuradio (accessed 2011).

2. Ettus Research LLC Web site. http://www.ettus.com/products (accessed 2011).

3. GNU Radio Web site. Road map. http://gnuradio.org/redmine/projects/roadmap/gnuradio

(accessed 2011).

4. GNU Radio Web site. Build Guide. http://gnuradio.org/redmine/wiki/gnuradio/BuildGuide

(accessed 2011).

5. GNY Radio FTP site. ftp://ftp.gnu.org/gnu/gnuradio (accessed 2011).

12

13

NO. OF

COPIES ORGANIZATION

 1 ADMNSTR

 ELEC DEFNS TECHL INFO CTR

 ATTN DTIC OCP

 8725 JOHN J KINGMAN RD STE 0944

 FT BELVOIR VA 22060-6218

 1 US ARMY RSRCH DEV AND ENGRG CMND

 ARMAMENT RSRCH DEV & ENGRG CTR

 ARMAMENT ENGRG & TECHNLGY CTR

 ATTN AMSRD AAR AEF T J MATTS

 BLDG 305

 ABERDEEN PROVING GROUND MD 21005-5001

 1 US ARMY INFO SYS ENGRG CMND

 ATTN AMSEL IE TD A RIVERA

 FT HUACHUCA AZ 85613-5300

 1 COMMANDER

 US ARMY RDECOM

 ATTN AMSRD AMR W C MCCORKLE

 5400 FOWLER RD

 REDSTONE ARSENAL AL 35898-5000

 1 US GOVERNMENT PRINT OFF

 DEPOSITORY RECEIVING SECTION

 ATTN MAIL STOP IDAD J TATE

 732 NORTH CAPITOL ST NW

 WASHINGTON DC 20402

 8 US ARMY RSRCH LAB

 ATTN IMNE ALC HRR MAIL & RECORDS MGMT

 ATTN RDRL CI J PELLEGRINO

 ATTN RDRL CIN A KOTT

 ATTN RDRL CIN T B RIVERA

 ATTN RDRL CIN T G VERMA

 ATTN RDRL CIN T P YU

 ATTN RDRL CIO LL TECHL LIB

 ATTN RDRL CIO MT TECHL PUB

 ADELPHI MD 20783-1197

14

INTENTIONALLY LEFT BLANK.

