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1. Background 

The response     of an armor target to a ballistic threat can be characterized as penetration 

      or non-penetration      .  This is called a binary quantal response (QR), since there 

are exactly two possible outcomes.  All other factors being constant, one may consider the effect 

of threat velocity (the stimulus) upon penetration (the response).  The basic model for this 

interaction is that penetration is random, shots are independent, and that the probability of 

penetration is some function       of velocity, 

                (1) 

So   has a Bernoulli distribution conditional on velocity with Bernoulli parameter     .  Of 

course,   is bound between 0 and 1, and one expects that   is an increasing function of  .  Thus, 

  has the functional form of a cumulative distribution function (cdf). 

Of particular interest is the    , that velocity for which the probability of penetration equals 1/2.  

           (2) 

Analyses of the     and other quantities of interest are conducted by collecting samples of 

penetration responses and velocities, estimating the function  , and performing statistical 

inference on the results.  This general paradigm is commonly known as “sensitivity analysis.” 

 

2. The Location-Scale Sensitivity Model 

Quantal response (penetration)         to a continuous stimulus (velocity)   was originally 

modeled by using the standard normal cdf for a response function 

      
 

   
             

 

  

 (3) 

and then estimating parameters   and   in the model 

          
   

 
             (4) 

where   has the indicated Bernoulli distribution, by the method of maximum likelihood (ML).  

This is the location-scale parameterization.  In general, cdfs    of location-scale distributions 

have the form
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  , (5) 

where    is a standardized cdf.  Then the parameter vector is    
 
 
 , where the location 

parameter is   and the scale parameter is  .   

The aim of analysis is to estimate the parameter   and then make inferences and perform 

statistical tests on meaningful population parameters such as    .  With    chosen such that 

         , then           and      .  Thus, inferences on the parameter   are, in fact, 

inferences on    . 

 

3. The Linear Sensitivity Model 

Response (penetration)         has expected value depending on stimulus (velocity)  , 

                 . (6) 

The conditional distribution of   is Bernoulli with the indicated mean, so 

                             (7) 

If     is an increasing function, then the response function    must be a cdf. 

This is a linear parameterization,  

                , (8) 

and the parameter vector is    
  

  
 .  To admit additional complexity, these models recognize 

the argument of    as a polynomial and thus have 

                    
          (9) 

for finite  , where     in the previous example.   
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4. Generalized Linear Model (GLM) Estimation 

Quantal response function estimation can be implemented using the Generalized Linear Model 

(GLM) with binomial response distribution and appropriate link functions.  (See, for example, 

McCulloch and Searle.1) 

The response   has expected value depending on stimulus    and   (both vectors) 

               (10) 

The distribution of   is Bernoulli with the indicated mean, so 

                         (11) 

For sensitivity modeling the link function    is usually taken to be a continuous cdf. 

Some authors call the inverse function      
   the link. 

GLM estimates the linear coefficients   in the linear model 

             (12) 

Common choices for    include the normal cdf (probit link) 

       
 

   
             

 

  

 (13) 

and the logistic cdf (logit link) 

      
 

     
  (14) 

 

5. Reparameterization 

Estimation and inference on the location-scale parameter   is of particular interest, since 

     , but the usual GLM estimate provides the linear parameter   and its variance estimate 

  .  Since

                                                 
1McCulloch, C.; Searle, S.  Generalized, Linear, and Mixed Models; John Wiley & Sons:  New York, 2001. 
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    (15) 

 

the location-scale parameter is obtained by 

   
 
 
   

      

    
   (16) 

The location-scale variance estimate is given by the variance transformation of equation C-19 in 

appendix C. 

 

   
   

  
    

  

  
   (17) 

The required derivative is 

 

  

  
  

            

            
   

      

     
      

    
 

  
  

   
    

   (18) 

In practice, to avoid numerical instability, computations are conducted using the standardized 

stimulus 

 

   
    

  
   (19) 

 

where    and    are, respectively, the sample mean and standard deviation of  , and the 

parameter vector is     
  

  
  so that 

 

           
    

  
  

  

  
         

   

 
  

 

 
 

 

 
   (20) 

 

Thus, the location-scale parameter   and its variance estimate    can be recovered from the 

standardized linear parameter   and its variance estimate   .  These are 

 

   
 
 
   

          

     
  (21) 

 

and 
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   (22) 

 

where 

  

  
  

            

            
   

       

       
       

    
  

  
  

   
    

   (23) 

 

Also, if need be, the usual linear parameter   and its variance estimate    can be recovered from 

the standardized linear parameter   and its variance estimate   .  These are 

 

   
  

  
   

          

     
  (24) 

 

and 

   
   

  
    

  

  
   (25) 

 

where 

  

  
  

              

              
   

  
          

  
 

  
 

   
    

   (26) 

 

6. Confidence Intervals 

First, consider velocity confidence intervals on    for fixed probability of penetration   (see 

figure 1).  The response function gives probability of penetration at velocity  , 

         
   

 
                   

 
 
   (27) 

The nominal point estimate of   , the velocity at which the probability of penetration is  , is 

expressed in terms of the quantile function       as 

                                                (28) 

Confidence intervals are calculated from the estimator distribution            .  So 

                 (29) 
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Figure 1.  Estimate and normal theory    confidence intervals. 

Since                 with         , it follows that a           two-sided 

confidence interval on    is given in the usual manner by 

                   and                      (30) 

The quantile point    of the standard normal distribution satisfies           . 

It is also possible to calculate confidence intervals on the probability of penetration   for fixed 

velocity   (see figure 2).  Start with the linear parameterization of the response 

                                                            
  

  
   (31) 

Confidence intervals are calculated from the estimator distribution            .  So 

                 (32) 
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Since                 where, again,         , it follows that a           two-

sided confidence interval on   is given by 

                       and                          (33) 

 

 

Figure 2.  Estimate and normal theory   confidence intervals. 

 

7. Hypothesis Testing 

The theory of appendix B provides a means for hypothesis tests on response curve parameters, 

and, in particular, for comparing     estimates against each other. 

The quadratic forms derived from asymptotic normal distributions of maximum likelihood 

estimators are known as Wald’s Statistics, and the tests are called Wald’s Tests. 
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Suppose that   experiments and have given   response curve parameter estimates               

with, for example, the probit (cumulative normal) response function in terms of the usual 

location-scale parameter    
 
 
 , where      

  

  
 .  So the model for the response is cumulative 

normal with mean   and standard deviation  . 

Since the mean is the median,      .  The other parameter   characterized the steepness of the 

response curve.  Inferences about the parameters are inferences about     and the steepness of 

the response.  So there are   sets of estimates and their covariance matrices.  For        , 

     
  

  
                  

        

        
   (34) 

In terms of appendix B, 

   
   
 

   

             
    

 
    

 , (35) 

and the test is constructed by choosing   (called a contrast matrix in this context) to compare 

certain elements of  . 

        and          (36) 

The test statistic is the associated quadratic form 

                   (37) 

Under the null hypothesis, the distribution of   is central chi-square 

    
  , (38) 

and the alternative distribution with true parameter value     is noncentral chi-square 

      
  , (39) 

where         and the noncentrality parameter is                  . 

Note:  Any random variable   has cumulative distribution function (cdf)                and 

quantile function                      . 

A test with type I error (probability of rejecting a true   ) equal to   has critical value   , where
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               , (40) 

since large values of   are significant, and   exceeds    with   -probability  .  Thus, the critical 

value is given by 

      
         (41) 

Based on the observed value    of  , the p-value of an experiment is 

                   
        (42) 

The decision rule is to reject    if      , or, equivalently, if    . 

For a fixed alternative     with     , the type II error   is the probability of not rejecting 

the null hypothesis    under   , when    is false, 

                   
             

       
         (43) 

The power   of the test is the probability of detecting the alternative, 

             
               

       
         (44) 

Illustrations of specific tests follow.  The test for     equality is 

          and           (45) 

The contrast is 

            (46) 

Then 

                                   , (47) 

and the quadratic form test statistic is 

  
       

 

         
   

   (48) 

Under the alternative hypothesis with true difference in mean        , the test statistic has 

the noncentral chi-square distribution
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  , (49) 

where 

  
  

         
  (50) 

and the test has power 

             
               

       
         (51) 

To compare response curves for location and scale, test 

                   and                     (52) 

and use the contrast 

    
      
      

   (53) 

The test statistic   is   
 , with          and         , 

  
  

                                
            

                                  
 

  (54) 

To compare four     estimates, one can safely discard the   information and use        in 

   

  

  

  

  

                 

     
     
     
     

   (55) 

Tests for pairwise comparisons are as those just presented. 

          and          , (56) 

where
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   (57) 

To compare all four     estimates, 

                and                 (58) 

Use 

   
     
     
     

  (59) 

or, equivalently, 

   
     
     
     

   (60) 

Both give the same     
 .  The explicit form is tedious, but reasonable software works directly 

with the matrices anyway. 

To compare the first against the mean of the other three, 

                   and                     (61) 

use 

             (62) 

Then     
 . 

8. Computation 

A historical implementation of quantal response computation has been documented by McKaig 

and Thomas.2  The original computations involved were derived from first principles.  (See, for 

example, DARCOM P 706-103.3)  The code (written in FORTRAN) must be compiled for use on 

each particular platform.The modern approach in this report uses GLM explicitly.  (See appendix E 

for details on Maximum Likelihood Estimation (MLE) for the GLM.)  This technique provides 

computationally stable solutions for polynomial type models by iterated systems of linear 

                                                 
2McKaig, A. E.; Thomas, J. M.  Likelihood Program for Sequential Testing Documentation; ARBRL-TR-02481; U.S. Army 

Ballistics Research Laboratory:  Aberdeen Proving Ground, MD, 1983. 
3DARCOM-P 706-103.  Engineering Design Handbook:  Selected Topics in Experimental Statistics with Army Applications; 

DARCOM pamphlet, U.S. Army Materiel Development and Readiness Command, 1983. 
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equations.  GLM also provides diagnostics and estimator distributions required for inference.  

Furthermore, written in Java, the same code runs on Windows, Linux, and Mac OS X.   

GLM estimation is implemented by iterative reweighted least squares (IRLS) maximization of 

the deviance function (which is linearly related to the log likelihood).  For the natural link, in this 

case logit, IRLS is equivalent to the Newton-Raphson method of solving the MLE score equation 

        , (63) 

where        .  The estimator sequence               begins with an intial guess   .  

Subsequent elements are generated by solution of the linear differential approximation 

                 
          (64) 

For the other links, IRLS is equivalent to Fisher scoring, another method for obtaining the MLE, 

in which the Hessian matrix     is replaced by its expected value 

                              (65) 

In all cases, some stopping rule determines termination of the estimation sequence. 
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This stripped-down Java program illustrates the Fisher update algorithm computation for the 

logistic model.  The linear parameter estimate is b, and the information matrix is M in the code. 

 

//////////////////////////////////////////////////////////////// 

// QrDemo.java 

 

import static java.lang.Math.*; 

 

public class QrDemo { 

 

    public QrDemo(int n, double[] x, int[] y) { 

 

        double d, dev, dev0=Double.POSITIVE_INFINITY, v, w, A[]={0, 0}, 

            M[][]={{0,0},{0,0}}, mu[]=new double[n], eta[]=new double[n], b[]={0,0}; 

 

        for (int iterations = 1; iterations <= 64; iterations++) { 

 

            dev = 0; 

            for (int i = 0; i < n; i++) { 

                eta[i] = b[0] + b[1] * x[i]; 

                mu[i] = 1/(1+exp(-eta[i])); 

                dev += y[i] == 1 ? log(mu[i]) : log(1-mu[i]); 

            } 

            dev *= -2; 

 

            System.out.printf("%2d: dev = %23.16e , b[] = (%23.16e, %23.16e)\n",  

                    iterations, dev, b[0], b[1]); 

 

            if (abs((dev0-dev)/dev) < 1e-16) { break; } 

            dev0 = dev; 

 

            A[0] = A[1] = M[0][0] = M[0][1] = M[1][0] = M[1][1] = 0; 

            for (int i = 0; i < n; i++) { 

                v = mu[i] * (1 - mu[i]); 

                w = y[i] - mu[i]; 

                A[0] += w; 

                A[1] += w * x[i]; 

                M[0][0] += v; 

                M[0][1] += v * x[i]; 

                M[1][1] += v * x[i] * x[i]; 

            } 

            d = M[0][0]*M[1][1] - M[0][1]*M[0][1]; 

            b[0] += (  A[0]*M[1][1] - A[1]*M[0][1] ) / d; 

            b[1] += (- A[0]*M[0][1] + A[1]*M[0][0] ) / d; 

        } 

 

        System.out.printf("b[] = (%1.5f %1.5f)\n", b[0] , b[1]); 

    } 

 

    public static void main(String args[]) { 

 

        int n=10; 

        double x[] = { 2620, 2667, 2717, 2718, 2721, 2724, 2744, 2811, 2840, 3020}; 

        int    y[] = {    0,    0,    0,    0,    1,    1,    0,    1,    1,    1}; 

 

        new QrDemo(n, x, y); 

    } 

} 

 

//////////////////////////////////////////////////////////////// 
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Compiling and running the program exposes the deviance convergence and estimator sequence. 
 
$ javac QrDemo.java 

 

$ java QrDemo 

 

 1: dev =  1.3862943611198906e+01 , b[] = ( 0.0000000000000000e+00,  0.0000000000000000e+00) 

 2: dev =  9.4193618456986190e+00 , b[] = (-3.2157347386093360e+01,  1.1658816396959381e-02) 

 3: dev =  8.1337185880127830e+00 , b[] = (-5.9172217539474130e+01,  2.1560777823503036e-02) 

 4: dev =  7.6605066309287860e+00 , b[] = (-8.6314382350221580e+01,  3.1517928280382454e-02) 

 5: dev =  7.5662084690745290e+00 , b[] = (-1.0466244931233070e+02,  3.8253780626049190e-02) 

 6: dev =  7.5591586884309470e+00 , b[] = (-1.1142261623953550e+02,  4.0736192959547696e-02) 

 7: dev =  7.5590975468338840e+00 , b[] = (-1.1213096248281227e+02,  4.0996302051673934e-02) 

 8: dev =  7.5590975412867530e+00 , b[] = (-1.1213779766541855e+02,  4.0998811895006204e-02) 

 9: dev =  7.5590975412867560e+00 , b[] = (-1.1213779829230498e+02,  4.0998812125193504e-02) 

10: dev =  7.5590975412867385e+00 , b[] = (-1.1213779829230472e+02,  4.0998812125193410e-02) 

11: dev =  7.5590975412867440e+00 , b[] = (-1.1213779829230428e+02,  4.0998812125193250e-02) 

12: dev =  7.5590975412867530e+00 , b[] = (-1.1213779829230556e+02,  4.0998812125193710e-02) 

13: dev =  7.5590975412867530e+00 , b[] = (-1.1213779829230532e+02,  4.0998812125193630e-02) 

 

b[] = (-112.13780 0.04100) 

 

 

 

9. Applications 

The code can be extended to compute parameter, variance, and correlation estimates for different 

parameterizations and display the results along with a Lower Confidence Bound (LCB) on the 

   .  This example implements the logit link with Fisher scoring optimization, using data with 

stimulus (velocity) in the first column and response (penetration) in the second column: 

 

   600.000  1 

   579.500  0 

   580.400  0 

   616.400  0 

   626.200  1 

   627.000  1 

   599.800  0 

   614.900  1 

   613.100  1 

   575.000  0 

 

In practice, one works with the standardized predictor   and linear parameter a[]   

        of section 5 and computes its variance Va    and correlation Ra. 

 

   a[]  = (-0.19415,   2.2279), Va  = ( 0.88564, -0.35817, . ,   1.7373),   

   Ra = -0.28876 

 

Transformations provide the usual linear and location-scale parameterizations b[]   and 

ms[]=(mu,sg)    and their variances Vb     and  Vms     and correlations. 

 
   b[]  = ( -73.045,  0.12077), Vb  = (  1881.9,  -3.0988, . , 0.0051048),   
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   Rb = -0.99978 

 

   ms[] = (  604.84,   8.2804), Vms = (  57.348,  -6.3638, . ,   23.998),  

   Rms = -0.17154 

 

   Logit Response Parameters: ( mu , sg ) = (   604.84 ,   8.2804 ) 

 

The location-scale version is required for confidence bounds on    , since its standard deviation 

comes from   .  The standard normal 95% quantile Z_95 =1.645 gives a 95% LCB on    . 

 

   V50 estimate           = mu    =   604.84 

   V50 standard deviation = SD.mu =   7.5728 

 

   95% LCB on V50 = mu – SD.mu*Z_95 = 592.38 

 

Computations must take place in one of the linear versions, and the standardized version avoids 

numerical problems caused by collinearity, as indicated by the extreme correlation Rb of the raw 

linear version. 

LangMod (Collins and Moss4) is a Java GUI implementation of a modified Langlie sequential 

strategy for quantal response testing.  LangMod has been used to support various customer and 

research programs for testing personal protective equipment as well as ground and aircraft 

targets.  LangMod incorporates (among other things) the logistic regression calculations 

developed in this report and displays QR calculation results and a graph of the data and response 

function estimate as shown in figure 3. 

                                                 
4Collins, J.; Moss, L.  LangMod Users Manual; ARL-TN-437; U.S. Army Research Laboratory:  Aberdeen Proving Ground, 

MD, 2011. 
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Figure 3.  Quantal response from LangMod. 

Similar capabilities are implemented in a local S-PLUS library, libv50, which has been used 

in support of various projects (see, for example, Collins et al.5).  This library uses the native 

S-PLUS GLM computations.  For example, in S-PLUS, the GLM computation can be 

implemented as 

fit <- glm(x~v, family=binomial (link=logit), data=z) 
 

where the data frame z contains stimulus velocity v and response penetration        .  Then, 

glm returns model coefficient estimates           in fit$coefficients and estimated 

parameter variance matrix    in summary(fit)$cov.unscaled.  The library implements the 

reparameterization, hypothesis testing, and confidence interval procedures outlined in this report.  

The computations and graphics for figures 1 and 2 were generated by libv50. 

 

                                                 
5Collins, J., et al.  Sensitivity of Mounting Methods or the Outer Tactical Vest and Shoot Pack Ballistic Limit, Phase I:  

Current Mounting Methods; ARL-TR-4116; U.S. Army Research Laboratory:  Aberdeen Proving Ground, MD, 2007. 
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Appendix A.  Vector Function Conventions 

A.1  Notation 

Vectors are columns.  With     , 

   

  

  

 
  

 , (A-1) 

and if        , then         and 

      

     
     

 
     

   

           
           

 
           

   (A-2) 

If   is an     matrix, the     denotes the element in row   and column  .  The transpose of  , 

     , (A-3) 

is a     matrix and has        . 

A.2  Inner Products and Norms 

The usual inner product is 

               

 

   

   (A-4) 

and a weighted inner product is 

                     

 

   

 

   

  (A-5) 

The associated (squared) norms are 

                  
 

 

   

 (A-6) 
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and  

    
                

 

   

 

   

  (A-7) 

In the event that   is a diagonal matrix, 

                    

 

   

   (A-8) 

and 

    
               

 

 

   

  (A-9) 

A.3  Derivatives 

The derivative of   is the     matrix function in which column   is the derivative        of 

the coordinate   scalar field   .  So the element in row   and column   is        , and the 

derivative is 

 

  
     

 
 
 
 
 
 
 
 
   

   

   

   
 

   

   

   

   

   

   
 

   

   

    
   

   

   

   
 

   

    
 
 
 
 
 
 
 

  (A-10) 

In particular, the derivative of a scalar field         is a column vector 

  

  
 

 
 
 
 
 
 
 
 
  

   

  

   

 
  

    
 
 
 
 
 
 
 

   (A-11) 

The linearization of   at    is
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    (A-12) 

If         is given by a linear transformation with     matrix  , 

         

          

          

    
          

  

  

  

 
  

  

 
 
 
 
 
    

      

    
      

 
    

       
 
 
 
 

 . (A-13) 

Then the derivative is the     matrix 

  

  
  

          

          

    
          

       (A-14) 

and                 , as expected. 

                   

          

          

    
          

  

 
 
 
 
    

      

    
      

 
    

       
 
 
 
 . (A-15) 

Then the derivative is the     matrix 

  

  
  

          

          

    
          

     (A-16) 

So derivatives of inner products and (squared) norms are 

 

  
      

 

  
          (A-17) 

 

  
                     

 

  
             (A-18) 

 

  
          (A-19) 
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           (A-20) 

and  

 

  
      

 
              (A-21) 

Some second derivatives are 

  

    
        (A-22) 

and  

  

    
    

 
       (A-23) 

A.4  The Chain Rule 

If   itself is a function with        , write           for     . 

Then              and the elements of the     matrix 
  

  
 are 

   

   
  

   

   

   

   
  

    for 

        and        .  So, the derivative of   is 
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Thus follows the chain rule for vector fields 

 

 

  
        

 

  
     

 

  
             (A-25) 

 

In particular, with       and          , then  
  

  
   and 

 

  
        

 

  
     

        

  

.   

 

Simply write 
  

  
 

  

  
 

  

  
 when   is a function of  , which is, in turn, a function of   and write 

  

  
  

  

  
 

  

, in general. 

 

For example, 

 

  
     

  
 

  
                           (A-26) 

and 

 

  
       

  
 

  
                                  (A-27) 
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Appendix B.  Multivariate Normal Distribution and Quadratic Forms 

B.1  Normal Distribution 

The vector 

   

  

 
  

  (B-1) 

has the multivariate normal distribution  

          , (B-2) 

with mean vector 

   

  

 
  

  (B-3) 

and covariance matrix 

   

       

   
       

  (B-4) 

when each    is normally distributed with mean    and variance     so that              and 

the    are related by               .  So,      and                       . 

The probability density function (pdf) of   is     , where 

                       
 

 
                      

 

 
      

   
    (B-5) 

In particular, the    are independent if   is a diagonal matrix.  If      where   is the identity 

matrix, then all    have the same variance  .  If    , then all    have unit variance.  If, 

additionally,    , then the    are independent standard normal       . 

For any  -vector  , 

   

  

 
  

  . (B-6) 

  has the translation property
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              . (B-7) 

For any linear transformation        , 

   
       

   
       

  , (B-8) 

the distribution of    is 

                (B-9) 

Useful conditions are that   is nonsingular (positive-definite) and that     and        , so 

that      is also nonsingular (positive-definite). 

B.2  The Quadratic Form 

Associated with each nondegenerate multivariate normal   is a standard quadratic form which 

has a central    distribution.  Any symmetric positive-definite square matrix   has a “square 

root”   which can be obtained through Choleski, singular value, or spectral decomposition 

where      .  Then the inverse       can be written as       where      .  Now 

if          , then             and                    .  Since 

             , it follows that          , and the elements of   are iid       , so 

   
 

 

   

       
   (B-10) 

which is chi-squared with   degrees of freedom.  In terms of matrices, 

            
 
                       

                             

 

 

(B-11) 

is the quadratic form associated with          .  It has the chi-squared distribution 

                     
  (B-12) 

with   degrees of freedom. 

There is also a noncentral quadratic form associated with  .  Suppose now that
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              (B-13) 

and let  

     
  

 
  

   (B-14) 

The    are independent normal        , and 

   
 

 

   

     
    (B-15) 

This is a noncentral chi-squared distribution with noncentrality parameter 

      
 

 

   

       
 

 

   

  (B-16) 

In the literature, the noncentrality parameter is variously considered to be   or     or   .   

Anyway, 

   
 

 

   

                                  (B-17) 

Furthermore, 

     
 

 

   

                        (B-18) 

So the noncentral quadratic form associated with           is 

                    
   (B-19) 

which has the noncentral chi-square distribution with   degrees of freedom and noncentrality 

parameter         . 

It is possible to combine transformations and quadratic forms.  Start with 

           (B-20) 

The transformed centered vector is
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                  , (B-21) 

and its quadratic form is 

                             
   (B-22) 

The transformed (uncentered) vector is 

               , (B-23) 

and its quadratic form is 

                 
             

  
  

  , 
(B-24) 

which is noncentral chi-square with   degreed of freedom and noncentrality parameter 

                   (B-25) 
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Appendix C.  Maximum Likelihood Estimator Distributions 

In general, the joint density (likelihood)   of a sample        
  depends on a k-dimensional 

parameter            , as 

              (C-1) 

The log likelihood is denoted       .  A maximum likelihood estimator    of   satisfies 

                        . (C-2) 

The     Fisher Information Matrix for the entire sample 

      
   

  
   

  

  
 

 

  (C-3) 

has inverse 

     
    (C-4) 

The asymptotic distribution of the MLE is 

                                  

             

 

(C-5) 

If the samples are independent, then the likelihood is 

         

 

   

   (C-6) 

Its logarithm is 

                 

 

   

   (C-7) 

and the derivative is
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 (C-8) 

The outer product is 

 
  

  
   

  

  
 

 

   
 

  
            

 

  
          

  

   

 

                                        
 

  
            

 

  
          

 

   

  

 

 

 

(C-9) 

As the samples are independent, the information matrix    is 

   
  

  
   

  

  
 

 

      
 

  
            

 

  
          

 

 

 

   

 

                                                        
 

  
               

 

  
          

 

 

   

   

 
 

 

(C-10) 

and since  

  
 

  
       

 

 

  

  
    

  

  
 

 

  
    

 

  
     (C-11) 

the information for the entire sample is 

      

 

   

   (C-12) 

where    is the information matrix for a single observation 

      
 

  
            

 

  
          

 

   (C-13) 

Furthermore, if the samples are identically distributed, then       , where
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   (C-14) 

In this case, with      
  , the variance is      

        
        , and for an iid 

sample, the result is the usual 

                                

                
 

(C-15) 

Now consider another parameterization  .  The chain rule gives 

 
  

  
 

  

  

  

  
   (C-16) 

 

so the information matrix transformation is 

 

      
  

  

  

  
   

  

  

  

  
 

 

  

 
  

  
   

  

  
   

  

  
 

 

 
  

  

 

 

 
  

  
  

  

  

 

   

 
 

 

 

 

 

(C-17) 

The chain rule also gives the inverse of a derivative matrix as the derivative of the inverse 

function, so 

  
    

  

  

 

 

  

  
   

  

  
 

  

  (C-18) 

 

and the corresponding variance transformation is 

 

   
  

  

 

  

  

  
   (C-19) 
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Appendix D.  The Linear Model 

D.1  The Basic Model  

The usual linear model is 

       , (D-1) 

where   is an     response,   is an     independent matrix,   is a     parameter, and the 

    error            .  So       and          .  Each column of   is a linear 

predictor, and the model is 

         

 

   

   

 

(D-2) 

One works with the  -parameter model for a single predictor   by choosing a set of fixed basis 

functions           and setting           . 

            

 

   

  (D-3) 

For example, choice of            gives the polynomial model 

            
         

     (D-4) 

(See equation B-5 in appendix B.)  Solution by least squares is equivalent to maximum 

likelihood for normal error, and the criterion is to choose   that minimizes            

         since       .  This is 

                     (D-5) 

The solution follows from setting the derivative to 0, 

  

  
                 (D-6) 

to obtain the normal equations
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         (D-7) 

with solution 

               (D-8) 

and response estimate 

     , (D-9) 

where the so-called hat matrix is 

               (D-10) 

Note that       and                . 

Modern software for linear least-squares estimation operates on equation D-7 through the 

response vector   and the design matrix  .  The normal equations are solved efficiently without 

inverting the design matrix, and software provides parameter estimates and diagnostics such as 

the parameter variance and hat matrix diagonal. 

D.2  The Weighted Model  

When the error is       , the correct inner product is weighted by the symmetric      , so 

           
         

 .  This is 

      
               

   (D-11) 

Then 

  

  
                  (D-12) 

The normal equation is 

          . (D-13) 

The solution is 

                 (D-14) 

and the response estimate is      , where
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              . (D-15) 

Note that       and                 

Modern software for linear least-squares estimation operates on equation D-13 through the 

response vector  , the weight vector  , and the design matrix  .  The normal equations are 

solved efficiently without inverting the design matrix, and software provides parameter estimates 

and diagnostics such as the parameter variance and hat matrix diagonal. 

Note that for these models, the likelihood function is 

                        
 

 
        

  . (D-16) 

Its log derivative is 

 

  
                   (D-17) 

and the information matrix is 

         (D-18) 
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Appendix E.  The Generalized Linear Model 

E.1  Model Formulation 

In the Generalized Linear Model (GLM), the response   has an arbitrary distribution,      is 

a linear function of the k-dimensional parameter  , and the mean response is modeled as 

              (E-1) 

for some monotone link function   with derivative     .  (Some authors call     the link.)  

Response distributions are taken to be from a single-parameter exponential family, with the form 

             
       

    
          (E-2) 

The parameter  is to be estimated, and   is a nuisance parameter. 

 

With       , calculate the moments of    in terms of exponential family components. 

  
 

  
            (E-3) 

because              , and under suitable regularity conditions,   
 

  
            

  
 

  
            

 

  
                   .  Therefore,                    , and 

                   (E-4) 

Also, as usual,  

   
 

  
         

 

     
  

   
           

because     
 

  
      

 

  
  

 

    
 

  
  

 

       
 

  
  

 

  
       

  
    

  

 

 

                                         
  

             
  

     . (E-5) 

 

Therefore,                                 , and
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                        , (E-6) 

where                             
  

  
. 

 

In the case that    , and hence            ,   is called the canonical link function.   

Then                   and                      . 

E.2  Estimation 

Let           , so the (column) vector    is row   of  ,      
  , and         .   

Maximum likelihood estimation for the GLM is accomplished by maximizing the log likelihood 

function 

             

 

   

   
          

    
         

 

   

  (E-7) 

This is a weighted least-squared problem where the design and weight depend on the unknown 

parameter, and it can be solved iteratively by the Newton-Raphson method. 

The Newton-Raphson Method 

In one dimension, a zero of    is obtained by linearizing and updating the current argument    to 

 , solving                      to get                  .  Optimize   by setting 

     , so the update is                    . 

The vector version is       
  

          
  

 

  
     .  Taking       , the increment 

       satisfies  
  

             
 

  
     .  Some derivatives are required. 

Gradient 

Differentiating gives the gradient (vector of first derivatives) 

     
  

  
                     

   

  

 

   

  (E-8) 

Since 
 

  
              

   

  
      

   

  
 and 

 

  
       

   

  
 

 

  
      

 

  
    

    

        , then
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    (E-9) 

So the gradient is 

                     
     

     
  

 

   

                (E-10) 

where, for        , the diagonal weight matrix   has elements                  , 

         
      

     
 

      

     
  , (E-11) 

and the centered/scaled response vector    has elements                  , 

    
     

     
 

     

     
   (E-12) 

Hessian 

Using 
 

  
            

 

  
    

               
    , 

  

    
   

                 
       

     
 

    
   (E-13) 

and the Hessian (matrix of second derivatives) is 

     
  

    
                   

   

  

   
 

  
        

  

    
   

 

   

 

           
     

 

     
        

                 
       

      
     

 

 

   

 

                                 , 

 

 

 

 

 

 

(E-14) 

where 

         , (E-15) 

and    is a diagonal matrix with diagonal elements
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  (E-16) 

Since        , the expected value of the Hessian is 

                     (E-17) 

The Fisher Information Matrix is 

     
 

  
  

 

  
       

  

    
                         (E-18) 

and the asymptotic estimator distribution is                         

Newton-Raphson 

Now, apply the Newton-Raphson algorithm iteratively to solve the optimization. 

For GLM, the Newton-Raphson update is       , where 

             

                

               
       

                

(E-19) 

with  

     
        (E-20) 

These are the normal equations for minimization of            

 .  Both    and    

depend on   .  The normal equations can be solved iteratively with an initial guess    by 

calculating      ,       ,  ,   ,  ,   ,   ,   ,   ,   , and   .  Then solve for  .  The 

updated solution is       .  Now replace    with  , and repeat.  This is iteratively 

reweighted least squares with Newton-Raphson update. 

Fisher Scoring 

For the GLM, the Fisher Scoring update uses    in place of   to get
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               and                , (E-21) 

which are the normal equations for            

 .  Both    and    depend on   .  The 

normal equations can be solved iteratively with an initial guess    by calculating      , 

      ,  ,  ,   , and   .  Then solve for  , update, and repeat.  This is iteratively reweighted 

least squares with Fisher scoring. 

E.3  Canonical Link 

For the canonical link,                 and                .  Also, since           

and             , it follows that           .  So Newton-Raphson and Fisher scoring 

are equivalent. 

E.4  Confidence Intervals 

Normal-approximation       confidence intervals on the mean response are given by 

                     , (E-22) 

where   is a standard normal quantile,   is the estimated parameter variance matrix, and   is a 

row of an   matrix corresponding to the desired level.  For the basis implementation, this is 

                   (E-23) 

E.5  Bernoulli Response 

Suppose the response         is Bernoulli with                    .  The 

Bernoulli probability is 

                        
 

   
          , (E-24) 

so    ,    , and there is no nuisance parameter.  Furthermore,                and 

           , and so                         .  Note that          

             and                            
 

         as expected. 

With     and       , the canonical link for Bernoulli response is seen to be the logistic cdf 

                .  Note that                 , so              and 

                      .  The resulting model is logistic regression, or the logit model. 

For an arbitrary link cdf  , take     ,        ,            , and           . 

Use of the standard normal cdf     with pdf     gives the probit model.
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Because the likelihood function is      
         

    , it follows that         for the 

Bernoulli model and the deviance is         . 

As an example, consider the usual two-parameter model with predictor           and response 

         .  The increment           is the solution of     , where 

        
        

          
                       

     

       
   (E-25) 

To do the Fisher update of section E.2, calculate the linear response           , mean 

        , derivative         , variance            , transformed response        

           , weight          
    , and weighted transformed response             

             . 

For the Newton-Raphson update,               
      

   
     

  and             and 

                         .  Then        and                   . 

For the canonical link              and                  . 

 



 

 

NO. OF  

COPIES ORGANIZATION  

 

 41 

 1 DEFENSE TECHNICAL 

 (PDF INFORMATION CTR 

 only) DTIC OCA 

  8725 JOHN J KINGMAN RD 

  STE 0944 

  FORT BELVOIR VA 22060-6218 

 

 1 DIRECTOR 

  US ARMY RESEARCH LAB 

  IMNE ALC HRR 

  2800 POWDER MILL RD 

  ADELPHI MD 20783-1197 

 

 1 DIRECTOR 

  US ARMY RESEARCH LAB 

  RDRL CIO LL 

  2800 POWDER MILL RD 

  ADELPHI MD 20783-1197 

              

  

 

 

 

 

 



 

 

NO. OF  

COPIES ORGANIZATION  

 

 42 

 1 USARL 

  RDRL SLE 

  R FLORES 

  WSMR NM 88002-5513 

 

ABERDEEN PROVING GROUND 

 

 1 DIR US ARMY EVALUATION CTR HQ 

  TEAE SV 

  P A THOMPSON   

  2202 ABERDEEN BLVD   2ND FL 

  APG MD 21005-5001 

 

 3 DIR USARL 

(2 HC RDRL SL 

1 PDF)  J BEILFUSS 

   P TANENBAUM 

  RDRL SLB A 

   M PERRY (PDF only) 

 



 

 

NO. OF  

COPIES ORGANIZATION  

 

 43 

 18 DIR USARL 

  RDRL SLB 

   R BOWEN 

  RDRL SLB D 

   J COLLINS (5 CPS) 

   J EDWARDS 

   R GROTE 

   T HOLDREN 

   R KINSLER 

   L MOSS 

   E SNYDER 

  RDRL SLB E 

   M MAHAFFEY 

  RDRL SLB G 

   P MERGLER 

  RDRL SLB S 

   S SNEAD 

  RDRL SLB W 

   L ROACH 

  RDRL WML A 

   A THOMPSON 

   D WEBB 

 



 

 44 

INTENTIONALLY LEFT BLANK. 


