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RT & REMRT
Shared Memory Parallel
and
Network Distributed
Ray-Tracing Programs

Michael John Muuss

Leader, Advanced Computer Systems Team
U. S. Army Ballistic Research Laboratory
Aberdeen Proving Ground
Maryland 21005-5066 USA

ABSTRACT

The ray-tracing procedure is ideal for execution in parallel, both in tightly coupled
shared-memory multiprocessors, as well as loosely coupled ensembles of comput-
ers. RT, the ray-tracer in the BRL CAD Package, takes advantage of both types
of parallelism, using different mechanisms. The presentation will start with a dis-
cussion of the structure of the ray-tracer, and the strategies used for operating on
shared-memory multiprocessors such as the Denelcor HEP, Alliant FX/8, and
Cray X-MP.

The strategies used for dividing the work among network connected loosely cou-
pled processors will be presented. This will include details of the dispatching algo-
rithm, the distribution protocol designed, and a brief description of the “‘package”
(PKG) protocol which carries the distribution protocol. The presentation will con-
clude by investigating the performance issues of this type of parallel processing,
including a set of measured speeds on a variety of hardware.

1. Raytracing Background

The objective of a model analysis application determines the most natural form in which the
model might be interrogated. For example, extracting just the edges of the objects in a model
would be suitable for a program attempting to construct a wire-frame display of the model. Appli-
cations also exist which need to be able to find the intersection between the paths of small objects
such as photons and the model. Interrogations such as these are motivated by a desire to simulate
physical processes, and each alternative is useful for a whole family of applications.

Most physical objects have a significant cross-sectional area. Mathematical rays, however,
have as their cross-section a point. Therefore, interrogating the model geometry with rays can
result in sampling inaccuracies. While recent research has begun to explore techniques for inter-
secting cylinders, cones,!-2 and planes with the model geometry,’ ray-tracing is by far the most
well developed approach. Fortunately, most applications can function well with approximate, sam-
pled data. Data with statistical validity can be obtained by sampling the model with an adequate
number of rays and computing the ray/geometry intersections. By choosing a ray sampling density
within the Nyquist limit, these applications are satisfied by extracting ray/geometry intersection
information, the well known *‘ray-tracing” algorithm. This approach is one of the easiest to imple-
ment, as the one-dimensional nature of a mathematical ray makes the intersection equations rela-
tively straightforward, even with combinatorial solid geometry (CSG) models.
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The origins of modern ray-tracing come from work at MAGI under contract to BRL, ini-
tiated in the early 1960s. The initial results were reported by MAGI4 in 1967. Extensions to the
early developments were undertaken by a DoD Joint Technical Coordinating Group effort, result-
ing in publications in 19705 and 1971.% A detailed presentation of the fundamental analysis and
implementation of the ray-tracing algorithm can be found in these two documents. They form an
excellent and thorough review of the principles of ray-tracing and solid modeling.

More recently, interest in ray-tracing developed in the academic community, with Kay’s’
thesis in 1979 being a notable early work. One of the central papers in the ray-tracing literature is
the work of Whitted.® Model sampling techniques can be improved to provide substantially more
realistic images by using the “Distributed Ray Tracing” strategy.? For an excellent, concise discus-
sion of ray-tracing, consult pages 363-381 of Rogers.!?

There are several implementation strategies for interrogating the model by computing
ray/geometry intersections. The traditional approach has been batch-oriented, with the user defin-
ing a set of “viewing angles”, turning loose a big batch job to compute all the ray intersections,
and then post-processing all the ray data into some meaningful form. However, the major draw-
back of this approach is that the application has no dynamic control over ray paths, making
another batch run necessary for each level of reflection, etc.

In order to be successful, applications need: (1) dynamic control of ray paths, to naturally
implement reflection, refraction, and fragmentation into multiple subsidiary rays, and (2) the abil-
ity to fire rays in arbitrary directions from arbitrary points. Nearly all non-batch ray-tracing
implementations have a specific closely coupled application (typically a model of illumination),
which allows efficient and effective control of the ray paths. However, the most flexible approach
is to implement the ray-tracing capability as a general-purpose library, to make the functionality
available to any application as needed. This is the approach taken in the BRL CAD Package,!! a
large modeling and analysis system based primarily on the ray-tracing of CSG solid models. The
ray-tracing library is called librt, while the ray-tracing application of interest here (an optical spec-
trum lighting model) is called RT. This software is available from the author at no charge on a
non-redistribution basis.

2. The Structure of librt

In order to give all applications dynamic control over the ray paths, and to allow the rays to
be fired in arbitrary directions from arbitrary points, BRL has implemented its second generation
ray-tracing capability as a set of library routines. Librt exists to allow application programs to
intersect rays with model geometry. There are four parts to the interface: three preparation rou-
tines and the actual ray-tracing routine. The first routine which must be called is rt_dirbuild(),
which opens the database file, and builds the in-core database table of contents. The second rou-
tine to be called is rt_gettree(), which adds a database sub-tree to the active model space.

rt_gettree() can be called multiple times to load different parts of the database into the active

model space. The third routine is rt_prep(), which computes the space partitioning data structures
and does other initialization chores. Calling this routine is optional, as it will be called by
rt_shootray() if needed. rt_prep() is provided as a separate routine to allow independent timing of
the preparation and ray-tracing phases of applications.

To compute the intersection of a ray with the geometry in the active model space, the appli-
cation must call rt_shootray() once for each ray. Ray-path selection for perspective, reflection,
refraction, etc, is entirely determined by the application program. The only parameter to the
rt_shootray() is a librt “application” structure, which contains five major elements: the vector
a_ray.r_pt'(l_s) which is the starting point of the ray to be fired, the vector a_ray.r_dir (D) which is
the unit-length direction vector of the ray, the pointer *a_hit() which is the address of an
application-provided routine to call when the ray intersects the model geometry, the pointer
*a_miss() which is the address of an application-provided routine to call when the ray does not hit
any geometry, the flag a_onehit which is set non-zero to stop ray-tracing as soon as the ray has
intersected at least one piece of geometry (useful for lighting models), plus various locations for
each application to store state (recursion level, colors, etc). Note that the integer returned from the
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application-provided a_hit()/a_miss() routine is the formal return of the function rt_shootray(). The
rt_shootray() function is prepared for full recursion so that the a_hit()/a_miss() routines can them-
selves fire additional rays by calling rt_shootray() recursively before deciding their own return
value.

In addition, the function rt_shootray() is serially and concurrently reentrant, using only regis-
ters, local variables allocated on the stack, and dynamic memory allocated with rt_malloc(). The
rt_malloc() function serializes calls to malloc(3). By having the ray-tracing library fully prepared
to run in parallel with other instances of itself in the same address space, applications may take full
advantage of parallel hardware capabilities, where such capabilities exist.

3. A Sample Ray-Tracing Program

A simple application program that fires one ray at a model and prints the result is included
below, to demonstrate the simplicity of the interface to librt.

#include <brlcad/raytrace.h>

struct application ap;

main() {
rt_dirbuild("model.g");
rt_gettree("car");
rt_prep();
ap.a_point = [ 100, 0, 0 ];
ap.a_dir=1[-1,0,01];
ap.a_hit &hit_geom;
ap.a_miss = &miss_geom,;
ap.a_onehit = 1;
rt_shootray( &ap );

}

hit_geom(app, part)
struct application *app;
struct partition *part;

{
printf("Hit %s", part->pt_forw->pt_regionp->reg_name);
}
miss_geom(){
printf("Missed");
}

4. Normal Operation: Serial Execution

When running the RT program on a serial processor, the code of interest is the top of the
subroutine hierarchy. The function main() first calls get_args() to parse any command line
options, then calls rt_dirbuild() to acquaint librt with the model database, and view_init() to initial-
ize the application (in this case a lighting model, which may call mlib_init() to initialize the
material-property library). Finally, rt_gettree() is called repeatedly to load the model treetops.
For each frame to be produced, the viewing parameters are processed, and do_frame() is called.

Within do_frame(), per-frame initialization is handled by calling rt_prep(), mlib_setup(),
grid_setup(), and view_2init(). Then, do_run() is called with the linear pixel indices of the start
and end locations in the image; typically these values are 0 and width*length-1, except for the
ensemble computer case. In the non-parallel cases, the do_run() routine initializes the global vari-
ables cur_pixel and last_pixel, and calls worker(). At the end of the frame, view_end() is called to
handle any final output, and print some statistics. '

The worker() routine obtains the index of the next pixel that needs to be computed by incre-
menting cur_pixel, and calls rt_shootray() to interrogate the model geometry. view_pixel() is
called to output the results for that pixel. worker() loops, computing one pixel at a time, until

——
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cur_pixel > last_pixel, after which it returns.

When rt_shootray() hits some geometry, it calls the a_hit() routine listed in the application
structure to determine the final color of the pixel. In this case, colorview() is called. colorview()
uses view_shade() to do the actual computation. Depending on the properties of the material hit
and the stack of.shaders that are being used, various material-specific renderers may be called, fol-
lowed by a call to rr_render() if reflection or refraction is needed. Any of these routines may
spawn multiple rays, and/or recurse on colorview().

5. The Need for Speed

Images created using ray-tracing have a reputation for consuming large quantities of com-
puter time. For complex models, 10 to 20 hours of processor time to render a single frame on a
DEC VAX-11/780 class machine is not uncommon. Using the ray-tracing paradigm for engineer-
ing analysis!2 often requires many times more processing than rendering a view of the model.
Examples of such engineering analyses include the predictive calculation of radar cross-sections,
heat flow, and bi-static laser reflectivity. For models of real-world geometry, running these ana-
lyses aproaches the limits of practical execution times, even with modern supercomputers.

There are three main strategies that are being employed to attempt to decrease the amount of
elapsed time it takes to ray-trace a particular scene.

1) Advances in algorithms for ray-tracing. Newer techniques in partitioning space!3 and in tak-
ing advantage of ray-to-ray coherence'# promise to continue to yield algorithms that do fewer
and fewer ray/object intersections which do not contribute to the final results. Significant
work remains to be done in this area, and an order of magnitude performance gain remains
to be realized. However, there is a limit to the gains that can be made in this area.

2)  Acquiring faster processors. A trivial method for decreasing the elapsed time to run a pro-
gram is to purchase a faster computer. However, even the fastest general-purpose computers
such as the Cray X-MP and Cray-2 do not execute fast enough to permit practical analysis of
all real-world models in appropriate detail. Furthermore, the speed of light provides an upper
bound on the fastest computer that can be built out of modern integrated circuits; this is
already a significant factor in the Cray X-MP and Cray-2 processors, which operate with 8.5
ns and 4.5 ns clock periods respectively.

3)  Using multiple processors to solve a single problem. By engaging the resources of multiple
processors to work on a single problem, the speed-of-light limit can be circumvented. How-
ever, the price is that explicit attention must be paid to the distribution of data to the various
processors, synchronization of the computations, and collection of the results.

For now, there are few general techniques for taking programs intended for serial operation
on a single processor, and automatically adapting them for operation on multiple processors.!5 The
Worm program developed at Xerox PARC!® is one of the earliest known network image-rendering
applications. More recently at Xerox PARC, Frank Crow has attempted to distribute the render-
ing of a single image across multiple processors,!” but discovered that communication overhead
and synchronization problems limited parallelism to about 30% of the available processing power.
A good summary of work to date has been collected by Peterson.!8

Ray-tracing analysis of a model has the very nice property that the computations for each
ray/model intersection are entirely independent of other ray/model intersection calculations.
Therefore, it is easy to see how the calculations for each ray can be performed by separate,
independent processors. The underlying assumption is that each processor has read-only access to
the entire model database. While it would be possible to partition the ray-tracing algorithm in
such a way as to require only a portion of the model database being resident in each processor, this
would significantly increase the complexity of the implementation as well as the amount of syn-
chronization and control traffic needed. Such a partitioning has therefore not yet been seriously
attempted.

It is the purpose of the research reported in this paper to explore the performance limits of
parallel operation of ray-tracing algorithms where available processor memory is not a limitation.
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While it is not expected that this research will result in a general purpose technique for distributing
arbitrary programs across multiple processors, the issues of the control and distribution of work
and providing reliable results in a potentially unreliable system are quite general. The techniques
used here are likely to be applicable to a large set of other applications.

6. Parallel Operation on Shared-Memory Machines

By capitalizing on the serial and concurrent reentrancy of the librt routines, it is very easy to
take advantage of shared memory machines where it is possible to initiate multiple ‘‘streams of
execution” within the address space of a single process. In order to be able to ensure that global
variables are only manipulated by one instruction stream at a time, all such shared modifications
are enclosed in critical sections. For each type of processor, it is necessary to implement the rou-
tines RES_ACQUIRE() and RES_RELEASE() to provide system-wide semaphore operations.
When a processor acquires a resource, and any other processors need that same resource, they will
wait until it is released, at which time exactly one of the waiting processors will then acquire the
resource. -

In order to minimize contention between processors over the critical sections of code, all crit-
ical sections are kept as short as possible: typically only a few lines of code. Furthermore, there
are different semaphores for each type of resource accessed in critical sections. res_syscall is used
to interlock all UNIX system calls and some library routines, such as write(), malloc(), printf(),
etc. res_worker is used by the function worker() to serialize access to the variable cur_pixel, which
contains the index of the next pixel to be computed. res_results is used by the function view_pixel
to serialize access to the result buffer. This is necessary because few processors have hardware
multi-processor interlocking on byte operations within the same word. res_model is used by the
spline library (libspl) routines to serialize operations which cause the model to be further refined
during the raytracing process, so that data structures remain consistent.

Application of the usual client-server model of computing would suggest that one stream of
execution would be dedicated to dispatching the next task, while the rest of the streams of execu-
tion would be used for ray-tracing computations. However, in this case, the dispatching operation
is trivial and a ‘‘self-dispatching’ algorithm is used, with a critical section used to protect the
shared variable cur_pixel. The real purpose of the function do_run() is to perform whatever
machine-specific operation is required to initiate npsw streams of execution within the address
space of the RT program, and then to have each stream call the function worker(), each with
appropriate local stack space.

Each worker() function will loop until no more pixels remain, taking the next available pixel
index. For each pass through the loop, RES_ACQUIRE(res_worker) will be used to acquire the
semaphore, after which the index of the next pixel to be computed, cur_pixel, will be acquired and
incremented, and before the semaphore is released, ie, )

worker() {
while(1) {
RES_ACQUIRE( &rt_g.res_worker );
my_index = cur_pixel+ +;
RES_RELEASE( &rt_g.res_worker );
if( my_index > last_pixel )
break;
a.a_x = my_index%width;
a.a_y = my_index/width;
...compute ray pararﬁeters...
rt_shootray( &a ):

}

* UNIX is a trademark of Bell Labs.
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On the Denelcor HEP H-1000 each word of memory has a full/empty tag bit in addition to 64
data bits. RES_ACQUIRE is implemented using the Daread() primitive, which uses the hardware
capability to wait until the semaphore word is full, then read it, and mark it as empty.
RES_RELEASE is implemented using the Daset() primitive, which marks the word as full.
do_run() starts additional streams of execution using the Dcreate(worker) primitive, which creates
another stream which immediately calls the worker() function.

On the Alliant FX/8, RES_ACQUIRE is implemented using the hardware instruction test-
and-set (TAS) which tests a location for being zero. If the location is zero, it atomically sets it
non-zero and sets the condition codes appropriately. RES_ACQUIRE embeds this test-and-set
instruction in a polling loop to wait for acquisition of the resource. RES_RELEASE just zeros the
semaphore word. Parallel execution is achieved by using the hardware capability to spread a loop
across multiple processors, so a simple loop from 0 to 7 which calls worker() is executed in
hardware concurrent mode. Each concurrent instance of worker() is given a separate stack area in
the ‘“‘cactus stack”.

On the Cray X-MP and Cray-2, the Cray multi-tasking library is used. RES_ACQUIRE
maps into LOCKON, and RES_RELEASE maps into LOCKOFF, while do_run() just calls
TSKSTART(worker) to obtain extra workers.

7. Distributed Operation on Loosely-Coupled Ensembles

7.1. Assumptions

The basic assumption of this design is that network bandwidth is modest, so that the number
of bytes and packets of overhead should not exceed the number of bytes and packets of results.
The natural implementation would be to provide a remote procedure call (RPC) interface to
rt_shootray(), so that when additional subsidiary rays are needed, more processors could poten-
tially be utilized. However, measurements of this approach on VAX, Gould, and Alliant comput-
ers indicates that the system-call and communications overhead is comparable to the processing
time for one ray/model intersection calculation. This much overhead rules out the RPC-per-ray
interface for practical implementations. On some tightly coupled ensemble computers, there might
be little penalty for such an approach, but in general, some larger unit of work must be exchanged.

It was not the intention of the author to develop another protocol for remote file access, so
the issue of distributing the model database to the RTSRV server machines is handled outside of
the context of the REMRT/RTSRYV software. In decreasing order of preference, the methods for
model database distribution that are currently used are Sun NFS, Berkeley RDIST, Berkeley RCP,
and ordinary DARPA FTP. Note that the binary databases need to be converted to a portable for-
mat before they are transmitted across the network, because RTSRV runs on a wide variety of pro-
cessor types. Except for the model databases and the executable code of the RTSRV server pro-
cess itself, no file storage is used on any of the server machines.

7.2. Distribution of Work

The approach used in REMRT involves a single dispatcher process, which communicates
with an arbitrary number of server processes. Work is assigned in groups of scanlines. As each
server finishes a scanline, the results are sent back to the dispatcher, where they are stored. Com-
pleted scanlines are removed from the list of scanlines to be done and from the list of scanlines
currently assigned to that server. Different servers may be working on entirely different frames.
Before a server is assigned scanlines from a new frame, it is sent a new set of options and
viewpoint information.

The underlying communications layer used in the current implementation is the package
(PKG) protocol, from the libpkg library. The PKG protocol is layered on top of the DARPA
Transmission Control Protocol (TCP), so that all communications are known to be reliable, and
communication disruptions are noticed. Whenever the dispatcher is notified by the libpkg routines
that contact with a server has been lost, all unfinished scanlines assigned to that server will be
requeued at the head of the “work to do” queue, so that it will be assigned to the very next
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available server, allowing tardy scanlines to be finished quickly.

7.3. Distribution Protocol

When a server process RTSRV is started, the host name of the machine running the
dispatcher process is given as a command line argument. The server process can be started from a
command in the dispatcher REMRT, which uses system(3) to run the RSH program, or directly via
some other mechanism. This avoids the need to register the RTSRV program as a system network
daemon and transfers issues of access control, permissions, and accounting onto other, more
appropriate tools. Initially, the RTSRV server initiates a PKG connection to the dispatcher process
and then enters a loop reading commands from the dispatcher. Some commands generate no
response at all, some generate one response message, and some generate multiple response mes-
sages. However, note that the server does not expect to receive any additional messages from the
dispatcher until after it has finished processing a request, so that requests do not have to be buf-
fered in the server. While this simplifies the code, it has some performance implications, which
are discussed later.

In the first stage, the message received must be of type MSG_START, with string parameters
specifying the pathname of the model database and the names of the desired treetops. If all goes
well, the server responds with a MSG_START message, otherwise diagnostics are returned as
string parameters to a MSG_PRINT message and the server exits.

In the second stage, the message received must be of type MSG_OPTIONS or
MSG_MATRIX. MSG_OPTIONS specifies the image size and shape, hypersampling, stereo view-
ing, perspective -vs- ortho view, and control of randomization effects (the ‘‘benchmark’ flag),
using the familiar UNIX command line option format. MSG_MATRIX contains the 16 ASCII
floating point numbers for the 4x4 homogeneous transformation matrix which represents the
desired view.

In the third stage, the server waits for messages of type MSG_LINES, which specify the
starting and ending scanline to be processed. As each scanline is completed, it is immediately sent
back to the dispatcher process to minimize the amount of computation that could be lost in case of
server failure or communications outage. Each scanline is returned in a message of type
MSG_PIXELS. The first two bytes of that message contain the scanline number in binary, least
significant byte first. Following that is the 3*width bytes of RGB data that represents the scanline.
When all the scanlines specified in the MSG_LINES command are processed, the server again
waits for another message, either another MSG_LINES  command or a
MSG_OPTIONS/MSG_MATRIX command to specify a new view.

At any time, a MSG_RESTART message can be received by the server, which indicates that
it should close all it’s files and immediately re-exec(2) itself, either to prepare for processing an
entirely new model, or as an error recovery aid. A MSG_LOGLVL message can be received at
any time, to enable and disable the issuing of MSG_PRINT output. A MSG_END message sug-
gests that the server should commit suicide, courteously.

7.4. Dispatching Algorithm

The dispatching (scheduling) algorithm revolves around two main lists, the first being a list
of currently connected servers and the second being a list of frames still to be done. For each
unfinished frame, a list of scanlines remaining to be done is also maintained. For each server, a
list of the currently assigned scanlines is kept. Whenever a server returns a scanline, it is removed
from the list of scanlines assigned to that server, stored in the output image, and also in the
optional attached framebuffer. (It can be quite entertaining to watch the scanlines racing up the
screen, especially when using processors of significantly different speeds). If the arrival of this
scanline completes a frame. then the frame is written to disk on the dispatcher machine, timing
data is computed, and that frame is removed from the list of work to be done.

When a server finishes the last scanline of its assignment and more work remains to be done,
the list of unfinished frames is searched and the next available increment of work is assigned.
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Work is assigned in blocks of consecutive scanlines, up to a per-server maximum assignment size.
The block of scanlines is recorded as the server’s new assignment and is removed from the list of
work to be done.

7.5. Reliability Issues

If the libpkg communications layer looses contact with a server machine, or if REMRT is
manually told to drop a server, then the scanlines remaining in the assignment are requeued at the
head of the list of scanlines remaining for that frame. They are placed at the head of the list so
that the first available server will finish the tardy work, even if it had gone ahead to work on a
subsequent frame.

Presently, adding and dropping server machines is a manual (or script driven) operation. It
would be desirable to develop a separate machine-independent network mechanism that REMRT
could use to inquire about the current loading and availability of server machines, so that periodic
status requests could be made and automatic reacquisition of eligible server machines could be
attempted. Peterson’s Distrib!8 System incorporates this as a built-in part of the distributed com- 1
puting framework, but it seems that using an independent transaction-based facility such as
Pistritto’s Host Monitoring Protocol (HMP) facility!® would be a more general solution. i

If the dispatcher fails, all frames that have not been completed are lost; on restart, execution
resumes at the beginning of the first uncompleted frame. By carefully choosing a machine that has
excellent reliability to run the dispatcher on, the issue of dispatcher failure can be largely avoided.
However, typically no more than two frames will be lost, minimizing the impact. For frames that ‘
take extremely long times to compute, it would be reasonable extend the dispatcher to snapshot the i
work queues and partially assembled frames in a disk file, to permit operation to resume from the
last *‘checkpoint”.

7.6. PKG Protocol

The “‘package” (PKG) protocol is layered on top of a virtual circuit provided by the native
operating system, and insulates programmer frﬁn the networking details. The PKG protocol
allows exchange of messages of any size (up to 27 "-1 bytes), with automatic allocation of sufficient
dynamic memory on the receiving end, and supports a mix of synchronous and asynchronous mes-
sage paradigms.

Typically, PKG is layered on top of a TCP connection, although PKG has also been run over
DECNET and X.25. While multiple PKG connections per process are supported; only the
dispatcher processes makes use of this feature in this application. When using TCP, the TCP
option SO_KEEPALIVE is enabled so that all communications failures and remote system failures
will be noticed by the TCP layer after an appropriate time interval, avoiding the need for
application-level timeouts. Libpkg handles the incremental aggregation of received data into full
messages. The Berkeley UNIX select(3) system call provides the ability to easily handle asynchro-
nous communications traffic on multiple connections.

libpkg Routines ‘

pkg_open Open net conn to host I

pkg_permserver Be permanant server, and listen ‘ﬂ

pkg_transerver Be transient server, and listen I

pkg_getclient Server: accept new connection !
| pkg_close Close net connection ' ’
| pkg_send Send message

pkg_waitfor Get specific msg, do others

pkg_bwaitfor Get specific msg, user buffer

pkg_get Read bytes, assembling msg

pkg_block Wait for full msg to be read
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8. Performance Measurements

An important part of the BRL CAD Package is a set of four benchmark model databases and
associated viewing parameters, which permit the relative performance of different computers and
configurations to be made using a significant production program as the basis of comparison. For
the purposes of this paper, just the "Moss" database will be used for comparison. Since this bench-
mark generates pixels the fastest, it will place the greatest demands on any parallel processing
scheme. The benchmark image is computed at 512x512 resolution.

8.1. Shared-Memory Performance

The relative performance figures for running RT in the parallel mode with Release 1.20 of
the BRL CAD Package are presented below. The Alliant FX/8 machine was brl-vector.arpa, con-
figured with 8 Computational Elements (CEs), 6 68012 Interactive Processors (IPs), 32 Mbytes of
main memory, and was running Concentrix 2.0, a port of 4.2 BSD UNIX. The Cray X-MP/48
machine was brl-patton.arpa, serial number 213, with 4 processors, 8 Mwords of main memory,
with a clock period of 8.5 ns, and UNICOS 2.0, a port of System V UNIX. Unfortunately, no
comprehensive results are available for the Denelcor HEP, the only other parallel computer known
to have run this code.

Parallel RT Speedup -vs- # of Processors
# Processors 1 2 3 4 5 6 7 8
Alliant FX/8 1.00 1.84 2.79 3.68 4.80 5.70 6.50 7.46
(efficiency) 100% 92.0% 93.0% 92.0% 96.0% 95.0% 92.9% 93.3%
Cray X-MP/48 1.00 1.99 2.96 3.86
(efficiency) 100% 9.5% 98.7% 96.5%

The multiple-processor performance of RT increases nearly linearly for shared memory
machines with small collections of processors. The slight speedup of the Alliant when the fifth
processor is added comes from the fact that the first four processors share one cache memory,
while the second four share a second cache memory. To date, RT holds the record for the best
achieved speedup for parallel processing on both the Cray X-MP/48 and the Alliant. Measure-
ments on the HEP, before it was dismantled, indicated that near-linear improvements continued
through 128 streams of execution. This performance is due to the fact that the critical sections are
very small, typically just a few lines of code, and that they account for an insignificant portion of
the computation time. When RT is run in parallel and the number of processors is increased, the
limit to overall performance will be determined by the total bandwidth of the shared memory, and
by memory conflicts over popular regions of code and data.

8.2. Distributed REMRT Performance

Ten identical Sun-3/50 systems were used to test the performance of REMRT. All had 68881
floating point units and 4 Mbytes of memory, and all were in normal timesharing mode, unused
except for running the tests and the slight overhead imposed by /etc/update, rwhod, etc. To pro-
vide a baseline performance figure for comparison, the benchmark image was computed in the nor-
mal way using RT, to avoid any overhead which might be introduced by REMRT. The elapsed
time to execute the ray-tracing portion of the benchmark was 2639 seconds; the preparation phase
was not included, but amounted to only a few seconds.
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REMRT Speedup -vs- # of Processors
Ratios Elapsed Seconds
# CPUs  Theory  Sun-3/50 | Theory Sun-3/50 | Total Speedup Efficiency
1 1.0000 1.0072 2639.0 2658 0.993 99.3%
2 0.5000 0.5119 1319.5 1351 1.953 97.7%
3 0.3333 0.3357 879.6 886 2.979 99.3%
E 0.2500 0.2524 659.7 666 3.949 98.7%
5 0.2000 0 2027 527.8 535 4.916 98.3%
6 0.1666 0.1686 429.8 445 5.910 98.5%
f 0.1429 0.1470 377.0 388 6.778 96.8%
8 0.1250 0.1266 329.9 334 7.874 98.4%
9 0.1111 0.1133 293.2 299 8.796 97.7%
10 0.1000 0.1019 263.9 269 9.777 97.8%

The “‘speedup’” figure of 0.993 for 1 CPU shows the loss of performance of 0.7% introduced
by the overhead of the REMRT/RTSRV communications, versus the non-distributed RT perfor-
mance figure. The primary result of note is that the speedup of the REMRT network distributed
application is very close to the theoretical maximum speedup, with a total efficiency of 97.8% for
the ten Sun case! The very slight loss of performance noticed (2.23%) is due mostly to ‘“‘new
assignment latency”, discussed further below. Even so, it is worth noting that the speedup
achieved by adding processors with REMRT was even better than the performance achieved by
adding processors in parallel mode with RT. This effect is due mostly to the lack of memory and
semaphore contention between the REMRT machines.

Unfortunately, time did not permit configuring and testing multiple Alliants running RTSRV
in full parallel mode, although such operation is supported by RTSRV.

When REMRT is actually being used for producing images, many different types of proces-
sors can be used together. The aggregate performance of all the available machines on a campus
network is truly awesome, especially when a Cray or two is included! Even in this case, the net-
work bandwidth required does not exceed the capacity of an Ethernet (yet). The bandwidth
requirements are sufficiently small that it is practical to run many RTSRV processes distributed
over the ARPANET/MILNET. On one such occasion in early 1986, 13 Gould PN9080 machmes
were used all over the east coast to finish some images for a publication deadline.” =~

9. Performance Issues

The policy of making work assignments in terms of multiple adjacent scanlines reduces the
processing requirements of the dispatcher and also improves the efficiency of the servers. As a
server finishes a scanline, it can give the scanline to the local operating system to send to the
dispatcher machine, while the server continues with the computation, allowing the transmission to
be overlapped with more computation. When gateways and wide-area networks are involved (with
their accompanying increase in latency and packet loss), this is an important consideration. In the
current implementation, assignments are always blocks of three scanlines because there is no gen-
eral way for the RTSRV process to know what kind of machine it is running on and how fast it is
likely to go. Clearly, it would be worthwhile to assign larger blocks of scanlines to the faster pro-
cessors so as to minimize idle time and control traffic overhead. Seemingly the best way to deter-
mine this would be to measure the rate of scanline completion and dynamically adjust the alloca-
tion size. This is not currently implemented.

By increasing the scanline block assignment size for the faster processors, the amount of time
the server spends waiting for a new assignment (termed ‘“‘new assignment latency’’) will be dimin-
ished, but not eliminated. Because the current design assumes that the server will not receive
another request until the previous request has been: fully processed, no easy solution exists.
Extending the server implementation to buffer at least one additional request would permit this
limitation to be overcome, and the dispatcher would then have the option of sending a second
assignment before the first one had completed, to always keep the server *‘pipeline”” full. For the

Fourth USENIX Computer Graphics Workshop

95




case of very large numbers of servers, this pipelining will be important to keep delays in the
dispatcher from affecting performance. In the case of very fast servers, pipelining will be important
in achieving maximum server utilization, by overcoming network and dispatcher delays.

To obtain an advantage from the pipeline effect of the multiple scanline work assignments, it
is important that the network implementations in both the servers and the dispatcher have adequate
buffering to hold an entire scanline (typically 3K bytes). For the dispatcher, it is a good idea to
increase the default TCP receive space (and thus the receive window size) from 4K bytes to 16K
bytes. For the server machines, it is a good idea to increase the default TCP transmit space from
4K bytes to 16K bytes. This can be accomplished by modifying the file /sys/netinet/tcp_usrreq.c to
read:

int tcp_sendspace = 1024*16;
int tcp_recvspace = 1024*16;

or to make suitable modifications to the binary image of your kernel using adb(1):

adb -w -k /vmunix
tcp_sendspace?W 0x4000
tcp_recvspace?W 0x4000

The dispatcher process must maintain an active network connection to each of the server
machines. In all systems there is some limit to the number of open files that a single process may
use (symbol NOFILE); in 4.3 BSD UNIX, the limit is 64 open files. For the current implementa-
tion, this places an upper bound on the number of servers that can be used. As many campus net-
works have more than 64 machines available at night, it would be nice if this limit could be eased.
One approach is to increase the limit on the dispatcher machine. Another approach is to imple-
ment a special ‘‘relay server’ to act as a fan-in/fan-out mechanism, although the additional latency
could get to be an issue. A third approach is to partition the problem at a higher level. For exam-
ple, having the east campus do the beginning of a movie, and the west campus do the end would
reduce the open file problem. Additionally, if gateways are involved, partitioning the problem
may be kinder to your campus network.

10. Conclusions
Parallel computing is good.

When operation in a shared memory parallel environment is an initial design goal, imple-
menting concurrently reentrant code does not significantly increase the complexity of the software.
Having such code allows direct utilization of nearly any shared memory multiprocessor with a
minimum of system-specific support, namely the RES_ACQUIRE and RES_RELEASE semaphore
operations, and some mechanism for starting multiple streams of execution within the same address
space.

Network distributed computing need not be inefficient or difficult. The protocol and
dispatching mechanism described in the preceding sections has been shown to be very effective at
taking the computationally intensive task of generating ray-traced images and distributing it across
multiple processors connected only by a communications network. There are a significant number
of other application programs that could directly utilize the techniques and control software imple-
mented in REMRT to achieve network distributed operation. However, the development and
operation of this type of program is still a research effort; the technology is not properly packaged
for widespread, everyday use. Furthermore, it is clear that the techniques used in REMRT are not
sufficiently general to be-applied to all scientific problems. In particular, problems where each
“cell’”” has dependencies on some or all of the neighboring cells will require different techniques.

Massive proliferation of computers is a trend that is likely to continue through the 1980s into
the 1990s and beyond. Developing software to utilize significant numbers of network connected
processors is the coming challenge. This paper has presented a strategy that meets this challenge,
and provides a simple, powerful, and efficient method for distributing a significant family of scien-
tific analysis codes across multiple computers.

—
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