Visual Analytics for Exploration of a High-Dimensional Structure

by Andrew M. Neiderer
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.
Visual Analytics for Exploration of a High-Dimensional Structure

Andrew M. Neiderer
Computational and Information Sciences Directorate, ARL
This report is about a stage of the knowledge discovery in databases (KDD) process used to find possible patterns in high-dimensional data (HDD): data distributed in the form of a geometrical locus (or object) in HDD space or data close to some manifold. The emphasis is on data mining for exploratory data analytics of the HDD and dimensionality reduction by feature selection/extraction, which is necessary for a two- or three-dimensional representation of the HDD for exploratory visual analytics. Such a description allows us to navigate and interact with the data.
Contents

List of Figures iv
List of Tables iv

1. Introduction 1

2. Dimensionality Reduction for Data Visualization 3
 2.1 Feature Selection ... 3
 2.2 Feature Extraction ... 4

3. Exploratory Visual Analytics 7

4. Conclusions and Future Work 8

5. References 9

List of Symbols, Abbreviations, and Acronyms 10

Distribution List 11
List of Figures

Figure 1. KDD process for terrorist data. ...2
Figure 2. Some FEs for HDD and timeline...5
Figure 3. Comparison of Euclidean vs. geodesic distance. LDRs use metrics based on the
Euclidean distance between two points, while the NLDRs are based on geodesic distance.
An NLDR successfully unrolls the curved manifold, whereas an LDR fails.6
Figure 4. WEKA GUI for data mining HDD using FRFS-ACO...............................7

List of Tables

Table 1. An example data table from Jensen and Shen. ...3
Table 2. Reduced data set for table 1. ...4
1. Introduction

The U.S. Army Research Laboratory is using a knowledge discovery in databases (KDD) approach to find patterns and structure, if any, in documentation (intelligence reports, news articles, etc.) concerning terrorist-related events (see figure 1). The intent is to expedite the KDD process for such activity so that it can be disrupted or thwarted. Sometimes there are indicators, but often the relevant information is buried within a massive amount of other data. High-dimensional data (HDD) may increase the chances of an incorrect pattern. This so-called “curse of dimensionality” may include anomalies in the raw data caused by (1) sensor malfunction in extreme environmental conditions or (2) errors resulting from computer program code, such as the floor function approximation. And then there is the challenge of possible multilingual data mining under a time constraint. All of these, and more, are reasons why anticipating a terrorist event is an extremely difficult task.

This report addresses the stage in the KDD process from dimensionality reduction (DR) to interpretation—namely, feature selection (FS), feature extraction (FE), and data-mining methods. The approach used here involves transforming unstructured text, such as that from the Global Terrorism Database (1), and is very HDD, to a two- or three-dimensional (2-D/3-D) data representation suitable for visual analytics (VA) application. Exploratory data analytics (EDA), which is closely related to the field of data mining, is used to discover knowledge in the data.

The next section describes how an EDA problem in HDD space becomes an exploratory visual analytics (EVA) one in 2-D/3-D Euclidean space—when a point set embedded in a high-dimensional geometric space is transformed to a visually based distribution shape or structure. To our knowledge, successive application of FS (section 2.1) prior to FE (section 2.2) has not been considered, and thus the usefulness is still being evaluated. FS is semantic-preserving, while FE destroys semantics but allows us to examine the underlying relationships in the data even though the meaning of the variables is lost. The assumption here is that humans most effectively understand HDD as 2-D/3-D objects/structure in Euclidean space (2).

Section 3 discusses EVA, which allows for 3-D geometric manipulation of the data. For a 2-D view, affine transformation(s) is/are followed by an orthographic projection onto an arbitrary plane. Sometimes just looking at the data from different views reveals something interesting or informative; otherwise, analyzing the same unstructured text would be difficult.

Finally, we conclude and suggest where future efforts can be made for a more effective terrorist KDD.
Figure 1. KDD process for terrorist data (adapted from Nieves and Cruz [3]).
2. **Dimensionality Reduction for Data Visualization**

Interpretation of any underlying structure for data in HDD space (d) is done by re-embedding into a lower 2-D/3-D Euclidean space. The projection could be for a nonlinear manifold, which is locally linear but may be globally curved. The projection should remain representative of the original data so that there is no loss of information and properties are preserved. DR of HDD is done here by FS and/or FE.

Note that DR tries to exploit the typically lower intrinsic dimension (P) of the data, i.e., P < d. P is the minimum number needed to account for observed properties of the data and reveals the presence of topological structure. Ideally, the reduced dimension (D) will correspond to P. When P < D, where D is also the dimension of the embedding space, then the data lies in a well-defined space.

2.1 Feature Selection

FS determines several features (or attributes) for the HDD by removing irrelevant and redundant data. An example of a decision system M, which can be represented as a matrix of objects and attributes, is illustrated in table 1 (4). The search for a feature subset involves determining those that are highly correlated with the decision attribute but uncorrelated with one another: or, in other words, compute the smallest subset of conditional attributes that preserve the decision attribute. This is called a *reduct*. The example shown in table 2 was computed using rough set theory (RST).* In this case, we obtained a 50% reduction of conditional data, i.e., we could safely eliminate half of the conditional attributes without changing the value of e, i.e., V_e.

<table>
<thead>
<tr>
<th>x ∈ U</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

*Only the results are shown here. A detailed description for this example is given in Jensen and Shen (4).
Table 2. Reduced data set for table 1.

<table>
<thead>
<tr>
<th>x ∈ U</th>
<th>b</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

RST is an extension of conventional set theory, thus is discrete-based. Uncertainty is “indiscernibility” for a rough set attribute reduction. However, a “vagueness” of feature data, i.e., real-valued attributes, is not modeled.

Fuzzy-rough set theory (FRST) handles both discrete and continuous data. The implementation of fuzzy-rough feature selection (FRFS) being used in our work was written for the University of Waikato (NZ) environment for knowledge analysis (WEKA). WEKA (5) is a popular open-source environment. In particular, we are using the Java jar for ant colony optimization (ACO), i.e., FRFS-ACO, for a search of the feature space. FRFS-ACO requires a graph representation in determining the reduct.

Ideally, FS will result in 2-D/3-D data for VA application. For more than three-component results, the human visual system/brain combination usually becomes less effective quite quickly. In this case, an FE is then applied.

2.2 Feature Extraction

FE irreversibly transforms data semantics, but the underlying topology of the structure, if any, is preserved and can be further examined. In topology, the concern is not the representation of an object (or structure) in space, but the connectivity, which must not be altered. In other words, twisting, deforming, and/or stretching are allowed, but no tearing. For example, a 2-D circle is topologically equivalent to an ellipse.

Many FEs have been developed over the years. In figure 2, the first two approximations—principal component analysis (PCA) and classical metric multidimensional scaling (CMDS)—are a linear DR (LDR). An LDR is based on a linear combination of the feature data. LDRs keep similar data points close together (distance-preserving) when mapping from d to D. However, they cannot find curved manifolds since they are based on a Euclidean distance.
Figure 2. Some FE's for HDD and timeline.
A nonlinear DR (NLDR) approximation, which is also called a manifold learner, preserves geodesic distances along the manifold, linear or nonlinear (see figure 3 for a comparison between Euclidean, geodesic distance). NLDRs include nonmetric MDS, Isomap, LLE, LE, SNE/t-SNE, and NeRV/t-NeRV. Most papers for an NLDR approximation demonstrate the algorithm using an artificial dataset, such as the Swiss roll or S-curve, and thus are not straightforward to application of real-world data.

Figure 3. Comparison of Euclidean vs. geodesic distance. LDRs use metrics based on the Euclidean distance between two points, while the NLDRs are based on geodesic distance. An NLDR successfully unrolls the curved manifold, whereas an LDR fails.

A recent research paper (6) suggests that manifold learners may not be the best DRs for data visualization. The last two methods for NLDR in figure 2, namely SNE/t-SNE and NeRV/t-NeRV, are NLDRs specifically designed for data visualization, and have been used with real-world data; NeRV is an MDS for detecting local structures, i.e., an LMDS. That paper also states that SNE is a special case of NeRV ($\lambda = 1$ in equation 1 of the paper).
3. Exploratory Visual Analytics

As mentioned in the previous section, EDA in HDD space is done statistically using WEKA (figure 4). Launching the Explorer application from the graphical user interface (GUI) provides for FRST attribute reduction of HDD—specifically, an ant colony optimization (FRFS-ACO) search for reduct as described by Jensen (7). For a reduct that is >3, we then apply the neighbor retrieval visualizer (NeRV) (6).

![WEKA GUI for data mining HDD using FRFS-ACO.](image)

Figure 4. WEKA GUI for data mining HDD using FRFS-ACO.

NeRV is a local MDS. Although semantics are destroyed by a feature extraction, the topology of the structure (or the random, scattered points) can then be inspected. Remember that the intent is to visually examine the data in a Euclidean space, i.e., EVA.

The resulting scene is described declaratively for the Extensible 3D (X3D) application-programming interface (API). X3D is an International Standards Organization (ISO) specification for describing scene content, possibly distributed across the Web. The scene graph consists of a directed acyclic graph of X3D objects and has a hierarchical parent-child structure. In addition, the immersive profile for the X3D scene allows for navigation/interaction within the
data. Details of all X3D nodes and attributes can be found at http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification/; an excellent description of X3D nodes and concepts is also done by Brutzman and Daly (8).

In 2010, X3D nodes were tightly coupled with the HTML document object model (DOM) tree (9) for some Web browsers, such as Mozilla Firefox and Google Chrome. The result was an X3DOM library where one could embed X3D models directly into a Web page without having to write any JavaScript code. X3DOM uses the WebGL API to render interactive 3-D scenes natively in the Web browser.

4. Conclusions and Future Work

EVA in an HDD space for a timely interpretation remains to this day a very challenging task, especially for terrorist-related data. Dr. Nam suggests in her dissertation (10) that our perception in 3-D is learned from infancy, and that it is essentially nonexistent for higher dimensions. Thus it becomes more difficult in time to reason in higher dimensions.

Both feature selection and feature extraction, if necessary, are used for dimensionality reduction of HDD for data visualization. Declarative X3D and X3DOM are then used for VA of resultant data in either the latest Mozilla Firefox or Google Chrome Web browser; these also support WebGL for bringing 3-D to the Web browser procedurally.

Point characterizations constructed from 2-D orthogonal views of HDD, i.e., scatter plot diagnostics (scagnostics) and scatter plot matrix, are being considered (11). This approach to VA of HDD is guided by a more vigorous statistical analysis.
5. References

List of Symbols, Abbreviations, and Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>API</td>
<td>application-programming interface</td>
</tr>
<tr>
<td>DOM</td>
<td>document object model</td>
</tr>
<tr>
<td>DR</td>
<td>dimensionality reduction</td>
</tr>
<tr>
<td>EDA</td>
<td>exploratory data analytics</td>
</tr>
<tr>
<td>EVA</td>
<td>exploratory visual analytics</td>
</tr>
<tr>
<td>FE</td>
<td>feature extraction</td>
</tr>
<tr>
<td>FRFS-ACO</td>
<td>fuzzy-rough feature selection using ant colony optimization</td>
</tr>
<tr>
<td>FRST</td>
<td>fuzzy-rough set theory</td>
</tr>
<tr>
<td>FS</td>
<td>feature selection</td>
</tr>
<tr>
<td>HDD</td>
<td>high-dimensional data</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standards Organization</td>
</tr>
<tr>
<td>KDD</td>
<td>knowledge discovery in databases</td>
</tr>
<tr>
<td>LDR</td>
<td>linear dimensionality reduction</td>
</tr>
<tr>
<td>NeRV</td>
<td>neighbor retrieval visualize</td>
</tr>
<tr>
<td>NLDR</td>
<td>nonlinear dimensionality reduction</td>
</tr>
<tr>
<td>VA</td>
<td>visual analytics</td>
</tr>
<tr>
<td>WEKA</td>
<td>University of Waikato (NZ) environment for knowledge analysis</td>
</tr>
<tr>
<td>X3D</td>
<td>Extensible 3D</td>
</tr>
</tbody>
</table>
NO. OF

COPIES ORGANIZATION

1 DEFENSE TECHNICAL
(PDF) INFORMATION CTR
 DTIC OCA
 8725 JOHN J KINGMAN RD
 STE 0944
 FORT BELVOIR VA 22060-6218

1 DIRECTOR
(PDF) US ARMY RESEARCH LAB
 RDRL CIO LL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

1 DIR USARL
(PDF) RDRL CII C
 A NEIDERER
INTENTIONALLY LEFT BLANK.