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1. Introduction 

The U.S. Army is interested in developing propulsion systems for tactical missiles that can be 
throttled (or turned off and restarted) and are less vulnerable to external threats than currently 
fielded systems. Motor types with the potential to achieve both of these objectives include 
concepts fueled with hypergolic liquid/gel bipropellants or solid-liquid/gel (hybrid) 
combinations. In both cases, thrust is modulated by controlling the flow rate of a pumpable fuel 
and/or oxidizer. Increasing targeting options and range, the integration of such motor types into 
tactical missiles would increase their lethality while reducing the vulnerability of their launch 
platforms. In addition, because the fuel and oxidizer are stored separately in these motor types, 
they are inherently insensitive to a variety of stimuli that can produce catastrophic events in 
solid-(mono)propellant-fueled rocket motors.   

A hypergolic propulsion system concept that is capable of being integrated into Army tactical 
missiles has been demonstrated. The concept is referred to as the impinging stream vortex engine 
(ISVE) (Wilson and Connaughton, 1967; Michaels and Wilson, 1995). For a recently completed 
development effort, it was fueled with a hydrazine-alternative hypergol (called TEDMAZ) and 
inhibited red fuming nitric acid (IRFNA). TEDMAZ is a blend of tetramethylethylenediamine 
(TMEDA) and 2-azido-N, N-dimethylethanamine (DMAZ), and the fuel’s qualifications for the 
application have been established (McQuaid, 2009; Mathis et al., 2008). Individually, both 
TMEDA-IRFNA and DMAZ-IRFNA showed some promise as candidates. Testing of TMEDA-
IRFNA dates back to the 1950s, and it was successfully fired in an engine. DMAZ’s potential as 
a hypergol was identified by the U.S. Army Aviation and Missile Research Development and 
Engineering Center (AMRDEC) in the 1990s (Thompson, 2000), but the ignition delay of 
DMAZ-IRFNA was slightly too long to make it a viable option. The potential of TMEDA-
IRFNA was rediscovered by AMRDEC in the course of attempts to address this issue. Blending 
DMAZ and TMEDA produces several benefits (Stevenson et al., 2008). For one, blends have 
shorter ignition delays with IRFNA than either fuel alone. Also, compared to TMEDA-IRFNA, 
TEDMAZ-IRFNA combusts more cleanly and has a higher theoretical density*specific impulse 
(*Isp). There is, however, some concern about the aging characteristics of DMAZ. Thus, an 
additive that would provide the benefits of DMAZ and not have this potential drawback would 
be preferred. 

Compared to hypergolic liquid/gel propulsion technology, hybrid rocket motor technology is 
much less mature and has yet to find a role within the Department of Defense (DOD). 
Concluding in the early 1980s, a more than decade-long development program called the High 
Altitude Supersonic Target (HAST), Teledyne Ryan successfully flew a recoverable target drone 
(AQM-81) with a ram-air augmented hybrid rocket motor. However, a follow-on contract for 
production of the missile was not awarded (Parsch, 2002). Parsch presumes this decision was 
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made because the AQM-81 was more expensive than the expendable drone (AQM-37) it was to 
replace. We could find no other DOD-sponsored hybrid motor development program that 
approached the AQM-81’s level of maturity. 

A recently discontinued AMRDEC effort highlights some of the difficulties faced in developing 
hybrid propulsion systems for tactical missiles.  The primary issue is that the amount of thrust 
that can be developed depends upon the rate at which the fuel grain can be made to regress, and 
the regression rates found for the (storable) fuel-oxidizer combinations that have been studied to 
date are fairly limited. Therefore, the solid (grain) must have a relatively large exposed surface 
area for thrust to reach required levels. To obtain the required surface area, (empty) space must 
be created in the (volume-limited) combustion chamber, reducing the loading density. AMRDEC 
attempted to address this issue by using IRFNA in combination with a fuel grain composed of 
hydroxy-terminated polybutadiene (HTPB) and an additive (at high concentrations) that 
promoted reactivity (IRFNA was also employed in the AQM-81, but we were unable to find a 
characterization of the composition of its fuel grain). While the combination tested by AMRDEC 
did demonstrate a restart capability, measured Isp efficiencies were significantly lower than 
standards set by liquid/gel bipropellants and solid monopropellants. In a related approach, 
DeSain et al. (2007) added the strong reducing agent lithium aluminum hydride (LiAlH4) to 
paraffin to achieve higher regression rates. The group reported that the LiAlH4, which in neat 
form is highly reactive with water, was “suitably stable” when mixed with the highly 
hydrophobic paraffin. However, we are skeptical about the feasibility of employing LiAlH4 in 
fuel grain formulations for tactical missiles. Studies of other “hypergolic” hybrid combinations 
have also been reported in the open literature (Jain, 1995). None of these combinations appear to 
remain of interest to researchers in the field. 

Because IRFNA will react rapidly with any number of materials, it is not a challenge to find 
compounds that can be combined with it to yield required regression rates. Indeed, it is not even 
necessary to employ an oxidizer as aggressive as IRFNA; many compounds (like LiAlH4) will 
react spontaneously with just water or O2 (in air). However, such compounds could represent a 
greater threat to safety than IRFNA. Handling procedures would be onerous, and any penetration 
of the motor housing (e.g., by fragment impact) could lead to a catastrophic event. The challenge 
is to identify fuels that are thermally stable, are highly reactive with storable oxidizers, age well, 
can be formulated into grains with good mechanical properties, and do not pose undue risk to 
human health and the environment. In addition, although the risks associated with IRFNA are 
considered acceptable, the best fuel candidates would be highly reactive with an oxidizer that is 
less aggressive, such as hydroxylammonium nitrate (HAN).   

Although there would seem to be an almost unlimited number of possibilities that one might 
propose as candidates for fuels in hypergolic liquid/gel or hybrid rocket motors, once some basic 
screening criteria are invoked—namely, that the materials consist of molecular entities with low 
atomic weight atoms (for better performance) and have no multiple order C-C bonds (to avoid 
aging problems), yet nonetheless react readily with fieldable oxidizers—one is led to hydrides or 
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organic compounds of aluminum (Al) and boron (B). Having a relatively low atomic weight and 
(at a molecular level) making strong bonds with oxygen atoms, Al (metal) is often added to 
rocket propellant formulations to increase their energy density/performance. However, “pure” 
powders of Al metal have an attendant oxide coat that is both a parasitic (nonperforming) mass 
and an inhibitor of the powders’ initial reactivity. Theoretically, boron, which is in the same 
column of the periodic table as Al, has even greater performance potential than Al, but that has 
been difficult to achieve in practice (see, for example, Clark [1972]). In addition, its metal 
powders also have a parasitic oxide coat that limits their initial reactivity. In contrast, the 
hydrides of these metals [alane (AlH3) and borane (BH3)] and their alkylated derivatives—
including trimethylaluminum [Al(CH3)3] and trimethylborane [B(CH3)3]—are pyrophoric (i.e., 
they will ignite when exposed to ambient air). They will also react spontaneously and violently 
with water.   

The pyrophoricity of AlX3 and BX3 compounds, where X can be an H-atom, a halogen atom, or 
an alkyl group, is related to the fact that they are strong Lewis acids and O2 and H2O have 
donatable lone-pair electrons.* Moreover, their pyrophoricity has been exploited for rocket 
propulsion applications. For example, a triethylaluminum-trimethylborane [Al(CH2CH3)3-
B(CH3)3] mixture is used as a first-stage igniter for the SpaceX Falcon 9 rocket (Clark, 2010). In 
a research effort for another application, Young et al. (2010) found that regression rates for 
AlH3-loaded HTPB fuel grains oxidized by O2 were comparable to, or better than, the baseline 
HTPB grain; and that the performance of such grains was better than those loaded with micron- 
or nano-sized aluminum. However, the thermal stability of AlH3 is insufficient for it to be 
employed as a propellant ingredient for tactical missile applications (Ishmail and Hawkins, 
2005). And even if that issue could be overcome (Petrie et al., 2001), given their pyrophoricity, 
in neat form on a battlefield, AlX3 and BX3 compounds would be a vulnerability waiting to be 
exploited.   

The foregoing considerations led us to ask whether derivatives of AlX3 and BX3 compounds 
might have the requisite combination of reactivity and stability. The study summarized here was 
motivated by the idea that the prereaction of AlX3 or BX3 with a weak base to form a Lewis 
adduct might be analogous to reacting highly corrosive nitric acid (HNO3) with ammonia (NH3). 
The NH3 + HNO3 reaction produces a noncorrosive material (i.e., the fertilizer ammonium 
nitrate) that, nonetheless, releases considerable energy if appropriately stimulated in the right 
environment. Being well-known weak bases and having shown promise as hypergolic fuels, 
alkyl amines (like TMEDA) were obvious candidates to pair with AlX3 and BX3. Moreover, 
unlike ammonium nitrate and other energetic salts that have the potential to detonate because the 

                                                 
*Lewis acids are molecular entities/chemical species that can accept an electron pair. (Chemical species with molecular 

formulae BX3 and AlX3 are textbook Lewis acids.) Lewis bases are molecular entities/chemical species that can donate an 
electron pair. If the reaction of a Lewis acid with a Lewis base produces a single product, the term “dative” is employed to 
described the (single) bond that forms and the product is referred to as an adduct. 
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cation and anion are fuel and oxidizer components, respectively; AlX3-amine and BX3-amine 
adducts with X equal H or CH3 would be pure fuels. 

Focused initially on Al(CH3)3-amine adducts, a literature search performed in 2010 identified 
that a number of such compounds had been made and characterized in the early 1960s at the 
Naval Ordnance Laboratory (Fetter and Bartocha, 1961; Fetter et al., 1963; Fetter and Moore, 
1964). Although the application for these compounds was not mentioned in the cited 
publications, the researchers later patented syntheses involving the reaction of Al(CH3)3 with 
various hydrazines and listed propellants and explosives as potential uses for the products (Fetter 
and Bartocha, 1967). However, it was reported that all the compounds reacted vigorously to 
violently with water and decomposed in air. Moreover, the only Lewis adduct of the patented 
group of compounds [Al(CH3)3-(CH3)2NN(CH3)2] was observed to be among the most reactive. 
Thus, the idea looked as though it had already been investigated and lacked promise.   

Reconsidering the idea in 2012, we performed another literature search and identified a recently 
commercialized adduct (named DABAL-Me3) that suggested further investigation was 
warranted.  Advertised to be stable in low-humidity air for short periods of time (Sigma-Aldrich, 
2013); DABAL-Me3 is formed from Al(CH3)3 and 1,4-diazabicyclo[2.2.2]octane (also 
commonly referred to as DABCO, or triethylenediamine). The adduct is referred to here as 
2Al(CH3)3-DABCO. Bradford et al. (1992) published a study of its properties, reporting it to be a 
solid that decomposed/melted at 230 °C. Benefiting from its stability relative to other 
organoaluminum-based catalysts, academic researchers have employed it to cross-methylate aryl 
and vinyl halides (Biswas et al., 2005). At the same time, 2Al(CH3)3-DABCO will produce 
explosive gases if exposed to (liquid) water or acids (Sigma-Aldrich, 2013). Taken together, the 
information suggested that 2Al(CH3)3-DABCO might have the balance between stability and 
reactivity that is required for an adduct to be a viable fuel additive.  

The identification of a potentially promising Al(CH3)3-amine adduct led to a literature search for 
the properties of BX3-amine adducts. As highlighted by several recent reviews (see, for example, 
articles by Lane [2006] and by Staubitz et al. [2010a and 2010b]), an extensive variety of BX3-
amine adducts have been studied.  Moreover, many are commercially available. Reports of BX3-
amine adducts date from 1809, and a spectroscopic characterization of BH3-N(CH3)3 was made 
in 1937 (Bauer, 1937). Chew et al. (1979) proposed employing BH3-amine adducts as solid 
propellants for H2 generation, envisioning their use as a fuel for laser weapons. The potential of 
BH3-amine adducts as hydrogen storage media for fuel cells has led to a tremendous amount of 
research into their properties. BX3-amine adducts are also being exploited for the production of 
B-N ceramics and films (see, for example, the article by Frueh et al. [2011]).   

Gatti and Wartik (1966b) discuss the preparation of 2BH3-DABCO, stating “this white, 
crystalline, air-stable compound was nonvolatile and did not melt at temperatures up to 350 °C, 
but darkened slightly above 300 °C.” Monoalkylborane-DABCO adducts have also been 
reported to be air stable (Brown et al., 1979). Additionally, Yang et al. (2012) report the 
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synthesis of a poly(methyl acrylate)-BH3-N(CH3)H2 composite, which suggests that 
mechanically viable propellant grains could be formulated with such adducts. Aluminum 
borohydride [Al(BH4)3]-amine adducts (referred to as Hybalines) have been investigated as 
(liquid) hypergols (see Clark, 1972). A paper by Weismuller et al. (2010) was the only one found 
in which an adduct was employed as a hybrid fuel additive. It reports that a 10-weight-percent 
(wt%) addition of BH3-NH3 to paraffin increased the paraffin’s regression rate, but that the 
addition of larger weight fractions decreased it. As an example of the potential of the approach to 
regression enhancement that is considered here, this result is encouraging. However, because it 
decomposes at 68 °C (Sigma-Aldrich, 2013), BH3-NH3 would not be suitable for tactical missile 
applications, regardless of the optimum performance increase achievable with it. 

To determine if AlX3-amine or BX3-amine adducts warranted further investigation as additives 
for hypergols and/or hybrid rocket motor fuels, a search of open literature sources was performed 
to identify other application-relevant properties. In addition, computational chemistry methods 
were employed to obtain estimates for properties that are needed to predict their performance 
potential. Many of the amines that were considered have been previously investigated to 
establish their potential as hypergolic fuels (Stevenson et al., 2008). (Table 1 lists the amines that 
were considered and the shorthand that is used to name them in this report.) Results for AlX3-
amine adducts were published previously (McQuaid and Chen, 2013). Property estimates and 
performance predictions for BX3-amine adducts are presented here. Gas-phase property 
estimates that are presented include: B-N bond lengths, B-N bond dissociation energies (BDEs), 
and adduct enthalpies of formation at 298 K [fHg(298)]. Condensed-phase property estimates 
that are presented include: enthalpies of sublimation [Hs(298)], enthalpies of formation at 298 
K [fHc(298)], and densities (). Values derived from measured data or higher-level 
computational methods were identified in open literature sources, and they were employed both 
to develop and to validate the estimation methods utilized in the study. Assessments of the 
thermal and air stability of some adducts were also identified in the course of the search, and 
their correlation with estimated B-N BDEs was assessed. The fHc(298) estimates were 
employed as input for thermochemical code-based calculations of specific impulse (Isp). On the 
basis of the results, further investigation of some adducts is recommended.  

  

                                                 
For a compound to qualify as a propellant ingredient for a tactical missile propulsion system, it must be able to be held 

(isothermally) at 75 °C for 24 hours (h) and retain more than 99% of its mass. If, as indicated by visual inspection in the course of 
a melting point determination, a compound decomposes at a temperature below 75 °C, it will obviously not meet this standard.  
The converse, however, cannot be assumed to be true (i.e., a compound will pass the criterion if a higher decomposition 
temperature has been reported for it on the basis of visual inspection). As discussed by McQuaid and Drake (2011), if techniques 
that are more sensitive to product decomposition (e.g., differential scanning calorimetry) are employed, a decomposition 
temperature below 150 °C will usually be taken to indicate that a compound will not meet the primary standard. Thus, if during a 
melting point determination a compound is observed to decompose at a temperature below 150 °C, it is assumed that it is 
unlikely to have thermal stability sufficient for it to be a propellant ingredient. 
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Table 1. Amines considered in this study: names and stoichiometries. 

Shorthand Name Stoichiometry 
  
ABCO 1-azabicyclo[2.2.2]octane or quinuclidine C7H13N 
azetidine azetidine C3H7N 

DABCO  
1,4-diazabycyclo[2.2.2]octane or 
triethylenediamine 

C6H12N2  

DBN 1,5-diazabicyclo[4.3.0]non-5-ene C7H12N2 
DBU 1,8-diazabicyclo[5.4.0]undec-7-ene C9H16N2 
DMA  N-methylmethanamine or dimethylamine C2H7N 
DMP 1,4-dimethylpiperazine C6H14N2 
HMTA hexamethylenetetramine C6H12N4 
HTBN 1,5,7-triaazabicyclo[4.3.0]non-6-ene C6H11N3 
MMA methanamine or monomethylamine CH5N 
NH3 ammonia H3N 
piperidine piperidine C5H11N 
pyridine pyridine C5H5N 
pyrrolidine pyrrolidine C4H9N 
TMA N,N-dimethylmethanamine or trimethylamine C3H9N 
TMEDA tetramethylethylenediamine C6H16N2 
TMH tetramethylhydrazine C4H12N2 
TMMA tetramethylmethylenediamine C5H14N2 
TMTZ 1,3,5-trimethyltriazine C6H15N3 

 

2. Literature Search for Adduct Properties 

The search for species properties that was performed for this study was primarily conducted via 
the Cambridge Structural Database (Conquest Version 1.15, Cambridge Crystallographic Data 
Center) and two Web sites: SciFinder (https://scifinder.cas.org, last accessed Aug. 2013) and 
Web of Knowledge (http://apps.webofknowledge.com, last accessed Aug. 2013). Another 
important source of information was the Sigma-Aldrich Web site (http://www.sigmaaldrich.com, 
last accessed Aug. 2013). 

3. Computational Methods 

3.1 Gas-Phase Equilibrium Geometries and Bond-Dissociation Energies 

Predictions for the molecular properties of species considered in this report were obtained from 
quantum-chemistry models. The models were implemented via the Gaussian09 suite of codes 
(Frisch et al., 2013). The B3LYP density functional (Becke, 1993; Lee et al., 1988; Vosko et al., 
1980; Stephens et al., 1994) with 6-31+G(d,p), 6-31G(d,p), or 6-31G(d) basis sets (Petersson et 
al., 1988; Petersson and Al-Laham, 1991; Clark et al., 1983) was employed to predict geometric 
parameters for equilibrium configurations that isolated molecules could acquire. Although it is 
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well known that the lengths (re) and BDEs of dative bonds are better predicted by MP2-based 
models (Gilbert, 2004), Potter et al. (2010) observed that B-N bond lengths found with B3LYP 
and MP2 models agreed to within 0.020 Å. Moreover, Potter et al. observed that when coupled 
with correlated methods, B-N BDEs obtained with B3LYP-based geometries were only 2–4 
kcal/mol larger than those derived from benchmark CCSD(T)/CBS-based calculations. Given 
that the discrepancies are relatively small, and assuming that the energy bias is relatively 
consistent, we assumed they would be ameliorated via the use of isodesmic reaction schemes. 
Therefore, the less computationally expensive approach was employed. As will be shown, this 
decision was validated. 

Starting structures for the geometry optimizations were constructed with Gaussview 5.0 
(Gaussian, Inc.). The convergence criteria employed for the optimizations were: max. force 
0.000450 hartree/bohr; root mean square (RMS) force 0.000300 hartree/bohr; max. 
displacement 0.001800 bohr; and RMS displacement 0.001200 bohr. For all structures 
meeting these criteria, normal mode analyses were conducted to establish that they had no 
imaginary frequencies, and thus were indeed equilibrium structures.   

3.2 Gas-Phase Enthalpies of Formation at 298 K [fHg(298)] 

fHg(298) estimates were derived from enthalpy-of-reaction estimates [Hr(298)] for 
(hypothetical) isodesmic reactions for which established fHg(298) values for all species except 
the target moiety were available. The gas-phase enthalpy of each molecule in a given reaction 
was computed based on results from G3MP2B3 (Baboul et al., 1999), G4 (Curtiss et al., 2007), 
CBS-4M (Montgomery et al., 2000), and CBS-QB3 (Montgomery et al., 2000) models. For all 
molecules/compounds except xBH3-HMTA and xB(CH3)3-HMTA (x = 3–4), the nominal values 
presented here are the average of values derived from results produced by the G3MP2B3, G4, 
and CBS-QB3 models. (Results from these three models are expected to be more accurate than 
those from the CBS-4M model.) For xBH3-HMTA and xB(CH3)3-HMTA (x = 3-4), the values 
are based on CBS-4M results; calculations required by the other three models proved to be 
impractical for these cases. 

3.3 Condensed-Phase Property Estimates 

To obtain estimates for adduct densities (in grams/centimeter3, constants a and b for empirical 
relationships with the form 

 = a(MW/Vol0.001) + b  (1) 

where MW is an adduct’s molecular weight (in atomic mass units) and Vol0.001 is the volume 
enclosed by its 0.001 electron/bohr3 isosurface (in Å3), were derived from least squares fits to 
(very limited) sets of measured densities that were found in open literature sources. 

Enthalpy of phase-change estimates were sought in order to produce condensed-phase enthalpy 
of formation estimates [fHc(298)] from corresponding fHg(298) estimates. Since most of the 
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known Lewis adducts considered in this study are solids at 298 K, it was assumed that notional 
adducts will be as well. Thus, Hs was considered to be the required parameter. Another reason 
for employing Hs estimates instead of enthalpy of vaporization (Hv) estimates was that Hs 
values tend to be larger than Hv values. Therefore, even if a compound should prove to be a 
liquid (at 298 K), the use of Hs for producing a fHc(298) estimate would likely yield a 
conservative Isp estimate.   

Based on the success Rice et al. (1999) had in developing a correlation between Hs values and 
B3LYP-based predictions for properties of the 0.001 electron/bohr3 isosurface of electron density 
of compounds containing only C, H, N, and O atoms, the same approach was attempted for the 
compounds considered here. The functional form of the equation Rice et al. employed was: 

 Hs = a(SA)2 + b(2*)1/2 + c  (2) 

where SA is the surface area (in Å2); 2 is the (dimensionless) variance of the electrostatic 
surface potential;  is the (dimensionless) degree of balance between positive and negative 
charge. The constants a, b, and c were derived from least squares fits.   

3.4 Specific Impulse (Isp) and Adiabatic Temperature Predictions 

Estimates for the Isp and adiabatic temperatures the adducts will produce in combination with 
IRFNA were obtained with the “infinite area” combustor model and thermodynamic database 
provided in CEA2 (Gordon and McBride, 1996). The chemical composition of the IRFNA 
employed in the calculations was the CEA2 default specification. The chamber pressure was 
specified to be 70 atm (1029 psia), and the properties were calculated for an expansion to 1 atm 
(14.7 psia). Because the fuel-air equivalence ratio () can vary significantly over the course of a 
hybrid rocket motor firing, predictions were obtained for a wide range of ratios.   

4. Results 

4.1 Gas-Phase Properties 

Figure 1 presents the (gas-phase) molecular structures that were produced for BH3-amine 
adducts. The orientations of the acids and bases in the analogous B(CH3)3-amine adducts are 
similar. For all the species whose structures have been characterized via x-ray crystallography, 
the bond angles and dihedral angles of the corresponding gas-phase structure are similar.   

Tables 2 and 3 list predicted gas-phase properties for various BH3-amine and B(CH3)3-amine 
adducts. The properties include B-N bond lengths (re), B-N BDEs, and fHg(298). Values 
derived from measured data or higher-level computational methods are included for comparison.  
Because it was hypothesized that the thermal stability and possibly the air stability of adducts 
might correlate with B-N BDEs, the compounds in each table are ordered according to the BDE 
estimates we obtained for them. For some adducts, the tables also include a distillation of 
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 BH3-ABCO BH3-azetidine BH3-DABCO 2BH3-DABCO BH3-DBN 

     
 BH3-DBU BH3-DMA BH3-DMP 2BH3-DMP 

     
 BH3-HMTA 2BH3-HTMA 3BH3-HTMA 4BH3-HTMA 

     
 BH3-HTBN BH3-MMA BH3-NH3 2BH3-piperidine BH3-pyridine 

    
 BH3-pyrrolidine BH3-TMA BH3-TMEDA 2BH3-TMEDA 

    
 BH3-TMH BH3-TMMA BH3-TMTZ 

Figure 1. Geometric structures for BH3-amine adducts. 
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Table 2. BH3-amine adduct gas-phase properties: estimates from the current work, benchmark values, and stability assessments.a 

re(B-N) (Å) BDE(B-N) (kcal/mol)b mp (C) Td (C) Air fHg(298) (kcal/mol) 
This work Other This work Other   Stable? This work Other 

BH3-NH3 1.669 1.658d 27.4 31.1e, 27.7f, g, 31.0m  68h  –12.9 –13.5i 
BH3-TMH 1.677 31.9    12.1 
BH3-pyridine 1.620 32.6 33.4g 11 50h Ng 25.2 
BH3-MMA 1.654 1.602j 33.1 35.0e, 33.4 f,  <100k  –12.8 
BH3-DMA 1.654 1.615j 34.1 36.4e, 36.7f  Nh –15.0 –15.1i 
BH3-TMEDA 1.665 34.6  –1c  –13.1 
BH3-DMP 1.668 35.3   –10.4 
BH3-pyrrolidine 1.639 36.7   –12.4 
BH3-piperidine 1.647 36.7 38.0g   –23.6 
BH3-TMTZ 1.680 36.8   3.4 
BH3-azetidine 1.634 37.3   11.8 
BH3-TMA 1.660 1.656l, 1.623j 37.4 34.8e, 37.8f, 38.2n  >172 (?)n  –18.4 –20.3o, –20.4p 
BH3-DBU 1.615 37.8   –9.7 
BH3-HMTA 1.630 38.8  >300q  29.8 
BH3-DABCO 1.648 38.8 167(dec)r, s Yr 7.4 
BH3-ABCO 1.647 38.9   –14.5 
BH3-DBN 1.600 39.3   –3.4 
BH3-TMMA 1.655 40.6   –13.4 
BH3-HTBN 1.598 40.9   3.7 

  
2BH3-TMMA 1.693 25.0   –12.8 
2BH3-TMH 1.675 30.9  60t  6.7 
2BH3-HMTA 1.645 34.4  Y 20.9 
2BH3-DMP 1.662 36.1 178(dec)r Yr –21.0 
2BH3-TMEDA 1.668 36.3 182s,u  –23.9 
2BH3-DABCO 1.651 36.9  >300r, s Yr –4.0 

  
3BH3-HMTA 1.660 30.5   15.9 
4BH3-HMTA 1.671 27.0  25v  14.4 

a See text for a discussion of the Td values and air stability assessments shown in this table. bFor xBH3-amine adducts (x > 1), the value for the first B-N bond dissociation 
is given. cGatti and Wartik, 1966a. dThorne et al., 1983. eHaaland, 1989. fCCSD(T); Grant et al., 2009. gG3MP2: Potter et al., 2010. hSigma-Aldrich, 2013. iCCSD(T): 
Dixon and Gutowski, 2005. jAldridge et al., 2009. kBowden et al., 2008. lIijima et al., 1984. mCalorimetry and vapor pressure data: see Potter et al., 2010. nReported as the 
compound’s boiling point (Sigma-Aldrich, 2013). oWagman et al., 1982. pCox and Pilcher, 1970. qTayler, 1962. rGatti and Wartik, 1966b. sBrown and Singaram, 1980. 
tNoth, 1960. uMiller and Muertterties, 1964. vRiley and Miller, 1974. 
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Table 3. B(CH3)3-amine adduct gas-phase properties: estimates from the current work, benchmark values, and stability assessments.a 

re(B-N) (Å) BDE(B-N) (kcal/mol)b mp (C) Air fHg(298) (kcal/mol) 
This work Other This work Other  Stable? This work Other 

B(CH3)3-TMH 1.939 9.6 –16c  –15.6 
B(CH3)3-NH3 1.710 1.672d 14.8 13.8e, 14.5f   –50.2 –54.1g, –51.5f 
B(CH3)3-TMEDA 1.806 16.4   –44.9 
B(CH3)3-DBU 1.718 18.1   –39.8 
B(CH3)3-pyridine 1.694 18.5 17.0h   –10.7 
B(CH3)3-MMA 1.711 19.4 17.6e   –49.1 
B(CH3)3-TMA 1.789 1.701i 19.6 17.6e   –50.6 –52.6j 
B(CH3)3-HMTA 1.751 20.5   –1.9 
B(CH3)3-DMA 1.737 1.656k 20.6 19.3e   –49.3 
B(CH3)3-DBN 1.694 21.3   –35.3 
B(CH3)3-DABCO 1.771 21.8   –25.6 
B(CH3)3-TMMA 1.786 22.1   –44.8 
B(CH3)3-ABCO 1.766 22.8 19.9l   –48.3 

  
2B(CH3)3-TMMA 1.874 5.8 35m  –75.0 
2B(CH3)3-HMTA 1.790 16.9   –43.2 
2B(CH3)3-TMEDA 1.816 18.1 105m  –87.5 
2B(CH3)3-DABCO 1.774 20.4   –70.4 

  
3B(CH3)3-HMTA 1.830 15.5   –83.2 
4B(CH3)3-HMTA 1.893 12.7   –120.4 

  
B(CH2CH3)3-DBU 1.784 15.0  Yn –43.5 

aSee text for a discussion of the mp values and air stability assessments shown in this table. bFor xB(CH3)3-amine adducts (x>1), the value for the first B-
N dissociation is given. cNoth 1960. dMP2: Grant et al., 2009. eBrown et al., 1944. fCCSD(T); Grant et al., 2009. gWagman, 1982. hBrown and Barbaras, 
1947. iKuznesof and Kuczkowski, 1978. jGuest et al., 1969. kOuzounis et al., 1987. lBrown and Sujishi, 1948. mStorr and Thomas, 1970. nMoren, 2001. 
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published remarks and/or data pertaining to their thermal and/or air stability. Although these 
assessments tend to be fairly qualitative, they nevertheless serve to identify the unsuitability of 
some compounds for propellant applications and provide some indication as to whether it is 
possible to predict an adduct’s thermal stability on the basis of an estimate for its (gas-phase) 
B-N BDE.   

As discussed in the section on computational methods, the lengths of dative bonds are not well-
predicted by B3LYP-based models. For the four BH3-amine adducts for which a gas-phase 
spectroscopy-based B-N bond length could be found, the length is overpredicted, with 
differences ranging from 0.004–0.052 Å. The predicted lengths of the B-N bond in  
B(CH3)3-amine species are also longer than values derived from gas-phase spectroscopic data, 
with differences ranging from 0.038–0.088 Å. Part of the discrepancies may be due to the fact 
that the definition of the bond length (parameter) derived from computational results (re) is 
different from the definitions of the parameters derived from gas-phase electron diffraction 
(GED) experiments (ra, rg, rh1 and ra3,1) and from microwave spectroscopy (MWS) experiments 
(ro and rs) (see Aldridge et al., 2009). Regardless, as will be shown, the molecular structures 
produced by the B3LYP-based models proved adequate as bases for calculating BDEs when 
coupled with composite methods. Since B-N bond lengths were only of minor interest, no reason 
was seen to incur the added computational expense that would have been required to employ an 
MP2-based model. 

Tables 2 and 3 show that the B-N BDE estimates produced by the methods employed in this 
study are in reasonable agreement with values derived from measured data or higher-level 
computational methods. Most estimates are within ±2 kcal/mol of their respective benchmark, 
and no difference exceeds ±4 kcal/mol. Since the geometries of the notional adducts suggest that 
steric hindrance will not have an impact on the B-N BDEs predictions, the accuracy of the 
predictions for notional adducts is believed to approach ±2 kcal/mol. 

A correlation between B-N BDEs and the thermal and air stabilities of BH3-amine adducts is 
suggested by the data in table 2. All compounds with Td values indicated to be above 150 °C 
have B-N BDEs ≥ 35 kcal/mol. Three of the four air stable compounds also have this property, 
and the fourth has a B-N BDE that is predicted to be 34.4 kcal/mol. None of the compounds with 
a Td below 150 °C has a B-N BDE ≥ 35 kcal/mol. The implied (35 kcal/mol) threshold is greater 
than the 30 kcal/mol threshold Rahm and Brinck (2010) propose for predicting whether a 
compound will be thermally stable enough for a propellant application.   

No quantitative data could be found regarding the thermal stabilities of B(CH3)-amine adducts.  
In addition, no B(CH3)3-amine adducts were identified as air stable in the literature. (Moren 
[2001] claims B(CH2CH3)3-DBU is air stable, but we are skeptical.) Coupled with the results 
presented in table 3, which indicate that none of the B(CH3)3-amine adducts have a BDE greater 
than 23 kcal/mol, the prospects for finding B(CH3)3-amine adducts that are stable enough for 
propellant applications appear to be remote.   
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Tables 2 and 3 also compare fHg(298) estimates produced in this study with values derived 
from measured data and higher-level computational methods. In all but one case, the values 
agree to within ±2 kcal/mol. The similarity of this degree of accuracy to that found for the BDE 
estimates reflects the fact that the potential sources of error in the two calculations are effectively 
the same. Thus, like the BDE estimates, the accuracy of the fHg(298) estimates for all the 
adducts considered in this study is believed to approach ±2 kcal/mol. 

4.2 Condensed-Phase Properties 

Tables 4 and 5 list predicted and measured values for Hs, fHc(298), and . In the case of BH3-
amine adduct densities, a reasonable correlation between MW/Vol0.001 and measured values were 
found (see figure 2). A least squares fit of the data yielded, 

  = 1.6823*(MW/Vol0.001) – 0.0264 (3) 

and its R2 value equals 0.975. Thus, it was employed to estimate densities for adducts for which 
measured densities could not be found. Another general observation is that 1-acid:1-base adduct 
densities are higher than those of their respective amine (base) substituent, with the difference 
decreasing as the density of the substituent goes up. For example, the density of TMEDA is 
0.775 g/cc and the density of BH3-TMEDA is 0.96 g/cc, while the density of ABCO is 0.97 g/cc 
and the density of BH3-ABCO is 1.035 g/cc. In contrast, the densities of xBH3-amines adducts (x 
≥ 2) are slightly lower than their corresponding (x-1) BH3-amine adduct. 

An attempt to derive a correlation between measured BH3-amine Hs values and properties of 
the adducts’ 0.001 electron/bohr3 isodensity surfaces was not successful. Table 6 shows the data 
that were employed to derive a relationship with the functional form of equation 2. Unlike the 
relationship derived by Rice et al. (1999), in which Hs was found to increase with increases in 
both SA and , the data in table 6 does not support such a correlation. If BH3-piperdine is 
excluded from the group, the data generally supports a positive proportional relationship between 
Hs and , but an inverse relationship between SA and Hs is observed. The latter result 
may be related to a reduction in an adduct’s ionic character as the (molecular) size of the base 
increases, but it was concluded that the effort necessary to investigate this hypothesis was not 
warranted at this time. Regardless, with respect to molecular size, the BH3-piperidine adduct is 
more similar to the rest of the adducts characterized in this study than the other compounds in 
table 6.  Thus, it was not considered prudent to exclude from the development of a relationship 
for density the datum associated with it.  



 

 

14

Table 4. BH3-amine adduct condensed-phase properties: estimates from the current work and benchmark values. 

 
re(B-N)  

(Å) 


(g/cc) 
Hs 

(kcal/mol) 
fHc(298) 
(kcal/mol) 

 This work Other Other This workt Other 
BH3-NH3 1.601d, 1.585e 0.73 0.74f, 0.78e, 0.761d 23.1g -- 36.6h 
BH3-TMH  0.96 –8.9 
BH3-pyridine  1.07s 0.92i,s 4.2 
BH3-MMA 1.594j 0.79 0.830 j 18.8k -- 32.2l 
BH3-DMA 1.597 j 0.83 0.804 j 18.5k -- –37.0u 
BH3-TMEDA  0.96 –34.1 
BH3-DMP  1.02 –31.4 
BH3-pyrrolidine 1.591b 0.95 0.923b –33.4 
BH3-piperidine  0.97 21.0q -- –44.6u 
BH3-TMTZ 1.623r 1.05 1.027 r –17.6 
BH3-azetidine  0.86 16.2q -- –44.0u 
BH3-TMA 1.617 j 0.87 0.864 j 13.6k -- –33.8l 
BH3-DBU  1.10 –30.7 
BH3-HMTA 1.661m 1.23 1.26 m 8.8 
BH3-DABCO 1.598n 1.09 1.082n –13.6 
BH3-ABCO  1.608o 1.05 1.035o –35.5 
BH3-DBN  1.10 –24.4 
BH3-TMMA  0.95 34.4 
BH3-HTBN 1.566p 1.14 1.169p 17.3 

 
2BH3-TMMA  0.93 33.8 
2BH3-TMH  0.94 14.3 
2BH3-HMTA  1.16 0.1 
2BH3-DMP  0.99 42.0 
2BH3-TMEDA 1.622a, 1.617b 0.93 0.928a, 0.945b 44.9 
2BH3-DABCO 1.631c 1.04 1.02c 25.0 

 
3BH3-HMTA  1.10 5.1 
4BH3-HMTA  1.06 6.6 

aMal'tseva et al., 1999. bChitsaz, 2002. cMal'tseva et al., 1995. dBoese et al., 1991. eKlooster et al., 1999. fSorokin et al., 1963.    
gMatus et al., 2007. hBaumann, 2003; Wolf, 2005. iSigma-Aldrich, 2013. jAldridge et al., 2009. kAlton et al., 1959. lGuest et al., 1969. 
mHanic and Subrtova, 1969. nArduengo, 1992. oWann, 2007. pSchulenberg et al., 2009. qAcree and Chikos, 2010. rFlores-Parra et al., 
1999. sThis value appears to be an outlier and was not employed in deriving the relationship developed to estimate adduct densities. 
tBased on subtracting 21 kcal/mol from the fHg estimate presented in table 2. uBased on subtracting the measured Hs value from the 
fHg estimate presented in table 2.  
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Table 5. B(CH3)3-amine adduct condensed-phase properties: estimates from the current work and benchmark values. 

re(B-N) (Å)  (g/cc) Hs (kcal/mol) fHc(298) (kcal/mol) 
 Other This work Other This work Other 

B(CH3)3-TMH  16.5 –32.1 
B(CH3)3-NH3 1.648a 0.849a 12.8 13.9b –63.0 
B(CH3)3-TMEDA  23.0 –67.9 
B(CH3)3-DBU  22.7 –62.5 
B(CH3)3-pyridine 1.664c 1.033c 16.8 16.9d –27.5 
B(CH3)3-MMA  13.8 13.1b –62.9 –64.3e 
B(CH3)3-TMA  14.4 15.1b –65.0 –66.6e 
B(CH3)3-HMTA  20.6 –22.5 
B(CH3)3-DMA 1.656f 0.89f 14.4 13.0b –63.7 
B(CH3)3-DBN  23.2 –58.5 
B(CH3)3-DABCO  17.8 –43.4 
B(CH3)3-TMMA  18.2 –63.0 
B(CH3)3-ABCO  19.7 19.0g –68.0 

 
2B(CH3)3-HMTA  26.3 –69.5 
2B(CH3)3-TMEDA 1.737a 0.955a 29.1 –116.6 
2B(CH3)3-DABCO  24.9 –95.3 

 
3B(CH3)3-HMTA  38.0 –121.2 
4B(CH3)3-HMTA  46.8 –167.2 
a Boese et al., 1991. bBrown et al., 1944. cKaszynski et al., 2009. dBrown et al., 1947. eGuest et al., 1969.   
fOuzounis et al., 1987. gBrown and Sujishi, 1948. 

 

 

Figure 2. Correlation between MW/Vol0.001 and densities for BH3-amine adducts. 



 

16 

Table 6. Hs values derived from vapor pressure measurements and parameters of the 0.001 electron/bohr3 
isosurface of electron density for BH3-amines. 

Hs
a SA  2 

kcal/mol 2  

BH3-NH3 23.1 86.5372546 0.224441 289.797209 8.1 
BH3-piperidine 21.0 165.7957310 0.175692 155.794618 5.2 
BH3-N(CH3)H2 18.8 107.7996105 0.243495 242.137756 7.7 
BH3-N(CH3)2H 18.5 125.4371055 0.241111 178.724254 6.6 
BH3-azetidine 16.2 134.0133402 0.242317 187.810773 6.7 
BH3-N(CH3)3 13.6 139.5255518 0.146642 137.127478 4.5 

a See table 4 for the source of these values. 
 

Rather, what appears to be more important than the parameters listed in table 6 is whether the 
amine group is primary, secondary, or tertiary, with (primary) > (secondary) > (tertiary). 
Since most of the adducts considered in the study involve relatively large tertiary amines and 
piperidine is a relatively large secondary amine, it was surmised that the measured Hs value for 
BH3-piperidine is greater than, or similar to, those of the BH3-amine adducts for which measured 
Hs values could not be found. Therefore, we decided to employ the measured Hs value for 
BH3-piperidine as a nominal estimate for the latter. Admittedly speculative, particularly for 
xBH3-amine adducts (x > 1), both this estimate and an estimate that is 10 kcal/mol larger was 
employed to derive nominal and lower bound fHc estimates to use as input for Isp predictions. 

For the B(CH3)3-amine adducts, the correlation between MW/Vol0.001 and measured densities 
proved to be poor. Coupled with the fact that the stabilities of these compounds were expected to 
be insufficient for them to be propellant ingredients; we decided to end the effort to predict their 
densities. Rather, it is noted that, as was observed for BH3-amine adducts, compared to the 
density of their amine, the densities of 1-acid:1-amine adducts are higher.  

The effort to develop a correlation between B(CH3)3-amine Hs values and properties of the 
adducts’ 0.001 electron/bohr3 isosurface was more successful than was the case for BH3-amine 
adducts. A least squares fit of equation 2 to the data in table 5 yielded: 

 Hs = 0.000219 (kcal/mol-Å4)*(SA)2 + 0.9125 (kcal/mol)*(2*)1/2 + 3.668 (kcal/mol) . (4) 

A plot of the fit (R2 = 0.86) is shown figure 3. The Hs estimates listed in table 5 are based on 
equation 4. Because no measured Hs values for xB(CH3)3-amine adducts (x > 1) could be 
found, the applicability of equation 4 to them is somewhat speculative. We believe it is valid 
because there are no strong intermolecular interactions (e.g., hydrogen bonding) that are 
produced or eliminated by the addition of more B(CH3)3 groups. 

Tables 4 and 5 list fHc(298) estimates calculated by subtracting Hs estimates from the 
fHg(298) estimates listed in tables 2 and 3. However, establishing meaningful error limits for 
these estimates is problematic. We consider it reasonable to assume that the fHg(298) estimates 
are within 5 kcal/mol of their actual value. Likewise, we expect the nominal Hs estimates to be 
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no more than 5 kcal/mol too positive and no more than 10 kcal/mol too negative. Because Isp 
decreases with decrease in fHc(298), from the standpoint of screening an adduct’s performance 
potential, the negative bound is the one of concern. Per the preceding discussion, it is considered 
to be 15 kcal/mol. 

 

Figure 3. Comparison of measured Hs values for B(CH3)3-amine 
adducts and their estimation using equation 3. 

4.3 Specific Impulse and Adiabatic Temperature Predictions 

Based on the literature search and the low B-N BDE estimates produced for the B(CH3)3-amine 
adducts, we were/are skeptical that any will be found to have the thermal and air stability 
required for tactical missile applications. Therefore, only Isp predictions for BH3-amine adducts 
were calculated. Table 7 lists maximum theoretical Isp and adiabatic temperature (Tad) predictions 
for [BH3-amine]-IRFNA systems. Analogous predictions for HTPB-IRFNA, DMAZ-IRFNA, 
and TMEDA-IRFNA are shown for comparison. Maximum Isp predictions based on nominal 
fHc(298) estimates for the [BH3-amine]-IRFNA systems exceed those of HTPB-IRFNA and are 
competitive with TMEDA-IRFNA and DMAZ-IRFNA. The Isp predictions calculated on the 
basis of fHc(298) values that were 15 kcal/mol more negative than the nominal estimates are 
also presented. Except for the case of BH3-NH3, where the decrease is fairly significant, the 
maximum Isp values decrease approximately 1%. The adiabatic temperatures of the [BH3-amine]-
IRFNA systems are generally comparable to the one predicted for TMEDA-IRFNA. As such, 
they are not considered cause for concern.   
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Table 7. Maximum theoretical Isp and adiabatic temperature (Tad) predictions for fuels combined with 
IRFNA.a 

 Isp (sec) Tad (K) 
 fHc(298)nom fHc(298)nom –15 fHc(298)nom 

BH3-NH3 2.50 279 266 1430 
BH3-TMH 1.25 272 269 1690 
BH3-pyridine 1.25 263 260 1810 
BH3-MMA 1.25 272 267 1700 
BH3-DMA 1.25 269 266 1670 
BH3-TMEDA 1.00 267 266 1990 
BH3-DMP 1.00 266 264 2000 
BH3-pyrrolidine 1.25 266 264 1676 
BH3-piperidine 1.00 265 263 2010 
BH3-TMTZ 1.00 266 265 1990 
BH3-azetidine 1.00 264 262 1980 
BH3-TMA 1.25 269 267 1670 
BH3-DBU 1.00 263 262 2030 
BH3-HMTA 1.00 264 263 2010 
BH3-DABCO 1.25 265 264 1690 
BH3-ABCO  1.00 264 263 2040 
BH3-DBN 1.00 263 261 2030 
BH3-TMMA 1.00 268 266 1980 
BH3-HTBN 1.00 262 261 2000 

 
2BH3-TMMA 1.25 272 270 1720 
2BH3-TMH 1.25 275 273 1770 
2BH3-HMTA 1.25 267 266 1730 
2BH3-TMEDA 1.25 270 268 1700 
2BH3-DMP 1.00 268 266 1980 
2BH3-DABCO 1.25 268 267 1750 

 
3BH3-HMTA 1.25 270 269 1780 
4BH3-HMTA 1.25 273 272 1830 

 
HTPB 1.00–1.25 262 1700 
TMEDA 1.00 267 1960 
DMAZ 1.25 270 1690 

a Results from an infinite area combustor rocket problem. Chamber pressure = 70 atm. Exit 
pressure = 1 atm.   

 
Because  can vary significantly over the course of a hybrid rocket motor firing, we were also 
interested in determining how Isp predictions changed as a function of this variable. Isp 
predictions for [2B(CH3)3-DABCO]-IRFNA are compared to predictions for HTPB-IRFNA, 
TMEDA-IRFNA and DMAZ-IRFNA in figure 4. It is observed that Isp predictions for  ranging 
from 0.2–1.0 are fairly similar for all four cases. However, as  increases above 1.0, the values 
for 2BH3-DABCO fall much less quickly than those for HTPB-IRFNA and TMEDA-IRFNA; 
and they exceed values for DMAZ-IRFNA for  ≥ 1.67. This behavior would be advantageous 
in a hybrid rocket motor application. 

Figure 4 also shows a plot of Isp values for [2BH3-DABCO]-IRFNA that were calculated 
assuming the fuel’s fHc(298) is 15 kcal/mol more negative than the nominal estimate. (It is 
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labeled [2BH3-DABCO(–15)]-IRFNA.) It is observed that there is less than 1% difference 
between the two cases for  up to about 2.5. Differences for  greater than 2.5 are slightly 
larger, but they do not change the overall conclusions regarding the performance potential of this 
system versus the three standards. Also, given that 2BH3-DABCO is denser than HTPB, 
TMEDA, or DMAZ, it would appear to warrant further study as a fuel additive. Of particular 
interest is a quantification of its reactivity with IRFNA and other oxidizers such as HAN and 
hydrogen peroxide. Drop-into-drop ignition delay experiments would undoubtedly be instructive. 

 

Figure 4. Isp predictions as a function of  for various fuels in combination with IRFNA. 

5. Summary and Conclusions 

BH3-amine and B(CH3)3-amine adducts were investigated as potential additives for liquid/gel or 
solid (hybrid) rocket motor fuels. The investigation included an extensive literature search and 
the calculation of property predictions for a variety of known and notional adducts. Gas-phase 
and condensed-phase property predictions were derived from results obtained from quantum 
chemistry methods. B-N bond dissociation energies and adduct enthalpies of formation at 298 K 
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were among the gas-phase properties predicted. Condensed-phase properties that were predicted 
included: enthalpies of sublimation, enthalpies of formation at 298 K [fHc(298)], and densities.  
Values for these properties that were derived from measured data or higher-level computational 
methods were also found in open literature sources. The literature-based data were utilized both 
to develop and to validate the estimation methods employed in this study. 

General observations of the thermal and/or air stabilities of some adducts were also found in 
open literature sources, and they suggest that several BH3-amine adducts have stabilities that are 
sufficient for tactical rocket propellant applications, with the stability of 2BH3-DABCO being 
notable. Moreover, there appears to be a correlation between observed stabilities and B-N BDEs, 
the results indicating that B-N BDEs ≥ 35 kcal/mol are required for the adducts to have the 
requisite stabilities. A number of BH3-amine adducts have B-N BDEs that exceed  
35 kcal/mol, but all the B(CH3)3-amine adducts that were considered were found to have B-N 
BDEs ≤ 24 kcal/mol. Therefore, B(CH3)3-amine adducts are considered unlikely to be viable 
candidates for the proposed applications. 

The fHc(298) estimates for BH3-amine adducts were employed as input for predicting the 
specific impulse (Isp) each could potentially generate when combined with inhibited red fuming 
nitric acid. All adducts produced maximum theoretical values that are competitive with 
hypergolic/hybrid combinations that the Army has considered for tactical missile applications, 
and their values fall off less rapidly than the standards at nonoptimal equivalence ratios. On the 
basis of the study’s findings, 2BH3-DABCO warrants further investigation as an additive for the 
proposed applications. 2BH3-dimethylpiperazine (2BH3-DMP) and BH3-trimethylamine (BH3-
TMA) also appear to warrant further study. (BH3-TMA is commercially available.) The next step 
would be to perform simple screening tests that would quantify their reactivity with IRFNA and 
other liquid oxidizers, such as HAN and hydrogen peroxide. 
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List of Symbols, Abbreviations, and Acronyms  

AMRDEC U.S. Army Aviation and Missile Research Development and 
 Engineering Center 

ARL U.S. Army Research Laboratory 

BDE bond dissociation energies 

DMAZ 2-azido-N, N-dimethylethanamine 

DOD  Department of Defense 

GED gas-phase electron diffraction 

h hours 

HAN hydroxylammonium nitrate 

HAST High Altitude Supersonic Target 

HTPB  hydroxy-terminated polybutadiene 

IRFNA inhibited red fuming nitric acid 

ISVE impinging stream vortex engine 

MWS microwave spectroscopy 

RMS root mean square 

TMEDA tetramethylethylenediamine 

wt% weight-percent 
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