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1. Objective 

Accurate, efficient, stable, and thermodynamically consistent models for nonlinear anisotropic 

elasticity are needed for mesoscale modeling of metals and ceramics subjected to large stresses 

that occur under ballistic loading conditions. Nonlinear elasticity theory describes large 

deformation behavior of solid bodies subjected to stresses—including metals, ceramics, 

minerals, and energetic materials. The standard Lagrangian formulation (1–3) of nonlinear 

elasticity in Cartesian coordinates for anisotropic crystals incorporates right Cauchy-Green strain 

tensor 

 T1 1
2 2

( ) ( ), ( ) ( )IJ K kI kJ IJE X F F    E X F F 1  (1) 

entering thermodynamic potentials, (e.g., internal energy U and Helmholtz free energy ): 

 ( , ), ( , )U U S T  E E  (2) 

where S is entropy and T temperature. Deformation gradient F and volume ratio J are 

 
0

1/2( ) , ( ) det [det(2 )]V
iJ K i J iJ i J V

F X x X u X J         X F E 1  (3) 

where u is the particle displacement that here depends on reference coordinates X.  

This Lagrangian approach, when elastic constants of up to third order are included, has been 

successful for modeling many materials under compression up to V0-V0.05V0, but its accuracy 

degrades at larger compression that may arise in shock loading or in extreme ballistic events; for 

example, elastic constants of orders four and higher—very difficult to measure and unknown for 

most anisotropic materials—may be needed (3). Existing theory and one-dimensional research 

wave propagation codes that incorporate Lagrangian theory with higher-order constants suffer 

from numerical inefficiency and intrinsic material instability, particularly for conditions 

involving simultaneous shear and compression (4). Many finite-strain elastic-plastic models used 

in three-dimensional hydrocodes for design of armor and munitions incorporate hypoelastic 

stress updates that are legacies from the 1980s; when elastic strains are large, such approaches 

can give physically unrealistic and mathematically unsound results (5). Codes typically compute 

deviatoric and spherical stress components in a decoupled way inconsistent with thermodynamic 

and material symmetry requirements, especially for anisotropic materials. A few advanced 

models for anisotropic crystals available in hydrocodes propose stress-strain relationships 

directly in terms of logarithmic strain (6, 7), which provide apparent numerical stability but 

apparently do not ensure integrability of stress-strain-entropy relations to analytic 

thermodynamic potentials. Without existence of potentials, relationships among state variables 

and material constants (e.g., thermal expansion, specific heat, isothermal versus isentropic 

constants) must be posited by conjecture, since Maxwell’s identities among cross derivatives of 
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state quantities do not necessarily apply. Furthermore, in the absence of an elastic potential, 

solutions to elastostatic problems need not reflect stationary points of the energy functional for 

the body.  

The objective of the proposed work is construction and implementation of a new continuum 

theory to remedy these issues. Specifically, this research will fully develop a complete theory of 

nonlinear thermoelasticity incorporating the Eulerian material strain tensor: 

 1 T 1 11 1
2 2

( ) ( ), ( ) ( )IJ i IJ Ik JkD x F F      D x F F1  (4) 

Indices of this strain tensor are referred to the material coordinate system, even though the strain 

tensor is “Eulerian” in sense that it is constructed from the inverse deformation gradient. Because 

D is symmetric and referred to material coordinates, the functional form of its thermoelastic 

potentials will be the same as that for a conventional potential based on E. For example, elastic 

constant tensors of all orders will have the same symmetries, though magnitudes of higher-order 

constants will differ between the two theories. Restricting attention to fixed S for illustrative 

purposes, assuming a stress-free reference configuration, and written explicitly with elastic 

constants up to fourth order in either strain variable: 

 1 1 1
2! 3! 4!

( )U C E E C E E E C E E E E              E  (5) 

 1 1 1
2! 3! 4!

( )U c D D c D D D c D D D D   D              (6) 

Greek indices denote Voigt notation and span 1,2, … 6. Equating equations 5 and 6, expanding E 

and D in powers of displacement gradients, and matching terms leads to mathematically 

consistent relationships among second-, third-, and higher-order elastic constants , ,...C C 

and , ,...c c   Upon derivation of such transformation formulae, published values for 

Lagrangian constants entering equation 5 can be immediately converted to those in equation 6, 

without need for further experiments. An obvious advantage of equation 6 over 5 is that under 

spherical compression, 
0

lim
V

D  whereas 3
4

0
lim
V

E , so a potential incorporating D such as 

equation 6 would correctly tend towards infinite energy as the material shrinks to infinitesimal 

volume, whereas an energy function of E such as equation 5 truncated at reasonable order would 

unrealistically yield finite energy at zero volume.  

Success of the D-based Eulerian theory will be gauged by its ability to describe stresses in 

ceramics and metals subjected to uniaxial strain as occurring in plate impact, with fewer 

constants than the usual E-based finite-strain theory. Associated tasks include incorporation of 

thermal effects (Grüneisen tensors), inelasticity (slip and twinning), and internal stability 

analyses, none of which have been reported for this kind of theory for general stress states and 

crystals of arbitrary symmetry. Recent work (4) has demonstrated that under finite shear, E-

based theory is prone to intrinsic instability in terms of attainment of zero eigenvalue(s) of the 

incremental stiffness (8) with increasing magnitude of third-order elastic constants, regardless of 
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their sign. While certain materials such as quartz (9) and boron carbide (10–12) demonstrate true 

physical instabilities, in a model such instabilities should result from the constitutive laws rather 

than problems associated with extrapolation of the strain-based theory to large deformation. 

Benefits of using Eulerian strain tensors for isotropic materials were perhaps first posited in the 

1930s by Murnaghan (13), and were substantiated for cubic crystals under hydrostatic stress by 

Birch (14). Thermal effects for cubic crystals were considered later in an Eulerian formulation 

(15), and a mechanical theory for noncubic crystals was initiated in (16) and exercised soon 

thereafter (17). With the exception of (13, 14), these papers remain obscure, and theoretical 

derivations/predictions and comparisons with data are limited to hydrostatic pressure loading. 

Nonetheless, the Eulerian approach has demonstrated promise for hydrostatic compression of 

anisotropic materials, as shown in figure 1.  
         

 

Figure 1. Comparison of accuracy of second- () and third- (---) order Eulerian models for hydrostatic 

compression of -quartz (left [16]) and demonstration of superior accuracy of Eulerian () over 

Lagrangian (


) theory for hydrostatic compression of magnesium (right [17]). 

Despite such promise, prior to the current work, Eulerian D-based theory had not been derived 

for solids of arbitrary anisotropy, and was untested for general stress states incorporating shear 

and compression. The theory had previously not been applied to dynamic or adiabatic conditions 

characteristic of shock or terminal ballistics. Use of such a model in numerical simulations 

appeared nonexistent, with algorithms unavailable in shock physics codes.  

Formally, objectives of this proposal are to derive complete governing equations and assess 

accuracy and stability of this new Eulerian anisotropic finite-strain model. The intent is to prove, 

for materials of interest, that this approach offers greater accuracy with fewer higher-order 

constants, with less pathological (i.e., nonphysical) instability than Lagrangian theory.  
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2. Approach 

Technical tasks for a two-year research program are discussed below. The first-year approach 

has focused on nonlinear elastic crystalline materials (i.e., pure or ideal crystals without defects 

or inelastic deformation mechanisms). Specifically, in Fiscal Year 2013 (FY13): 

• Derivations have been completed for a fully anisotropic thermoelastic Eulerian 

formulation, including transformation rules among thermal and elastic material constants, 

for materials of arbitrary symmetry. Details are published (18), and key results will be 

highlighted later. 

• New analytical solutions have been derived and studied for hydrostatic compression, 

uniaxial strain, and simple shear, for ideal crystals with cubic and Cauchy symmetry. These 

solutions, including stress-deformation responses and intrinsic stability criteria, have been 

evaluated over a realistic range of cubic elastic constants, and as a degenerate case include 

isotropic (polycrystalline) materials. Results, discussed more later, are published (18). 

• A new analytical solution has been derived for the anisotropic shock response of single 

crystals, for an Eulerian internal energy potential quartic in strain and linear in entropy. 

This solution has been evaluated, and compared with available shock compression data, for 

single crystal quartz (trigonal symmetry), alumina (i.e., sapphire; trigonal symmetry), 

diamond (cubic symmetry), aluminum (cubic symmetry), copper (cubic symmetry), and 

magnesium (hexagonal symmetry). Comparison has been made with the analogous 

Lagrangian solution. Derivation of the solution and its evaluation for nonmetals have been 

published (18). Results for metals will be published (19) and are summarized later. 

Work in FY13 has focused on behavior of ideal nonlinear elastic solids. Finite, purely elastic 

deformations of real crystals are generally possible under limited circumstances studied already: 

hydrostatic compression (in which shearing and tensile inelastic mechanisms are inhibited by the 

imposed stress state); uniaxial or shock compression of stiff crystals such as diamond, quartz, 

and sapphire below the yield point or Hugoniot Elastic Limit (HEL) (18); in very small volumes 

of ductile or brittle material amenable to atomic simulation of shock compression (19); or in the 

vicinity of defect cores (20). In ductile crystals—for example, metals and some minerals and 

organic crystals—inelastic deformation associated with dislocation glide, twinning, vacancy or 

void production, and/or fracture almost always accompanies (large) elastic deformation for 

loading conditions involving significant shear and/or tensile stress. Such complex loading 

conditions are inevitably encountered during ballistic impact problems pertinent to Army 

applications in Protection and Lethality, for example. Thus, technical tasks for FY14 will address 

the following:   
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• The fully anisotropic theoretical formulation will be extended to include plastic slip and 

twinning mechanisms that occur in more ductile materials and associated entropic 

temperature rise for shock loading. 

• New solutions for the elastic-plastic planar shock problem incorporating this more general 

elastic-plastic finite-strain theory will be sought. 

• The complete Eulerian theory will be implemented numerically in a finite-deformation 

wave propagation code accounting for dissipative inelastic mechanisms. 

• Accuracy of the new nonlinear elastic-plastic model(s) will be evaluated versus hydrostatic 

and shock compression data for ceramic and metallic single crystals of interest. 

3. Results 

In reference 18, a complete continuum thermoelastic theory for large deformation of crystals of 

arbitrary symmetry has been developed. The theory incorporates as a fundamental state variable 

in the thermodynamic potentials what is termed an Eulerian strain tensor (in material 

coordinates) constructed from the inverse of the deformation gradient, written as D in equation 4. 

Thermodynamic identities and relationships among Eulerian and the usual Lagrangian material 

coefficients have been derived, significantly extending previous literature that focused on 

materials with cubic or hexagonal symmetry and hydrostatic loading conditions. Analytical 

solutions for homogeneous deformations of ideal cubic crystals have been studied over a 

prescribed range of elastic coefficients; stress states and intrinsic stability measures have been 

compared. For realistic coefficients, Eulerian theory has been shown to predict more physically 

realistic behavior than Lagrangian theory under large compression and shear. Analytical 

solutions for shock compression of anisotropic single crystals have been derived for internal 

energy functions quartic in Lagrangian or Eulerian strain and linear in entropy; results have been 

analyzed for quartz, sapphire (i.e., alumina), and diamond. When elastic constants of up to order 

four are included, both Lagrangian and Eulerian theories are capable of matching Hugoniot data. 

When only the second-order elastic constant is known, an alternative theory incorporating a 

mixed Eulerian–Lagrangian strain provides a reasonable approximation of experimental data. 

Some notable results are highlighted in what follows. Axial components of strains are compared 

for spherical and uniaxial deformations in figure 2. The magnitude of the axial component of D 

increases much more rapidly than the magnitude of the axial component of E under compression. 

Internal energy, stress/pressure, and stiffness of typical strong solids all tend to increase rapidly 

with large compression (14, 21). Therefore, Eulerian theory would logically be expected to 

converge faster, with fewer higher-order elastic constants needed, than Lagrangian theory.  
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Figure 2. Lagrangian (E11) and Eulerian (D11) strains 

under spherical and uniaxial deformation (18). 

Analytical results for pressure p under hydrostatic compression, axial stress P under uniaxial 

compression, and shear stress  under simple shear are compared in figures 3a, b, and c, 

respectively. Stresses are normalized by ambient bulk modulus B0; Poisson’s ratio is . Stresses 

increase more rapidly with large strain for Eulerian theory than for Lagrangian theory, in general 

agreement with most data (14, 21) (B0  4), where B0 is the ambient pressure derivative of the 

tangent bulk modulus. The pressure-volume response of the Eulerian model similar is similar to 

the Murnaghan equation of state (figure 3a). Lagrangian theory is unstable for large shear strain 

as is evident from the softening with increasing shear strain  in figure 3c. Evaluation of 

eigenmodes of incremental stiffness tensors showed that Eulerian theory is also more 

intrinsically stable than Lagrangian theory under compression. 
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 (a)      (b) 

 

 (c) 

Figure 3. Analytical solutions (18) for normalized stress components: (a) hydrostatic compression; (b) uniaxial 

strain compression; (c) simple shear. 

In reference 19, nonlinear elastic-plastic theory has been advanced for anisotropic solids 

incorporating an Eulerian strain measure, in locally unstressed material coordinates, that is a 

function of the inverse elastic deformation gradient and its transpose. A new general 

thermomechanical theory accounting for both elastic and plastic deformations has been briefly 

outlined in parallel with equations for usual Lagrangian finite-strain theory; however, a complete 

anisotropic Eulerian crystal elastic-plastic theory remains to be derived and numerically 

implemented in a wave propagation code in FY14. Idealized predictions of Eulerian and 

Lagrangian theories for elastic shock stress in single crystals of aluminum, copper, and 

magnesium have been compared, applicable for very small volumes of material without defects 

(i.e., no slip/twinning). Eulerian solutions demonstrate greater accuracy compared to published 

atomic simulation data for aluminum (22); see figure 4a, which shows shock pressure P in a 

[100]-oriented Al single crystal, normalized by isentropic second-order longitudinal stiffness 

C11. For all three metals, Eulerian theory exhibits faster convergence than Lagrangian theory 

with increasing order of elastic constants entering internal energy. Such convergence is further 

verified by smaller magnitudes of all third- and fourth-order elastic constants of Eulerian theory 
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relative to those of Lagrangian theory for the same material. If strength can be neglected, 

Eulerian theory offers superior prediction of shock Hugoniots for all three metals; this is 

demonstrated for Al in figure 4b, which compares predicted pressure with shock data (23). 

 

Figure 4. Analytical anisotropic thermoelastic solutions (19) for axial stress in shocked aluminum (Al) single 

crystals compared with atomic simulation data (22) (a); and analytical pressure solution for shocked Al 

polycrystals in the hydrodynamic limit compared with experimental data (23) (b). 

Table 1 summarizes loading conditions, materials, and model performance studied in FY13, as 

discussed in detail in references (18, 19). Overall, the Eulerian nonlinear thermoelastic theory 

fully developed in Year 1 of this Director’s Research Initiative (DRI) project appears superior to 

traditional Lagrangian theory, justifying ongoing research in FY14 and subsequent transition of 

the theory to the U.S. Army Research Laboratory (ARL) simulation codes used for development 

and analysis of armor and munitions. 
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Table 1. Summary of FY13 research results: finite-strain model evaluations. 

Loading Protocol Material Best Model Remarks Ref. 

Hydrostatic compression Ideal cubic, B0 =4 Eulerian Eulerian more accurate p-V response (18) 

Uniaxial compression Ideal cubic, B0 =4 Eulerian Eulerian more accurate and stable (18) 

Simple shear Ideal cubic, B0 =4 Eulerian Eulerian more accurate and stable (18) 

Shock compression -Quartz Either Lagrangian & Eulerian equally valid (18) 

Shock compression -Alumina Either Lagrangian & Eulerian equally valid (18) 

Shock compression Diamond Eulerian Eulerian more accurate overall (18) 

Shock compression Aluminum Eulerian Eulerian best fit to atomic simulation (19) 

Shock compression Copper Eulerian Eulerian faster convergence (19) 

Shock compression Magnesium Eulerian Eulerian faster convergence (19) 

 

4. Conclusions 

The new anisotropic Eulerian theory developed in the present work has been shown to provide 

superior accuracy and/or stability over existing Lagrangian theory for large static compression 

and shear deformation of ideal cubic crystals and diamond, and for the shock response of three 

different metallic crystals. For the shock response of single crystals of quartz and sapphire, 

Eulerian and Lagrangian theories are of comparable accuracy, with fourth-order elastic constants 

(quartz) and third-order elastic constants (diamond) necessary for a best fit to published 

experimental shock compression data. The second-year investigation will consider extension of 

the theory to finite-strain elastic-plastic behavior and numerical simulations of wave propagation.  
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6. Transitions 

Results of the current work are of high interest to modeling communities within the Department 

of Defense (DOD), Department of Energy (DOE), and the Materials in Extreme Dynamic 

Environments Collaborative Research Alliance (MEDE CRA). To date, research results have 

been transitioned via publications (18–20). Upon completion of Year 2 of this project, a plan will 

be formalized for implementation of the model into multiscale simulations of armor and 

munitions at ARL. Specifically, research developments from this DRI are expected to offer 

substantial improvements over prior analytical and computational studies of the finite-strain 

response of metals (24–32), ceramics (33–37), concrete and geologic materials (38, 39), and 

energetic molecular crystals (7). The nonlinear elastic model can also be directly implemented 

into phase-field simulations of microstructure (40–42). New developments in studies of lattice 

defects in electronic materials (43–45) and generic crystalline solids (46–54) are also foreseen. 
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