Reformulation of Nonlinear Anisotropic Crystal Elastoplasticity for Impact Physics

by JD Clayton

Approved for public release; distribution unlimited.
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.
Reformulation of Nonlinear Anisotropic Crystal Elastoplasticity for Impact Physics

by JD Clayton

Weapons and Materials Research Directorate, ARL

Approved for public release; distribution unlimited.
4. TITLE AND SUBTITLE
Reformulation of Nonlinear Anisotropic Crystal Elastoplasticity for Impact Physics

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Army Research Laboratory
ATTN: RDRL-WMP-C
Aberdeen Proving Ground, MD 21005-5066

8. PERFORMING ORGANIZATION REPORT NUMBER
ARL-TR-7231

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Several finite elastic strain measures are evaluated for use in constitutive models of crystalline elasticity and elastoplasticity. These include the Green material strain tensor, the Eulerian material strain tensor, and the logarithmic material strain tensor, all of which are referred to locally relaxed coordinates invariant under spatial rotations. Solutions to the planar shock problem from previous work are summarized, and new applications of logarithmic strain-based theory toward shock compression of aluminum, copper, and magnesium single crystals and polycrystals are presented. Consideration of these new results in conjunction with previous analysis for metals, ceramics, and minerals suggests that Eulerian strain-based theory is preferred for typical ductile metallic crystals, while logarithmic strain-based theory is recommended for modeling shocks in ceramics and minerals with larger ratios of shear modulus to bulk modulus.

15. SUBJECT TERMS
elasticity, plasticity, shock physics, ceramics, metals

16. SECURITY CLASSIFICATION OF:
<table>
<thead>
<tr>
<th></th>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
<td></td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
22

19. NAME OF RESPONSIBLE PERSON
JD Clayton

19b. TELEPHONE NUMBER (Include area code)
410-278-6146
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>iv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>iv</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Approach</td>
<td>3</td>
</tr>
<tr>
<td>3. Results</td>
<td>4</td>
</tr>
<tr>
<td>4. Conclusions</td>
<td>8</td>
</tr>
<tr>
<td>5. Transitions</td>
<td>9</td>
</tr>
<tr>
<td>6. References</td>
<td>10</td>
</tr>
<tr>
<td>Distribution List</td>
<td>15</td>
</tr>
</tbody>
</table>
List of Figures

Fig. 1 Lagrangian (E_{11}), logarithmic (e_{11}), and Eulerian (D_{11}) strains under spherical and uniaxial deformation ..2

Fig. 2 Analytical anisotropic thermoelastic solutions for axial stress in (a) shocked Al single crystal compared with atomic simulation data, (b) shocked Cu single crystal, (c) shocked Mg single crystal along a-axis, and (d) shocked Mg single crystal along c-axis ...6

Fig. 3 Analytical pressure solutions for polycrystalline (a) aluminum, (b) copper, and (c) magnesium in the hydrodynamic limit compared with experimental data ...7

List of Tables

Table 1 Single crystal and polycrystal properties ($\theta_0=295\text{K}; C_{\alpha\beta}$ in GPa; ρ_0 in g/cm3) ..5

Table 2 Relative error (%) in shock stress P predicted by third-order (Lag3, Log3, Eul3) and second-order (Lag2, Log2, Eul2) theories: Al and Cu ..6

Table 3 Relative error (%) in shock stress P predicted by third-order (Lag3, Log3, Eul3) and second-order (Lag2, Log2, Eul2) theories: Mg6

Table 4 Ratio of ambient Voigt shear modulus to bulk modulus8

Table 5 Summary of present and prior research results: finite strain model evaluations ...8
1. Introduction

Nonlinear hyperelasticity addresses the thermodynamically reversible response of solids subjected to large deformation; classes of crystalline materials of present interest include metals, ceramics, minerals, and energetic materials. Accurate, efficient, stable, and thermodynamically consistent models for nonlinear anisotropic elasticity are required for proper mesoscale modeling of crystalline solids subjected to impact or ballistic loading. At a material element with reference coordinates X and spatial coordinates x, the deformation gradient F and volume ratio J are

$$F(X) = \partial x / \partial X, \quad F_{ij}(X, x) = \partial x_i / \partial X_j = \delta_{ij} + \partial u_i / \partial X_j; \quad J(X) = V / V_0 = \det F,$$

where u is the particle displacement vector. For an elastic-plastic material, where “plastic” refers to any thermodynamically irreversible mechanism such as dislocation glide, deformation twinning, fracture, or pore collapse, the total deformation gradient F is typically split into a product of a thermoelastic term (superscript E) and a plastic term (superscript P):

$$F = F^E F^P, \quad F_{ij} = F^E_{ik} F^P_{kj}, \quad J = J^E J^P = \det F^E \det F^P.$$

Usual Lagrangian formulations of nonlinear elasticity for crystals1,2 incorporate the elastic Green material strain tensor

$$E = \frac{1}{2}(F^{E^{T}} F^{E} - 1), \quad E_{ij} = \frac{1}{2}(F^{E}_{ik} F^{E}_{kj} - \delta_{ij}).$$

Also considered herein are theories incorporating the elastic Eulerian material strain tensor

$$D = \frac{1}{2}(1 - F^{E^{-1}} F^{E^{-T}}), \quad D_{ij} = \frac{1}{2}(\delta_{ij} - F^{E^{-1}}_{ik} F^{E^{-1}}_{kj}),$$

and the elastic material logarithmic strain tensor

$$e = \ln U^E = \frac{1}{2} \ln(F^{E^{T}} F^{E}), \quad e_{ij} = \frac{1}{2} \ln(F^{E^{T}} F^{E})_{ij}.$$

Elastic constant tensors of all orders have the same symmetries, though magnitudes of higher-order constants differ among the 3 representations. At fixed entropy, assuming a stress-free reference configuration, and written explicitly with elastic constants up to fourth order, internal energy functions per unit reference volume are expressed as the Taylor polynomials

$$\bar{U}(E) = \frac{1}{2!} C_{\alpha\beta\gamma\delta} E_{\alpha} E_{\beta} + \frac{1}{3!} \bar{C}_{\alpha\beta\gamma\delta} E_{\alpha} E_{\beta} E_{\gamma} + \frac{1}{4!} \bar{C}_{\alpha\beta\gamma\delta\epsilon} E_{\alpha} E_{\beta} E_{\gamma} E_{\delta} + \cdots,$$
Greek indices denote Voigt notation. Consistent relationships among second-(equal), third-, and higher-order elastic constants have been derived elsewhere, allowing values for Lagrangian constants entering Eq. 6 to be converted to those in Eqs. 7 and 8 without further experiments. Axial components of strain tensors are compared for spherical and uniaxial deformations in Fig. 1. The magnitude of the axial component of \mathbf{D} increases much more rapidly than that of \mathbf{E} under compression, with \mathbf{e} demonstrating trends intermediate to the other strains. Internal energy, stress/pressure, and stiffness of strong solids all tend to increase rapidly with compression. Therefore, Eulerian and logarithmic theories would be expected to converge faster, with fewer higher-order elastic constants needed, than Lagrangian theory.

![Graph showing Lagrangian (E), logarithmic (e), and Eulerian (D) strains under spherical and uniaxial deformation](image_url)

Fig. 1 Lagrangian (E_{11}), logarithmic (e_{11}), and Eulerian (D_{11}) strains under spherical and uniaxial deformation

Benefits of Eulerian strain tensors for isotropic materials were predicted and demonstrated for cubic crystals under hydrostatic stress. Thermal effects were considered in Davies for cubic crystals, and a theory for noncubic crystals was initiated in Weaver. A complete \mathbf{D}-based continuum thermoelastic theory for large deformation of crystals of arbitrary symmetry was developed in Clayton. Analytical solutions for homogeneous deformations of ideal cubic crystals were studied over a prescribed range of elastic coefficients; stress states and intrinsic stability measures were compared. For realistic coefficients, Eulerian theory predicted more realistic and stable behavior than Lagrangian theory under large compression and shear. Analytical solutions for shock compression of anisotropic single crystals were derived for internal energy functions quartic in Lagrangian or Eulerian strain and linear in entropy; results were analyzed for nonmetals quartz, sapphire, and diamond in Clayton and metals aluminum, copper, and magnesium.
in Clayton. A complete \(e \)-based continuum thermoelastic theory was analogously developed in Clayton and applied to study the shock response of the same 3 nonmetals. The theory was extended to describe elastic-plastic response using the decomposition of Eq. 2, and solutions for plastic shocks (involving slip, twinning, or shear fractures) following an elastic precursor in rate independent solids were derived. Logarithmic theory delivered superior accuracy to Lagrangian and Eulerian theories for modeling shocks in sapphire (X- and Z-cut), quartz (Z-cut), and diamond (X-cut). Logarithmic theory incorporating third-order elastic constants was also applied to analytically model the elastic-inelastic response of polycrystalline titanium diboride ceramic, including double yield and effects of static lateral prestress. Eulerian theory was recently used to numerically model the viscoplastic response of aluminum single crystals and textured polycrystals in wave propagation simulated using the finite difference method, wherein Lagrangian theory was found insufficient for modeling strong/overdriven elastic-plastic shocks.

2. Approach

New application of logarithmic strain-based theory (\(e \)-based theory) to shock compression of metals is presented here. Predictions are thermoelastic and strictly applicable only for very small volumes, such as in atomic simulations or in the immediate vicinity of pinned defect cores, wherein plastic deformation does not occur. Solutions to the planar thermoelastic shock problem in anisotropic crystals were derived fully for Lagrangian and Eulerian theory in Clayton and for logarithmic theory in Clayton. The procedure involves simultaneous solution of Rankine-Hugoniot equations for compatibility and conservation of momentum and energy, along with consideration of internal energy functions (Eqs. 6, 7, or 8) extended to include entropy (Grunéisen tensors). Axial shock stress \(P \) (positive in compression) is

\[
P = -J \frac{\partial U}{\partial E} = -J[C_{11}E + \frac{1}{2}C_{111}E^2 + \frac{1}{6}C_{1111}E^3 + O(E^3)] \quad \text{(Lagrangian)},
\]

\[
P = -J^\frac{3}{2} \frac{\partial U}{\partial D} = -J^\frac{3}{2}[C_{11}D + \frac{1}{2}C_{111}D^2 + \frac{1}{6}C_{1111}D^3 + O(D^3)] \quad \text{(Eulerian)},
\]

\[
P = -J^{-1} \frac{\partial U}{\partial e} = -J^{-1}[C_{11}e + \frac{1}{2}C_{111}e^2 + \frac{1}{6}C_{1111}e^3 + O(e^3)] \quad \text{(Logarithmic)},
\]

where entropic contributions are of order 3 in scalar strain measures for uniaxial strain:

\[
J = (1 + 2E)^{1/2} = (1 - 2D)^{-1/2} = \exp(e) .
\]
In laboratory-scale specimens, yielding would commence in pure ductile metals at small compressions at which effects of higher-order constants and differences among Eqs. 9–11 would be negligible. However, nonlinear elastic effects on deviatoric stress may be important at larger compressions after yielding, particularly for lower symmetry materials with restricted slip planes/directions,\(^4\) and the nonlinearity in pressure-volume response is important regardless of shear strength. When strength is low and can safely be omitted, the response of metals to moderate shocks can often be adequately approximated \((p \approx P)\) by an adiabatic pressure-volume \((p-J)\) equation of state (EOS) for spherical compression. The EOS corresponding to each of Eqs. 6–8 truncated at order 3 in strain is\(^3\)–\(^5\)

\[
p = -\frac{\partial U}{\partial J} = \frac{1}{2} B_0 (J^{1/3} - J^{4/3})[1 - \frac{1}{2} B'_0 (J^{2/3} - 1)] \quad \text{(Lagrangian), (13)}
\]

\[
p = -\frac{\partial U}{\partial J} = \frac{3}{2} B_0 (J^{2/3} - J^{5/3})[1 + \frac{1}{2} (B'_0 - 4) (J^{2/3} - 1)] \quad \text{(Eulerian), (14)}
\]

\[
p = -\frac{\partial U}{\partial J} = -B_0 ((\ln J)/J)[1 - \frac{1}{2} (B'_0 - 2) \ln J] \quad \text{(Logarithmic), (15)}
\]

where \(B_0\) is the isentropic bulk modulus and \(B'_0\) is its pressure derivative in the reference state.

3. Results

Properties for aluminum (Al), copper (Cu), and magnesium (Mg) are reported in Table 1.\(^4\) Predictions for shock stress versus volume ratio are made using the analytical solutions of Eqs. 9–11, considering only pure mode directions (strictly longitudinal response). Shock stress \(P\) normalized by second-order isentropic elastic constant \(C_{11}\) is shown in Fig. 2a for Al, Fig. 2b for Cu, Fig. 2c for Mg \([\text{a-axis}]\) and Fig. 2d for Mg \([\text{c-axis}]\). Higher-order elastic constants are converted from measured/predicted Lagrangian constants using formulae derived or presented in Clayton\(^3\)–\(^5\) and Perrin and Delannoy-Coutris.\(^6\) Elastic constants of up to order 4 are considered in results labeled “4th order”. Results labeled “3rd order” and “2nd order” are obtained, respectively, by setting fourth-order and both third- and fourth-order elastic constants to zero. Results in Fig. 2 compare logarithmic and Eulerian theories; plots comparing Lagrangian and Eulerian theories can be found in Clayton.\(^4\) All longitudinal higher-order elastic constants (i.e., all third- and fourth-order constants) are smaller in magnitude for Eulerian and logarithmic theory than Lagrangian theory for these metals (Table 1). Stress predictions of second- and third-order models are usually closer to those of fourth-order theory for Eulerian and logarithmic theory than Lagrangian theory. Tables 2 and 3 list relative error (%) of second- and third-order predictions
relative to fourth-order predictions, computed as $2 \times (\text{second- or third-order result} - \text{fourth-order result})/(\text{second- or third-order result} + \text{fourth-order result})$. For each crystal type, such errors are almost always smaller in magnitude for Eulerian theory (Eul2, Eul3) and logarithmic theory (Log2, Log3) than for Lagrangian theory (Lag2, Lag3) at a given volume ratio and order of approximation. Together, these observations imply a faster converging series in Eqs. 7 or 8 than in Eq. 6, as the number of higher-order constants is increased and greater accuracy of Eulerian or logarithmic theory than Lagrangian when the same number of constants (i.e., the same order of Taylor polynomial) is used. Eulerian and logarithmic theories trend toward comparable accuracy with one theory or the other possibly more accurate for a given metal or order of approximation. For Al, as shown in Fig. 2a, the analytical solution incorporating fourth-order Eulerian theory best matches atomic predictions14 at $J = 0.923$, error in fourth-order Eulerian theory versus atomic simulation is -1.4%, compared to -7.4% for fourth-order Lagrangian theory and -2.2% for fourth-order logarithmic theory.

Table 1 Single crystal and polycrystal properties4 ($\theta_0 = 295$ K; $C_{\alpha\beta}$ in GPa; ρ_0 in g/cm3)

<table>
<thead>
<tr>
<th>Property</th>
<th>Al [100]</th>
<th>Cu [100]</th>
<th>Mg [a-axis]</th>
<th>Mg [c-axis]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{11}</td>
<td>107</td>
<td>166</td>
<td>59.4</td>
<td>61.6</td>
</tr>
<tr>
<td>C_{111}</td>
<td>-1,080</td>
<td>-1,279</td>
<td>-664</td>
<td>-728</td>
</tr>
<tr>
<td>\hat{C}_{111}</td>
<td>203</td>
<td>715</td>
<td>49</td>
<td>12</td>
</tr>
<tr>
<td>\hat{C}_{111}</td>
<td>-438</td>
<td>-283</td>
<td>-308</td>
<td>-358</td>
</tr>
<tr>
<td>C_{111}</td>
<td>25,000</td>
<td>11,900</td>
<td>8,170</td>
<td>7,380</td>
</tr>
<tr>
<td>\hat{C}_{111}</td>
<td>10,500</td>
<td>2,000</td>
<td>1,220</td>
<td>893</td>
</tr>
<tr>
<td>C_{111}</td>
<td>15,036</td>
<td>1,200</td>
<td>1,865</td>
<td>369</td>
</tr>
<tr>
<td>Γ_1</td>
<td>2.17</td>
<td>1.97</td>
<td>1.52</td>
<td>1.52</td>
</tr>
<tr>
<td>Ω_0</td>
<td>76</td>
<td>137</td>
<td>35.4</td>
<td>35.4</td>
</tr>
<tr>
<td>Ω'_0</td>
<td>4.42</td>
<td>5.48</td>
<td>3.90</td>
<td>3.90</td>
</tr>
<tr>
<td>ρ_0</td>
<td>2.70</td>
<td>8.96</td>
<td>1.74</td>
<td>1.74</td>
</tr>
</tbody>
</table>
Fig. 2 Analytical anisotropic thermoelastic solutions for axial stress in (a) shocked Al single crystal compared with atomic simulation data,16 (b) shocked Cu single crystal, (c) shocked Mg single crystal along a-axis, and (d) shocked Mg single crystal along c-axis

Table 2 Relative error (%) in shock stress P predicted by third-order (Lag3, Log3, Eul3) and second-order (Lag2, Log2, Eul2) theories: Al and Cu

<table>
<thead>
<tr>
<th>V/V_0</th>
<th>Aluminum [100]</th>
<th>Copper [100]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lag3</td>
<td>Log3</td>
</tr>
<tr>
<td>0.96</td>
<td>-5.0</td>
<td>-3.8</td>
</tr>
<tr>
<td>0.92</td>
<td>-15.7</td>
<td>-13.9</td>
</tr>
<tr>
<td>0.88</td>
<td>-28.1</td>
<td>-28.2</td>
</tr>
</tbody>
</table>

Table 3 Relative error (%) in shock stress P predicted by third-order (Lag3, Log3, Eul3) and second-order (Lag2, Log2, Eul2) theories: Mg

<table>
<thead>
<tr>
<th>V/V_0</th>
<th>Magnesium [a-axis]</th>
<th>Magnesium [c-axis]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lag3</td>
<td>Log3</td>
</tr>
<tr>
<td>0.96</td>
<td>-2.9</td>
<td>-0.8</td>
</tr>
<tr>
<td>0.92</td>
<td>-9.2</td>
<td>-3.0</td>
</tr>
<tr>
<td>0.88</td>
<td>-16.8</td>
<td>-6.3</td>
</tr>
</tbody>
</table>
Predictions of each third-order EOS in Eqs. 13–15 are compared with shock compression data16 for Al in Fig. 3a, Cu in Fig. 3b, and Mg in Fig. 3c. Compressibility properties of Table 1 used in these predictions are obtained from ultrasonic experiments17 and are not fit to the shock data. In each case, Eulerian theory is most accurate, followed by logarithmic theory and then Lagrangian theory, the latter significantly too compliant. Because Eulerian theory appears superior for modeling spherical compression and at least equally valid as logarithmic theory for modeling uniaxial compression, Eulerian theory is preferred overall for representing the shock response of metals. Future work should consider incorporating Eulerian theory in finite element simulations of the high-rate response of metals, offering potential improvement over prior implementations involving Lagrangian theory.18–20 Eulerian EOS (Eq. 14) is equivalent to the Birch-Murnaghan EOS.9 However, recent work5 found that logarithmic theory, while more computationally cumbersome than Eulerian theory, more accurately captures the shock response of ceramic crystals sapphire (\(ext{\textalpha-}\text{Al}_2\text{O}_3\)), diamond (C), and quartz (\(\text{\textalpha-SiO}_2\)). As shown in Table 4, these nonmetals have a large ratio of effective shear (\(G_0\)) to bulk modulus compared to metals.

![Analytical pressure solutions for polycrystalline (a) aluminum, (b) copper, and (c) magnesium in the hydrodynamic limit compared with experimental data16](image)

Fig. 3 Analytical pressure solutions for polycrystalline (a) aluminum, (b) copper, and (c) magnesium in the hydrodynamic limit compared with experimental data16
Table 4 Ratio of ambient Voigt shear modulus to bulk modulus

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Cu</th>
<th>Al</th>
<th>Mg</th>
<th>α-Al₂O₃</th>
<th>C</th>
<th>α-SiO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gₖ/грани</td>
<td>0.34</td>
<td>0.35</td>
<td>0.53</td>
<td>0.65</td>
<td>1.22</td>
<td>1.27</td>
</tr>
</tbody>
</table>

4. Conclusions

Table 5 summarizes loading conditions, materials, and model performance studied in the present work as well as in Clayton. Eulerian nonlinear theory developed in Clayton is recommended for modeling the response of ductile metals, while logarithmic theory developed in Clayton can be recommended for modeling ceramics and minerals with larger ratios of shear to bulk stiffness.

Table 5 Summary of present and prior research results: finite strain model evaluations

<table>
<thead>
<tr>
<th>Loading Protocol</th>
<th>Material</th>
<th>Recommended Theory</th>
<th>Remarks</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrostatic</td>
<td>Ideal cubic, B₀′ = 4</td>
<td>Eulerian</td>
<td>More accurate p-V response</td>
<td>3</td>
</tr>
<tr>
<td>compression</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uniaxial</td>
<td>Ideal cubic, B₀′ = 4</td>
<td>Eulerian</td>
<td>More accurate and stable</td>
<td>3</td>
</tr>
<tr>
<td>compression</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simple shear</td>
<td>Ideal cubic, B₀′ = 4</td>
<td>Eulerian</td>
<td>More accurate and stable</td>
<td>3</td>
</tr>
<tr>
<td>Shock compression</td>
<td>Sapphire</td>
<td>Logarithmic</td>
<td>More accurate overall</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Diamond</td>
<td></td>
<td>More accurate overall</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>α-Quartz</td>
<td></td>
<td>More accurate for Z-cut</td>
<td>3, 5</td>
</tr>
<tr>
<td></td>
<td>Aluminum</td>
<td>Eulerian</td>
<td>Best fit to atomic data</td>
<td>4*</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>Eulerian</td>
<td>Faster convergence</td>
<td>4*</td>
</tr>
<tr>
<td></td>
<td>Magnesium</td>
<td>Eulerian</td>
<td>Faster convergence</td>
<td>4*</td>
</tr>
</tbody>
</table>

*Present work
5. Transitions

Results of the current work are of high interest to modeling communities within the Department of Defense, Department of Energy, and the Materials in Extreme Dynamic Environments Collaborative Research Alliance. Results have been transitioned via publications.3–5,12,13,15 A plan is underway to implement the model into multiscale simulations of armor and munitions at the US Army Research Laboratory. Specifically, developments from this Director's Research Initiative (DRI) project are expected to offer substantial improvements over prior analytical and computational studies of the finite strain response of metals,18–26 ceramics,27–33 concrete and geologic materials,34,35 and energetic molecular crystals.36 The nonlinear elastic theory can be directly implemented into phase-field simulations of microstructure.37–41 New developments in studies of lattice defects in electronic materials42–44 and generic crystalline solids45–55 are also foreseen. Results of Year 1 of this DRI project were reported in Clayton.56
6. References

INTENTIONALLY LEFT BLANK.