
by David Sauter

Approved for public release; distribution unlimited.
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

by David Sauter

Computational and Information Science Directorate, ARL

Approved for public release; distribution unlimited.
Electric power generation from portable solar collectors can be used in a tactical military environment to provide and/or augment power requirements. This user’s guide describes an easy to use mobile application that determines how much energy can be generated on a daily basis.
Contents

List of Figures iv

List of Tables iv

1. Introduction 1

2. SPOT-ON Inputs 1

3. SPOT-ON Results 4

4. Summary and Conclusions 6

5. References and Notes 7

Distribution List 8
List of Figures

Fig. 1 Launch SPOT-ON ..2
Fig. 2 Site view ..3
Fig. 3 Cloud/efficiency view ..4
Fig. 4 SPOT-ON results ...5
Fig. 5 Information view ...6

List of Tables

Table Surface type and fractional albedo ..2
1. Introduction

The Solar Power Optimization Tool for Onsite Needs (SPOT-ON) application (from here on also referred to as the “app”) provides information on the peak electrical power and daily energy that can be generated by a solar collector as a function of the geographic location, date, surface type, cloud amount and type, and collector efficiency. SPOT-ON is intended to support tactical power generation and augmentation via the use of primarily flexible solar collectors that would typically be laid flat on the ground. SPOT-ON is hosted on Apple iOS (mobile device operating system) and Android-based smartphones and tablets (referred to from here on as the “device”).

2. SPOT-ON Inputs

To launch SPOT-ON, tap the SPOT-ON icon on the device start screen (Fig. 1). The initial input tab is then displayed for the user to enter the site information (Fig. 2). The latitude and date are used to compute the solar altitude via the “solarposition” computer algorithm and is based on formulations in the Astronomical Almanac. The solar altitude, in turn, is required to calculate the clear sky irradiance value beginning at midnight local time and then every 30 min thereafter for 24 h (used to compute the total energy available in a day). The surface input is used by the app to assign a surface albedo, which affects the resultant irradiance value. See the Table or Fig. 2 for the choices of available surface types. The table also lists the fractional albedo value associated with each surface.
Fig. 1 Launch SPOT-ON

<table>
<thead>
<tr>
<th>Surface type</th>
<th>Fractional albedo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desert</td>
<td>0.30</td>
</tr>
<tr>
<td>Forest</td>
<td>0.15</td>
</tr>
<tr>
<td>Dark soil</td>
<td>0.10</td>
</tr>
<tr>
<td>Snow</td>
<td>0.55</td>
</tr>
<tr>
<td>Crops</td>
<td>0.20</td>
</tr>
</tbody>
</table>
Figure 3 displays a screen capture of the view to allow user entry of the cloud amount (10ths) and type. This screen is displayed by tapping the tab with the weather icon at the bottom of the app display. Photos of each of the cloud types are displayed to assist the user in determining the appropriate choice. The cloud inputs are used to determine the attenuated irradiance value, which will provide a more realistic estimate of the electrical generation capability of the collector(s). The user can also enter a value for the solar collector efficiency in converting solar irradiance into electrical energy. Collectors available for tactical use are typically on the order of only 10%–15% efficient. As this app was designed to support tactical military operations in which logistics (transport, setup and tear-down, etc.) will likely be a primary concern, it is assumed that the collectors will generally be of a flexible design that can be folded and/or rolled. This design, coupled with use in a tactical environment, assumes that the collectors will be deployed on the ground such that they are in a generally horizontal orientation. This assumption also simplifies the determination of the overall electrical energy generation as it is not necessary to
make more involved irradiance calculations as a function of the collector/solar azimuth offset.

3. **SPOT-ON Results**

Tapping the tab bar icon of a checkbox in a folder will calculate and then display (Fig. 4) the total electrical energy available during the day, the peak power output and the optimal tilt angle for the collector(s) in the event it can be oriented other than horizontal. The energy value result is for a 1 m² solar collector. Thus, multiplying the total area (m²) of all the deployed solar collectors by the displayed energy value will provide an estimate of the daily electrical energy production.
The last view (Fig. 5), displayed by tapping the icon of an “i” in a circle, provides the Point of Contact (POC) information for the app as well as the version and date of the app.

Upon app exit, current values for all of the user inputs will be stored such that they will be the default values displayed when the app is next run.
4. Summary and Conclusions

SPOT-ON provides an easy to use mobile app to estimate available electrical energy and power generation values given simple readily available inputs. Hosting on a mobile device makes it accessible virtually anywhere in a tactical environment.

After internal testing and evaluation (2015) the app will be submitted to the Defense Information Systems Agency (DISA) Mobile Application Store (MAS) for validation and with plans for eventual availability to Department of Defense users.
5. References and Notes

1. Liljegren JC. 2008: *WBGT software program, Version 1.1*, Argonne National Laboratory. [C language source code available per request to jcliljegren@anl.gov].

