

 ARL-TR-7449 ● SEP 2015

 US Army Research Laboratory

Wearable Notification via Dissemination
Service in a Pervasive Computing Environment

by Somiya Metu, Laurel Sadler, and Robert Winkler

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-7449 ● SEP 2015

 US Army Research Laboratory

Wearable Notification via Dissemination
Service in a Pervasive Computing Environment

by Somiya Metu, Laurel Sadler, and Robert Winkler
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

Sep 2015
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

01/2015–08/2015
4. TITLE AND SUBTITLE

Wearable Notification via Dissemination Service in a Pervasive Computing
Environment

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Somiya Metu, Laurel Sadler, and Robert Winkler
5d. PROJECT NUMBER

R.0013626.6.163.3
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-CII-B
2800 Powder Mill Road
Adelphi, MD 20783-1138

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-7449

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report describes an architecture of wearable sensors in the context of an Army tactical environment. The architecture is
implemented in functional software that integrates the sensor data, performs predictions to determine contextual gesture
information, and disseminates this information to other Soldiers and computing assets where the presentation is properly
adapted. This prototype framework demonstrates the feasibility of how a heterogeneous pervasive computing environment
can integrate context, state, and environment in a manner that would be transparent to a Soldier’s common operations.

15. SUBJECT TERMS

pervasive computing, Android-based wearable application

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

26

19a. NAME OF RESPONSIBLE PERSON

Somiya Metu
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

301-394-1398
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

1. Introduction 1

2. Background 2

3. Design Architecture 4

4. Framework Implementation 7

4.1 Myo Application 8

4.2 Glass Application 9

4.2.1 GlassHandheldActivity 9

4.2.2 GlassActivity 11

4.2.3 DisplayGestureActivity 12

4.3 Smartwatch Application 12

4.3.1 SmartwatchHandheldActivity 12

4.3.2 WearService 14

4.3.3 DisplayGestureActivity 14

5. Conclusion 15

6. Notes 16

7. References 17

List of Symbols, Abbreviations, and Acronyms 19

Distribution List 20

iv

List of Figures

Fig. 1 Taxonomy of pervasive computing systems research (adapted from
Satyanarayanan [2001]) ...2

Fig. 2 Rally-On-Me: Come to where I am hand signal3

Fig. 3 Architecture for wearable exploitation in a PCE5

Fig. 4 Gesture propagation between wearables ..8

1

1. Introduction

“The most profound technologies are those that disappear. They weave
themselves into the fabric of everyday life until they are indistinguishable from
it,” (Weiser 1991). Mark Weiser’s view of ubiquitous computing in 1991 was
seen as visionary at that time and it is only recently that the promise of Weiser’s
vision is actually being realized. Weiser makes an analogy comparing electricity
to computing. He explains that hundreds of volts coursing through wires in walls
may have been intimidating at one time, but is now accepted as commonplace
without any fear or consideration. Weiser (1991) argued that similarly, hundreds
of computers will come to be equally invisible and accepted, simply being used
unconsciously to accomplish everyday tasks. The National Institute of Standards
and Technology (NIST) defines pervasive computing as the emerging trend
toward numerous, casually accessible, often invisible computing devices, that are
frequently mobile or imbedded in the environment and connected to an
increasingly ubiquitous network structure.

Whether it be labeled as a tactical, ubiquitous, or pervasive computing
environment (PCE), networking, computers, and sensors abound all around
humans’ daily activities. The environment that Weiser envisioned and NIST
defined is a contemporary reality in the civilian, non-governmental agency, and
military domains. However, despite the availability of the infrastructure,
technologies that transparently exploit pervasive computing assets are not tightly
interconnected or fully utilized to meet humans’ dynamic information needs. The
question of what technological architectures and integrations are necessary to
deliver such a capability in tactical environments remains an open and active
research question. Key issues such as how might commercial hardware be used to
implement methods to contextualize information with environmental and
physiological state and how this information might be disseminated in dynamic
tactical environments still need to be addressed.

This report describes an architecture of wearable sensors such as armbands,
optical glasses, and intelligent time devices in the context of an Army tactical
environment. The proposed architecture is implemented in functional software
that integrates the sensor data, performs predictions to determine contextual
gesture information, and disseminates this information to other Soldiers and
computing assets where the presentation is properly adapted given the receivers’
state/status. This prototype framework is demonstrates the feasibility of how a
heterogeneous PCE can integrate context, state, and environment in a manner that
would be transparent to a Soldier’s common operations.

2

The report is organized as follows. Section 2 provides background on PCEs.
Section 3 presents the system design architecture and discusses reasoning for
implementation concerns. Section 4 covers implementation details on specific
software methods to realize the capability and discusses the software operation.
The final section concludes with a summarization of the research and work.

2. Background

Evolving from distributed systems and mobile computing, pervasive computing
builds on the research of these 2 areas and introduces additional interesting
research concepts: smart spaces, invisibility, localized scalability, and uneven
conditioning. Figure 1 describes the logical relationship of the research issues in
distributed systems, mobile computing, and pervasive computing.

Fig. 1 Taxonomy of pervasive computing systems research (adapted from
Satyanarayanan [2001])

Figure 1 describes the current PCE research issues, as defined by Satyanarayanan.
It also differentiates the research issues for pervasive computing as compared to
mobile and distributed computing. It is important to note that although Fig. 1
labels the research issues for each topic discretely, the research issues in each
topic build on one another, i.e., pervasive computing has all of the issues
identified for mobile computing in addition to the items under its label. The
relevant issues related to this report are invisibility and localized scalability.

The idea expressed by Weiser (1991) as a definition of invisibility is the complete
disappearance of pervasive computing technology from a user’s consciousness. In
practice today, it would be difficult to achieve this definition. However, if a PCE
continuously meets user expectations, rarely presents surprises, and at the same

3

time delivers a modicum of anticipation, the subconscious interaction described
by Weiser can be approximated (Satyanarayanan 2001). Invisibility stems from
Weiser’s original vision where the interaction with the computing technology is
below the user’s active consciousness. In other words, the technology interacts
with the user in a manner that is not disruptive and naturally supports users’
activities. The definition of localized scalability proposed by Satyanarayanan
focuses on the intensity of interactions between a user’s personal computing space
and the surroundings. Specifically, localized scalability deals with the effective
management of information exchange between users and their surroundings
(Plymale 2005). Critical to the issue of localized scalability is the utility of the
data delivered to applications in a PCE.

Consider the following example. A squad of Soldiers and small tactical robots are
moving along a path in typical point formation, where Soldiers and robots on the
edge of the squad are out of line of sight of the point man. An unattended ground
sensor triggers an enemy-ahead alert transmitted via the sensor network to the
point Soldier. The point Soldier receives the alert and not wishing to alert the
enemy, executes a “rally-on-me” (come to where I am – Fig. 2) hand signal. The
wearable device on the Soldier recognizes the gesture and notifies the rest of the
squad (robots and humans), who may not be able to visually see the gesture, via
the inter-squad communications network.

Fig. 2 Rally-On-Me: Come to where I am hand signal

The concept of invisibility, includes several mobile networking issues that include
application adaptability and context awareness. The above example illustrates the

4

invisible or active nature of pervasive computing, shown in the gesture
recognition, passive alerting, and non-visual tipping. The interactions with the
tactical information and computing devices is natural and does not require
directed interaction. Similarly as an illustration of localized scalability only the
information that is necessary is transmitted dynamically adapting both content and
transport mechanisms appropriately for the context.

It is difficult to characterize PCE systems without some discussion of context. To
be effective, PCE-based systems require context-aware components (Want et al.
1995). PCE applications need to have some idea of user context shifts, i.e.,
changes in the user’s position, history, workflow, or resource interests. If the PCE
is described as a 2-component system, one component that is the user and a
second that is an information resource, both of which may be changing context,
then it is critical that applications in this environment be able to adapt (Narendra
et al. 2005; Satyanarayanan 2001). Context exists in both components, as
ubiquitous computing and connectivity are of little value without ubiquitous data
(Cherniack et al. 2001).

The issues of invisibility and context awareness are not uniquely discrete because
context awareness can affect invisibility. If an inappropriate amount of data is
delivered to a device that is incapable of using it, invisibility is lost. If a user
attempts to access an information resource that is no longer available and the
system is incapable of responding to the request, invisibility is lost. In the
literature, these types of problems are typically classified under context
awareness, specifically presence awareness.

The following sections outline a software development approach for designing a
prototype tactical PCE system that could implement capabilities illustrated in the
above example. Specific technical details are provided to document the
development approach.

3. Design Architecture

Figure 3 illustrates the overall design architecture and communications between
components. The design consists of 3 handheld devices, a wearable armband
sensor (Myo armband), an optical wearable (Google Glass) device or smartwatch,
and intelligent communication software to facilitate information dissemination
and retrieval. The Myo armband is a device to detect hand gestures. For example,
the Myo armband provides the kinetic data needed to detect an Army-specific
gestures that might be performed by a Soldier. This gesture information once
identified, can then be communicated to other Soldiers (represented by the other
handheld devices) via a wired or wireless network and displayed on either Google

5

Glass or the smartwatch using a local network transport (e.g., Bluetooth) with the
individual Soldier’s handheld. The custom communications application
Dissemination Service (DisService) is used by each handheld to communicate the
gesture information with the other handhelds.

Dissemination
Service Application

Dissemination
Service Application

Dissemination
Service
Application

PUSH Notification

Data Arrival
Notification

Data Arrival
Notification

WIFI / Data
Network

WIFI / Data
Network

WIFI / Data
Network

Glassware

SmartWatch
Application

MYO
Application

Bluetooth

BluetoothBluetooth

Handheld device

Handheld device

Fig. 3 Architecture for wearable exploitation in a PCE

The wearable devices communicate to the local handheld devices via Bluetooth1
and the handhelds communicate with each other using the DisService application.
Each wearable has a dedicated handheld that hosts DisService. DisService is used
for information dissemination between the handhelds outside Bluetooth range.
Once the information reaches the handheld, it is passed on to the paired wearable
via Bluetooth. This way information can be exchanged between wearables outside
Bluetooth range. Bluetooth technology has been selected for the communication
link between the handheld and the wearables. In addition to the fact that most
wearable devices already use Bluetooth, it also has the advantage of a small
power requirement, which is crucial for a dismounted Warfighter. The notification
messages from the handheld to the wearable are intermittent and require only

6

modest bandwidth thus making Bluetooth technology as an appropriate choice. As
depicted in Fig. 3, we have use 2 different types of wearable devices, Smart Glass
and a smartwatch, as presentation devices. This would later enable us to analyze
suitability of a notification media type on a particular presentation device. For
example, an image animation or a short video could be targeted to Glass as
opposed to a smartwatch for convenient viewing on the Glass’s screen just above
the line of sight.

All of the software developed uses Google’s Android open-source software stack
intended for mobile devices such as cell phones and tablets. The target platform
Android 4.4 (API 19) was used in this effort, and the Galaxy Nexus phone was
the handheld used for testing the implementation. The Android Wear platform is
the Google application programming interface (API) for smartwatches, Google
Glass, and other wearable devices. The target platform Android 4.4W (API 20)
was used for developing Wear applications. Google Glass XE22 and Moto 360
smartwatch was used for testing purposes. Android Studio 0.8.6 has been used as
an integrated development environment (IDE) for software development. This
IDE has Android and Android Wear support for development of Android-based
applications. Our selection criteria for which devices we used in the system were
that the device had to be open and we preferred the device if it supported Android
Wear API so we could rapidly integrate new devices and share code between
them.

As denoted in Fig. 3, DisService provides the means of communication from
handheld to handheld/handhelds or, in essence, Soldier to Soldier/Soldiers/
unattended sensors/robots/intelligent systems. This wearable application uses a
custom DisService for dissemination of the data message. DisService is a peer-to-
peer, disruption tolerant, message passing, communications software-level
protocol. It provides capabilities that address challenges to resiliency for
disconnected, intermittent, and limited (DIL) networks such as those that exist in
tactical PCEs. DisService supports store and forward delivery of data and caches
data wherever possible in the network, thereby making it disruption tolerant and
improving availability of data.

The point-to-multipoint feature of DisService is of particular relevance to this
wearable application where a Soldier wearing the armband needs to send a
command signal to multiple recipients. DisService accomplishes this task through
subscription management and “pushing” data within a “group.” For example, a
client will subscribe to a particular “group” of interest. Each subscription may
also have an associated priority, request sequenced data, and reliable delivery of
messages. If reliability is requested, missing messages are retransmitted. Groups
are used to organize the information being disseminated and may also be tagged

7

to differentiate between multiple types of data. Using DisService, an application
that disseminates information can either push data or publish data to the group.
When information is pushed, it is delivered to all applications that have
subscribed to the corresponding group. Whereas “published” information only
pushes metadata describing the information and allows the client nodes to request
the full information as necessary.

In the architecture shown in Fig. 3, the push protocol is applicable. Within the
functionality of this architecture DisService not only allows the client to receive
all information of interest, but also filters/reduces extraneous data received by the
client. Pushed information messages can also have expirations in order to avoid a
new subscriber from receiving an irrelevant command signal. In this manner,
DisService allows the clients (other wearable devices) to subscribe to the same
“group” that the armband uses to “push” the command signal. Thus,
disseminating the command signal to multiple recipients in 1 push addresses
issues of localized scalability by using less bandwidth, adding network tolerance
and reliability, and expanding the range of the transmission. Moreover, it does so
while being theoretically transparent (invisible) to the users and sensors that exist
in the tactical PCE.

4. Framework Implementation

A gesture from the Myo wearable is propagated to other wearable
devices/presentation devices using several Android-based applications. These
applications subscribe to the same group in DisService, which facilitates
information exchange between the applications. Figure 4 depicts the gesture
propagation. The Myo application is responsible for connecting to a desired Myo
wearable. It collects and formats the raw data from the Myo wearable while a
gesture is being performed. The accumulated data are then passed to a naïve
Bayes model integrated with the Myo application for gesture classification. The
identified gesture is then pushed to DisService. The Glass application and the
Smartwatch application receive the identified gesture as a result of subscribing to
the same group in DisService as the Myo application. These applications choose
an appropriate media-type to display the received gesture in the presentation
devices. The detailed implementation of Android-based applications that
facilitates gesture propagation is discussed below.

8

Fig. 4 Gesture propagation between wearables

4.1 Myo Application

The Myo armband from Thalmic Labs is a gesture-control armband. It has 8
muscle-sensing modules that can be strapped on the forearm to detect hand
gestures. The Myo Android software development kit (SDK)2 is included with the
Myo armband. The development kit has been used to augment an existing
Android-based Myo-enabled application, MyoApplication, from Thalmic Labs.
The application contains a main activity, MyoActivity, which has been extended to
implement the DisService interface. The OnCreate method is invoked where the
activity, MyoActivity, is initialized. In this method, setContentView method is
invoked to facilitate placement of user interface (UI) elements in MyoActivity.
Following this, the hub class from the Myo SDK is instantiated and initialized
using the MyoApplication identifier. The hub provides access to 1 or more Myo
instances that may be available. After hub initialization, the hub instance is
registered for any DeviceListener callbacks. This would enable the Myo
application to receive events from the Myo devices. The events include changes
in orientation, pose, Myo device lock/unlock, etc.

The Myo Android SDK comes with a built-in activity for scanning and
connecting to a Myo device. This activity, ScanActivity, gets launched from the
main MyoActivity to scan for any nearby available Myo devices for connection.
The available Myo devices are listed for the user. Once an available Myo device
is selected, it attempts to establish a connection between the handheld and the
selected Myo device via Bluetooth. Following the connection of the armband to

9

the handheld, an asynchronous task, initDisServiceTask, is executed. In this task,
a proxy to DisService is instantiated and initialized. The proxy subscribes to the
wearable group in DisService. MyoApplication is then registered as a listener to
the subscribed proxy. This would enable MyoApplication to send and receive
notifications from other wearables via DisService.

MyoActivity overrides the OnPose and OnOrientationData methods, respectively,
from the Myo API that get called when a new pose is identified or a change in the
orientation is detected by the Myo armband. MyoActivity provides the appropriate
interface to enable the user to initiate or end pose and orientation detection. The
data accumulated in the process are passed on to a classifier for an appropriate
gesture detection by MyoActivity. Once the application acquires a gesture string
from the classifier, it attempts to pass the gesture string to other wearables. An
asynchronous task, pushMessage, is executed. In this task, the reference to the
initialized DisService proxy is used to send the gesture string to DisService. The
push method of the proxy instance is invoked, which takes the gesture string as 1
of its parameters.

4.2 Glass Application

Google Glass is a wearable technology developed by Google. The Glass
Development Kit (GDK) is an add-on to the Android SDK that can be used to
develop glassware that can run directly on the Glass. Using the GDK and Android
SDK, a glassware that runs on the Glass wearable and an Android-based
application that runs on the handheld have been developed. The Glass connects to
the handheld via Bluetooth. For Bluetooth connection between Glass and the
handheld, the MyGlass application is installed and set up on the handheld device.
MyGlass is needed for pairing and connecting to the Glass from the handheld via
Bluetooth.

4.2.1 GlassHandheldActivity

GlassHandheldActivity is the main Android activity that runs on the handheld. In
this activity, an instance of BlueToothAdapter is obtained via the
BlueToothManager class in the Android Bluetooth API (Tang 2014). The
BlueToothAdapter instance is used to check for Bluetooth support and execution
of various Bluetooth tasks. GlassHandheldActivity implements the
DisseminationServiceProxyListener interface of DisService, thus having access to
a proxy to DisService. In the OnCreate method, an asynchronous task,
initializeDisServiceTask, is executed. In this task, a proxy to DisService is
instantiated and initialized. The proxy subscribes to the wearable group in
DisService. GlassHandheldActivity is then registered as a listener to the

10

subscribed proxy. This enables GlassHandheldActivity to send and receive
notifications from other wearables subscribed to the wearable group in
DisService. The dataArrived method of the DisseminationServiceProxyListener
interface is a callback method that is invoked when new data arrive via
DisService. The data are of type “byte array” and are converted to a string.

The sendMessageToGlass method is then invoked using the received data as an
argument. Inside this method, the BlueToothAdapter instance is used to invoke
the getBondedDevices method. This method returns a list of BluetoothDevice
objects that are currently or previously paired with the handheld device. A
BluetoothDevice class represents a remote Bluetooth device that helps in
establishing connection to the device and query for information on the Bluetooth
device. The BluetoothDevice list is then traversed to identify the Glass Bluetooth-
enabled wearable device. Once the Glass wearable is identified, the
ConnectToGlass class, which extends the Thread class is instantiated. This class
is responsible for providing a connection to the given Bluetooth device and
sending the message obtained by the handheld application via DisService to the
connected Bluetooth device.

The constructor of the ConnectToGlass class takes the paired Glass
wearable device (BlueToothDevice) and the string message as
arguments. The BlueToothDevice object is then used to invoke the
createRfcommSocketToServiceRecord method. This method takes a universally
unique identifier (UUID) as an argument. The UUID is a service record UUID
used to lookup the RFCOMM channel device. This method returns RFCOMM
BlueToothSocket ready for an outgoing connection. RFCOMM is a connection-
oriented, streaming transport over Bluetooth. Using BluetoothSocket as the
argument, the connect method is invoked, which attempts to connect to the Glass
wearable. This is a blocking call until a connection is established or the
connection attempt fails. If the connection is unsuccessful, the exception message
is logged and the socket is closed. If the connection is successful, the
writeToGlass method is invoked and the connected socket is passed as an
argument. The connected socket is then used to open the input/output (IO)
streams. The getOutputStream method is invoked to obtain an OutputStream
object. The data obtained by the application via DisService are written to the
OutputStream object to deliver the message to the Glass wearable via the
connected BluetoothSocket. Following this, the OutputStream and
BluetoothSocket are closed. Finally, the RunOnUIThread method is invoked to
update the main user interface indicating that the message has been sent to the
Glass wearable.

11

4.2.2 GlassActivity

GlassActivity is the main Android activity that runs on the Glass wearable. This
activity is responsible for listening to messages from the handheld paired to the
Glass wearable via Bluetooth. In the OnCreate method of GlassActivity, the
setContentView method is invoked to facilitate placement of UI elements in the
Glass’s activity. Following this, an instance of BlueToothAdapter via the
BlueToothManager is obtained for executing the Bluetooth tasks necessary to
connect to the handheld device. The BlueToothAdapter instance is used to check
if Bluetooth is supported and enabled in the Glass. If the check yields a positive
result, an object of a private class, ListenThread, is instantiated anonymously.
ListenThread is a private class that extends the Thread class. It is mainly
responsible for creating and managing BlueToothServerSocket to listen for
incoming Bluetooth connection requests.

In the constructor of ListenThread, the BlueToothAdapter instance is used to
invoke the listenUsingRfcommWithServiceRecord method and is passed as a
UUID. The UUID is similar to that used on the client side so that it can recognize
and accept the client’s incoming connection request. This method returns
BlueToothServerSocket, which keeps listening for an incoming client connection
request or until it encounters an exception. Once a client connection is
established, BlueToothServerSocket returns BluetoothSocket. Following this, close
method is invoked on BlueToothServerSocket, which closes
BlueToothServerSocket, as it is not required any further. Following this, a new
thread, ReadThread, is spawned and BluetoothSocket is passed to it as a
parameter. This thread is responsible managing the connected socket and
transferring data between the handheld (client) and Glass (server).

In the constructor of ReadThread, the IO streams are opened by an invocation of
the getInputStream method, which returns an InputStream object. The data from
the InputStream object are read incrementally in a while loop. Once the entire
data set is read, Glass’s UI is notified of data retrieval by invoking the
runOnUIthread method. An explicit intent is created to help launch a new
Android activity, DisplayAnimation, for displaying the message retrieved by
GlassActivity. The message is added to the intent by invoking the putExtra
method on the newly instantiated intent object. The DisplayAnimation activity is
launched via the startActivity method and passing the intent as an argument to the
startActivity method.

12

4.2.3 DisplayGestureActivity

DisplayAnimationActivity is an Android activity responsible for displaying
animations on Glass to convey the message received by GlassActivity from the
handheld device. In the OnCreate method, the setContentView method is called
for the placement of views within the activity window. The intent object is
retrieved by invocation of the getIntent method on the current activity. On
retrieval of Intent object, the getStringExtra method is called on the intent object
by passing the string key as a parameter. The method returns the string value of
the key stored in the intent object. Once the message is retrieved, an appropriate
image is selected from the resources folder to load ImageView objects within the
activity window space. Property animations is then applied to the ImageView
object, which changes the property of ImageView over time thus animating the
views.

4.3 Smartwatch Application

The handheld application and the smartwatch wearable application has been
developed using the Android Wear API. The Android Wear package is one of the
packages in the Google Play Services Package. For Android Wear development,
the Google Play Services SDK is added to the Android Studio Project, which
gives access to the Android Wear API. The Android Wear operating system that
runs on the wearables uses the Bluetooth link to connect to the handheld device.
On the handheld device, the Android Wear Play application is installed and set up
to pair and connect to the wearable smartwatch device.

4.3.1 SmartwatchHandheldActivity

SmartwatchHandheldActivity is the main Android activity that runs on the
handheld device. It implements the DisseminationServiceProxyListener interface
of DisService. It also implements the GoogleAPIClient interfaces,
ConnectionCallbacks and OnConnectionFailedListener, in the Wear API. The
Google API client provides an entry point to the Google Play Services and
manages the network connection between the service and the device itself. The
OnCreate method is invoked to initialize the activity.

The setContentView method is invoked to facilitate placement of UI elements in
SmartwatchHandheldActivity. An instance of GoogleApiClient using the
GoogleApiClient.Builder APIs is created inside the OnCreate method. The
method addApi is invoked on the instance of GoogleApiClient to add the Wear
API to GoogleApiClient. The connect method of GoogleApiClient is used to
connect to the Google Wear API in the Google Play Services Library. The

13

ConnectionCallbacks and OnConnectionFailedListener interfaces receive
callbacks as a response to the asynchronous connect method of the
GoogleApiAclient instance.

Lastly, in the OnCreate method, an asynchronous task, initializeDisServiceTask,
is executed. In this task, a proxy to DisService is instantiated and initialized. The
proxy subscribes to the wearable group in DisService.
SmartwatchHandheldActivity is then registered as a listener to the subscribed
proxy. This enables SmartwatchHandheldActivity to send and receive
notifications from other wearables subscribed to the wearable group in
DisService. The dataArrived method of the DisseminationServiceProxyListener
interface is a callback method that is invoked when new data as a byte array arrive
via DisService. The dataArrived method converts the byte array into a string
format and notifies the main UI thread of the arrival of the string message.
Following this, the method pushDataToWearable is invoked with the received
data as an argument. This method is responsible for syncing the message from the
handheld to the wearable smartwatch using the Wearable Data API. The API
provides access to the data layer of a data communications link between the
handheld and the wearable. In the pushDataToWearable method, the isConnected
method is invoked on the GoogleApiClient instance, which basically checks for
connection to the Google Wear API in the Google Play Services Library.

If the connection exists, an instance of PutDataMapRequest is created. It is a
helper class that helps in the creation of a DataMap object. DataMap encapsulates
the data that get exchanged over the wearable data layer. It can contain a
collection of data types stored as key/value pairs. A string path is specified to
uniquely identify the DataMap object that gets created via PutDataMapRequest.
The method GetDataMap is invoked on the PutDataMapRequest object to obtain
a DataMap object. The DataMap object is then set with the current time and the
message received by SmartwatchHandheldActivity via DisService. The method
asPutDataRequest is invoked on the instance of PutDataMapRequest to obtain a
PutDataRequest object, which is used to create new data items in the Android
Wear network. Following this, the putDataItem method in the Data API is
invoked to add the data items in the Android Wear network. The method takes the
GoogleAPiClient instance and the PutDataRequest object as its parameters. It
returns PendingResult as a result of calling an API method in the Google Play
Services. The status of the operation is retrieved via PendingResult. This way the
handheld adds the data items into the Android Wear network, which can be
received by the wearable on the other end via a Bluetooth link.

14

4.3.2 WearService

On the wearable smartwatch, an Android-based service, WearService, runs in the
background and monitors the Wear data layer for any new data items in the
Android Wear network. In order to listen for data layer events, WearService
extends the abstract WearableListenerService class and implements the
onDataChanged method. This method gets called when data items are created,
changed, or deleted on the Wear network. The argument to the onDataChanged
method is an instance of DataEventBuffer, which is a data structure that holds the
references to a set of DataEvent instances in the Wear Data layer. Each of the
DataEvent instances in the set is processed to retrieve a DataItem object. Each
DataItem object is converted to a DataMapItem object, which is used to retrieve
the DataMap instance by invoking the getDataMap method on the DataMapItem
instance. The method getString is invoked on the DataMap instance. It takes a
key of type “string” as an argument. The key used in the argument is the same key
used in the handheld application to set the DataMap value. If the key matches the
key contained in the current DataMap instance, it returns the value of the key in
the current DataMap instance.

The value is the actual data that were sent by the handheld to wearable via the
Wear network using the Wear API. An explicit intent is created to help launch a
new activity, NotificationActivity, for displaying the data retrieved by
WearService running on the smartwatch. The data are added to the intent by
invoking the putExtra method on the newly instantiated intent object.
NotificationActivity is launched via the startActivity method by passing the intent
as an argument to the startActivity method.

4.3.3 DisplayGestureActivity

NotificationActivity is an Android activity responsible for displaying the data
received by WearService from the handheld device. The OnCreate method is
invoked to initialize NotificationActivity. The method setContentView is invoked
to facilitate placement of UI elements in NotificationActivity. Following this, the
getIntent method is invoked to retrieve the intent that started NotificationActivity.
The method getStringExtra is invoked with the name of the extra data as an
argument. The name of the extra data is the same name that was used in
WearService to add extended data to the intent. The method returns the extra data
value associated with the name. This value is then set in a TextView object to be
displayed within the NotificationActivity window.

15

5. Conclusion

This research presents an architecture for and illustrates the feasibility of
implementing wearable information sensing, dissemination, and retrieval to
inform context in a PCE such as those used by many Army tactical applications.
This work documents an approach to developing such a solution using
commercial-off-the-shelf wearable devices and sensors, shown in the operation of
an integrated system. The prototype framework demonstrated that Army-specific
gestures can be recognized, dynamically disseminated, and appropriately
modulated for retrieval thus reinforcing the invisibility and localized scalability
concepts intrinsic in true PCEs. While in this effort only the feasibility of such an
architecture and implementation is demonstrated, future experiments can be
performed using the developed framework to evaluate the efficacy of presentation
adaption given contextualized cognitive or kinetic state information, task or
mission-level goals, and virtual-human teaming mixes. Future work is also
planned to investigate the quantitative value of this information to intelligently
prioritize and filter information flows in broader scenario contexts, such as
tactical and command and control decision making.

16

6. Notes

1. android.bluetooth, 15 Sept 2015. Developers, Android [accessed 2015].
http://developer.android.com/reference/android/bluetooth/package-
summary.html.

2. Myo Android SDK, 2014. Thalmic Labs [accessed 2015].
https://developer.thalmic.com/docs/api_reference/android/index.html.

http://developer.android.com/reference/android/bluetooth/package-summary.html
http://developer.android.com/reference/android/bluetooth/package-summary.html
https://developer.thalmic.com/docs/api_reference/android/index.html

17

7. References

Suri N, Benincasa G, Tortonesi M, Stefanelli C, Kovach J, Winkler R, Kohler R,
Hanna J, Pochet L, Watson SC. Peer-to-peer communications for tactical
environments: observations, requirements, and experiences. In IEEE
Communications Magazine. October 2010;48(10):60–69.

Suri N, Benincasa G, Choy S, Formaggi S, Gilioli M, Interlandi M, Kovach J,
Rota S, Winkler R. Disservice: A peer-to-peer disruption tolerant
dissemination service. Military Communications Conference. 2009.
MILCOM 2009. IEEE

Tang Jeff. Beginning Google Glass Development. Apress. Chapter 7, Networking,
Bluetooth, and Social, 2014.

Weiser M. The Computer for the 21st Century. Scientific American (265:3) 1991,
pp 66–75.

Satyanarayanan M. Pervasive Computing: Vision and Challenges. IEEE Personal
Communications (8:44) 2001, pp 10-17

Weinstein E, Ho P, Heisele B, Poggio T, Steele K, Agarwal A. Handheld face
identification technology in a pervasive computing environment. Short Paper
Proceedings of International Conference on Pervasive Computing (Pervasive
2002), Zurich, Switzerland, 2002.

Chen G, Kotz D. Solar: A pervasive computing infrastructure for context-aware
mobile applications. Department of Computer Science, Dartmouth College,
Hanover, NH, USA.

Chen W, Jiang Z, Wu Z. AnyCom: A component framework optimization for
pervasive computing. In Lecture Notes in Computer Science, Springer
Berlin/Heidelberg, 2005, pp. 236–242.

Plymale WO. Pervasive Computing Goes to School. EDUCAUSE Review (40:1)
2005, pp 60–61.

Want R, Schilit BN, Adams NI, Gold R, Petersen K, Goldberg D, Ellis JR, Weiser
M. The ParcTab ubiquitous computing experiment. Xerox Palo Alto
Research Center, Palo Alto, CA, USA.

Narendra NC, Umesh B, Nandy SK, Kalapriya K. Functional and architectural
adaptation in pervasive computing environments. In Proceedings of the 3rd
international workshop on Middleware for pervasive and ad-hoc computing,
ACM Press, Grenoble, France, 2005.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Winkler,%20R..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5368705
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5368705

18

Cherniack M, Franklin MJ, Zdonik S. Data management for pervasive computing.
A tutorial given at the 27th International Conference on Very Large Data
Bases (VLDB 2001), Rome, Italy, 2001.

19

List of Symbols, Abbreviations, and Acronyms

API application programming interface

DIL disconnected, intermittent, and limited

GDK Glass Development Kit

IDE integrated development environment

IO input/output

NIST National Institute of Standards and Technology

PCE pervasive computing environment

SDK software development kit

UI user interface

UUID universally unique identifier

20

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CIO LL
 IMAL HRA MAIL & RECORDS
 MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 5 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CII
 B BROOME
 RDRL CII B
 SOMIYA METU
 LAUREL SADLER
 ROBERT WINKLER
 STEPHEN RUSSELL

	List of Figures
	1. Introduction
	2. Background
	3. Design Architecture
	4. Framework Implementation
	4.1 Myo Application
	4.2 Glass Application
	4.2.1 GlassHandheldActivity
	4.2.2 GlassActivity
	4.2.3 DisplayGestureActivity

	4.3 Smartwatch Application
	4.3.1 SmartwatchHandheldActivity
	4.3.2 WearService
	4.3.3 DisplayGestureActivity

	5. Conclusion
	6. Notes
	7. References
	List of Symbols, Abbreviations, and Acronyms

