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Abstract We consider the elastodynamic impact problem involving a one-dimensional finite-thickness piezo-
electric flyer traveling at initial velocity V0 that collides with (and adheres to) a stationary piezoelectric target
of finite thickness backed by a semi-infinite non-piezoelectric elastic half-space. We derive expressions for the
stress, velocity, and electric displacement in the target at all times after impact. A combined d’Alembert and
Laplace transform method is used to derive new numerically based solutions for this class of transient wave
propagation problems. A modified Dubner–Abate–Crump (DAC) algorithm is used to invert the analytical
Laplace transform domain solutions to the time domain. Unlike many authors who neglect electromechanical
coupling in the initially unstressed region ahead of the shock, we consider this effect, which gives rise to the
development of a tensile stress wave within the piezoelectric target ahead of the shock. To solve the problem,
we derive a new piezoelectric impact boundary condition and apply it to the problem of a finite quartz (SiO2)
flyer impacting a lead zirconate titanate (PZT-4) target and find that the solutions obtained using the modified
DAC algorithm compare well with those obtained using both a finite-difference time-domain method, and the
commercial finite element code, COMSOL multiphysics.

Keywords 1-D elastodynamics · Numerical inverse Laplace transform · Mathematica source code ·
d’Alembert method · Dubner–Abate–Crump

1 Introduction

Much of the literature that presents analytical or computational solutions to “impact-type” initial boundary
value problems assumes an impact boundary condition in the form of a constant applied step in stress or
velocity, cf. [1–3]. This simplifying assumption is particularly useful for characterizing elastic shocks in flyers
and targets that are homogeneous, linear elastic, and semi-infinite. Here, elastic shocks are defined by stress
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waves with amplitudes that are less than or equal to the Hugoniot elastic limit, cf. p. 248, equation (10.4) of
Davison [4]. However, during the collision of piezoelectric media that are multilayered, or inhomogeneous, or
possess other material discontinuities, the target (and possibly flyer) introduce multiply-reflected or scattered
waves at the impact face, so that the history of the stress σ and the particle velocity v at the impact face is
generally time-dependent, not constant, and cannot be known in advance of the solution to the problem. Thus,
the widespread use of a constant stress or velocity boundary condition in the mechanics literature is an invalid
assumption for modeling impact in such media.

Both Redwood [5] and Steutzer [6] study the problem of multiply-reflected transient waves, characterized
by an infinite set of jump discontinuities, in linear piezoelectrics subjected to either a step in stress or voltage.
These boundary conditions, however, are not appropriate for the piezoelectric impact problem. Other works
address shock wave propagation in nonlinear piezoelectric media [7–9], but the complexity of the material
response prohibits an analytical treatment of the electromechanical coupling in the unstressed region ahead of
the shock wave.

For engineering applications, our problem is applicable to either a uniaxial (or 1-D) Kolsky bar or plate
impact experiment conducted at stress levels below the Hugoniot elastic limit. In these experiments, flyer,
target or both can be composed of piezoelectric material. Apart from these experimental applications, the
solutions derived in this paper can be used to verify large-scale computational simulations of impact phenomena
involving piezoelectric media. Indeed, the COMSOL multiphysics commercial finite element code and a
finite-difference time-domain (FDTD) computational code have been verified with the piezoelectric numerical
solutions presented in this paper; these codes can now be used with more confidence for solving more complex
2-D or 3-D geometries where piezoelectric impact solutions (albeit numerical) may not be available for code
verification.

We first present the linear equations of dynamic piezoelectricity, following closely the development found
in Redwood [5] and Steutzer [6], and show how the d’Alembert solution is also applicable to the study of
multiply-reflected transient waves in linear piezoelectrics subjected to impact. The problem of a semi-infinite
elastic flyer impacting a finite elastic target backed by a semi-infinite elastic half-space was addressed in [10],
and the problem of a semi-infinite elastic flyer impacting a finite piezoelectric target backed by an elastic
half-space was addressed in [11]. Most similar to our own study is the work of Le [12,13] who uses the method
of characteristics to determine exact solutions to the problem of a finite-length piezoceramic rod, traveling
at an initial constant velocity, that impacts a second, identical, but stationary piezoceramic rod; Le [12,13]
derives exact solutions for electric displacement and stress, up until the first wave reflection, for the case when
the external ends of the rods are electrically short-circuited.

In the current study, we consider the one-dimensional (1-D) normal impact problem in which a finite
piezoelectric flyer collides with a finite, stationary piezoelectric target bonded to a semi-infinite elastic half-
space.Here, a new impact boundary condition is derived, based on the d’Alembert solution to thewave equation.
Our results are analytical in the Laplace transform domain but are numerically inverted to the time domain using
a Dubner–Abate–Crump (DAC) algorithm [14–16], modified in [17] (using Lanczos σ -factors) to mitigate the
effects of the Gibbs phenomenon (ringing seen in Fourier series representations of jump discontinuities). The
use of the DAC algorithm for solution of transient wave propagation problems has seen a resurgence in the
recentmechanics literature [18–20], but other than our own prior work [11,21], we are not aware of applications
of the DAC algorithm to collision phenomena, i.e., impact.

The remainder of the paper is organized as follows. Section 2 briefly discusses the 1-D constitutive equations
and plane wave propagation in a linear piezoelectric medium. Section 3 describes the d’Alembert solution to
the wave equation in the target with homogeneous initial conditions. Section 4 contains our derivation of a new
impact boundary condition for a finite piezoelectric flyer, which utilizes the d’Alembert solution of the wave
equation in the flyer. In Sect. 5, we present additional boundary and electrical conditions necessary to determine
the stress, particle velocity and electrical displacement in the target for all time. The Laplace transform is used
in Sect. 6 to convert time derivatives of the boundary, stress continuity, and electrical conditions on the flyer
and target into algebraic functions of the Laplace transform domain variable s. Laplace transform of the impact
boundary condition results in an integral equation which can be solved explicitly. Here, it is also shown how
the impact boundary condition for a finite-thickness piezoelectric flyer specializes to that of a finite-thickness
elastic flyer and further to that of a semi-infinite elastic flyer. Section 7 contains plots of the stress, particle
velocity, and electrical displacement at the midpoint of a lead zirconate titanate (PZT-4) target under impact by
a quartz (SiO2) flyer. For comparison with the numerical inverse Laplace transform solutions, the figures also
include numerical solutions using a COMSOL multiphysics finite element solution and a FDTD method. We
close with a discussion which outlines the major results of the paper. “Appendix 1” contains Laplace transform
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domain functions F1(s),G1(s), and D1(s) used to numerically determine the stress, particle velocity, and
electric displacement in the target using the numerical inverse Laplace transform (ILT) Mathematica source
code listed in “Appendix 2.” “Appendix 2” also includes a stress time history plot (Fig. 5) at the center of a
target under impact by a flyer. Both the flyer and target are composed of synthetic elastic and piezoelectric
materials and accentuate the differences between the various numerical (ILT, FDTD, FE)methods used to solve
the impact problem. Finally, in “Appendix 3” we compute the relative error between our numerical ILT-derived
solution and the exact analytical solution derived by Le [12,13] for the case of a finite-length piezoceramic
rod, traveling at an initial constant velocity, that impacts a second, identical, but stationary piezoceramic rod;
here, it is shown that the numerical ILT solutions are quite accurate over the impact interval 0 ≤ t ≤ 2l/c.

2 Plane waves in piezoelectric media

The 1-D constitutive equations for a linear piezoelectric material can be written as [5,25]

σ(x, t) = ±
[
CD ∂u(x, t)

∂x
− hD(x, t)

]
, (1)

E (x, t) = −h
∂u(x, t)

∂x
+ D(x, t)/ε. (2)

σ is the stress in N/m2; the upper “+” sign in Eq. (1) corresponds to the convention that stress is positive
in tension and the lower “−” sign that stress is positive in compression. CD is Young’s modulus measured
at constant D in N/m2, u is the particle displacement in m measured at point x relative to the undeformed
configuration at time t in s measured from the time of impact at t = 0. D is the electric flux density (or electric
displacement) in C/m2, ε = ε0 εr is the dielectric permittivity in F/m, ε0 is the permittivity of a vacuum in
F/m, εr is the relative permittivity of the medium, h is a piezoelectric constant measured at constant D in V/m,
and E is the electric field in V/m (or N/C). The piezoelectrically stiffened elastic constant CD in Eq. (1) is
defined in Cady [24] [p. 270 equation (271 a)], by the Institute of Radio Engineers (IRE) [25] (p. 1394, Table
III) or Chen et al. [1] (p. 4760) and is given by

CD = CE + e h, (3)

where CE is Young’s modulus measured at constant E , e is a piezoelectric coupling constant in C/m2, and
h = e/ε. In addition, momentum balance yields

ρ
∂v(x, t)

∂t
= ±∂σ(x, t)

∂x
, (4)

where ρ is the mass density in kg/m3 and v(x, t) is the particle velocity

v(x, t) = ∂u(x, t)

∂t
. (5)

Following the development in Redwood [5] or Steutzer [6] for linear piezoelectric media, substitution of
Eqs. (1) and (5) into Eq. (4) gives

∂ 2u(x, t)

∂t2
= CD

ρ

∂ 2u(x, t)

∂x2
− h

ρ

∂D(x, t)

∂x
. (6)

If there is no free charge, ρfree = 0, inside the piezoelectric medium, then (see e.g., Lorrain and Corson [26],
p. 109)

∂D(x, t)

∂x
= div D = ρfree = 0. (7)

The time-varying electric displacement D, therefore, is at most spatially uniform, that is, a function of time
only, so we can write D(x, t) = D(t), and Eq. (6) becomes

∂ 2u(x, t)

∂t2
= c2

∂ 2u(x, t)

∂x2
, (8)
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where c = √
CD/ρ is the piezo-modified longitudinal wave speed with CD given by Eq. (3). Observe that (8)

does not depend upon the sign convention for the stress.
In the sequel below, we denote material constants and field variables in the piezoelectric target with a

subscript of “1”, and subscripts of “0” and “h” refer to quantities in the piezoelectric flyer and elastic half-space,
respectively.We also remark that the electric displacement D is continuous acrossmaterial interfaces, cf. p. 140
of [26], so that at the boundary x = 0 between the flyer and target D0(t) = D1(t); if the electric displacement
is spatially uniform in both the flyer and target and equal at the impact face, then the electric displacement is
spatially uniform in both the flyer and target. Furthermore, any jump [[ ]] in electric displacement across an
elastic shock, moving at velocity c0 or c1, within either the flyer or target is identically zero, i.e., [[D0]](t) =
[[D1]](t) = σf = 0, since the surface charge density σf is identically zero on the shock front.1

3 Impact-induced plane waves in a piezoelectric target

We now consider the problem of a piezoelectric flyer of finite thickness k traveling at initial velocity V0 that
collides with (and adheres to) an undeformed, stationary piezoelectric target of finite thickness l; the target is
backed by a semi-infinite non-piezoelectric elastic half-space (Fig. 1). Henceforth, we assume that stress is
taken positive in compression, so that the stress σ1 in the linear elastic piezoelectric target is given by Eq. (1)
with the minus sign:

σ1(x, t) = −CD
1

∂u1(x, t)

∂x
+ h1D1(t). (9)

The transient target displacements u1(x, t) are governed by the wave equation (8) in one-spatial dimension

∂ 2u1(x, t)

∂t2
= c 21

∂ 2u1(x, t)

∂x2
for 0 < x < l, t > 0. (10)

The general solution to the wave Eq. (10) in the target can be constructed using d’Alembert’s relation:

u1(x, t) = f1(t − x/c1) + g1(t + x/c1), (11)

where f1(·) and g1(·) are arbitrary functions. The displacement u1 is assumed to be continuous and piecewise
smooth, which implies that the d’Alembert functions f1 and g1 are also continuous and piecewise smooth.
Letting f1 and g1 denote the antiderivatives of F1 and G1, respectively, i.e., f ′

1 = F1 and g′
1 = G1, then the

d’Alembert solution (11), together with the Eq. (9) for the stress in the target, yields

σ1(x, t) = z1
[
F1(t − x/c1) − G1(t + x/c1)

]
+ h1D1(t), (12)

where z1 = ρ1c1 is the piezo-modified target impedance. Similarly, the particle velocity v1 in the target is
given by

v1(x, t) = ∂u1
∂t

= F1(t − x/c1) + G1(t + x/c1). (13)

It is evident that the stress and particle velocity in the target are determined once the functions F1, G1, and
D1 are determined. Note that discontinuities in F1 or G1 correspond to the passage of shock waves at interior
points or the reflection of shock waves at the boundaries x = 0 and x = l.

To solve for F1, G1, and D1 requires consideration of the initial conditions (in this case homogeneous)
and boundary conditions of the target. The initial conditions in the target are

u1(x, 0) = 0,
∂u1(x, 0)

∂t
= v1(x, 0) = 0 for 0 ≤ x ≤ l. (14)

Furthermore, Eq. (14)1 and the stress–strain Eq. (9) implies that for a stress-free initial state in the target that

σ1(x, 0) = D1(0) = 0 for 0 ≤ x ≤ l. (15)

1 Electrodynamic jump conditions for moving boundaries are derived in [27], cf. p. 1187, Table 1.
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Fig. 1 A finite piezoelectric flyer (thickness k and impedance z0) traveling at initial velocity V0 impacting a finite and stationary
piezoelectric target (thickness l and impedance z1); the short-circuited flyer and target voltageV (t) = 0 is backed by a semi-infinite
non-piezoelectric elastic half-space (impedance zh)

4 Impact boundary condition for a finite piezoelectric flyer

We wish to derive a relationship between stress σ , velocity v, and electric displacement D at the impact
face x = 0. The derivation of this boundary condition for a finite piezoelectric flyer that impacts a finite,
but stationary, piezoelectric target at the instant t = 0 follows closely the derivation of the impact boundary
condition for the elastodynamic impact problem studied in [10]. Two important differences in this work from
the problem studied in [10] are that, in this work, the flyer has finite thickness k and is piezoelectric.

The initial conditions in the flyer are

v0(x, 0) = V0 > 0, and σ0(x, 0) = D0(0) = 0 for − k ≤ x ≤ 0. (16)

The stress-free boundary condition at x = −k (Fig. 1) is

σ0(−k, t) = 0 for t ≥ 0. (17)

Analogous to Eqs. (12) and (13) for the target, the normalized stress, taken positive in compression, in the
flyer can be written as

σ0(x, t)

z0
= F0(t − x/c0) − G0(t + x/c0) + h0

z0
D0(t), (18)

and the velocity in the flyer can be written as

v0(x, t) = ∂u0
∂t

= F0(t − x/c0) + G0(t + x/c0). (19)

It is apparent that functions F0 and G0 have dimensions of velocity.
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Let t∗ denote the travel time in the flyer, that is, the time it takes for the shock wave to travel the length k
of the finite flyer:

t∗ = k

c0
. (20)

Further, we define a non-dimensional distance y and time τ by

y ≡ x

k
= x

c0t∗
, τ ≡ t

t∗
= c0t

k
, for (y, τ ) ∈ [−1, 0] × [0,∞), (21)

such that the shock wave requires the non-dimensional time τ = 1 to travel the non-dimensional length y = 1
of the flyer. Since

x

c0
= ky

k/t∗
= t∗y, (22)

we see that the argument of functions F0 and G0 appearing in Eqs. (18) and (19) can be replaced by any of
the following expressions:

t ± x/c0 = t∗τ ± t∗y = t∗(τ ± y). (23)

Therefore, if we let

F(w) ≡ F0(t∗w), G(w) ≡ G0(t∗w), (24)

and

v∗(y, τ ) = v0(x, t), σ∗(y, τ ) = σ0(x, t)

z0
, D∗(τ ) = h0

z0
D0(t), (25)

we can rewrite Eq. (18) as

σ∗(y, τ ) = F(τ − y) − G(τ + y) + D∗(τ ), (26)

and Eq. (19) as

v∗(y, τ ) = F(τ − y) + G(τ + y), for (y, τ ) ∈ [−1, 0] × [0,∞). (27)

Therefore, the domains of d’Alembert functions F and G are, F ∈ [0,∞) and G ∈ [−1, ∞). The initial
conditions (16) can be rewritten in the non-dimensional form

v∗(y, 0) = V0, σ∗(y, 0) = D∗(0) = 0 − 1 ≤ y ≤ 0. (28)

Similarly, the stress-free boundary condition (17) can be rewritten in the non-dimensional form

σ∗(−1, τ ) = 0, τ ≥ 0. (29)

On setting τ = 0 in (26) and (27) and using initial conditions (28), we obtain

F(−y) + G(y) = V0, −1 ≤ y ≤ 0, (30)

and

F(−y) − G(y) = 0, −1 ≤ y ≤ 0. (31)

Therefore,

G(y) = F(−y) = 1

2
V0, −1 ≤ y ≤ 0, (32)

or

F(w) = 1

2
V0, 0 ≤ w ≤ 1. (33)
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On setting y = −1 in Eq. (26) and using Eq. (29), we obtain

0 = σ∗(−1, τ ) = F(τ + 1) − G(τ − 1) + D∗(τ ), τ ≥ 0, (34)

which when solved for F yields

F(τ + 1) = G(τ − 1) − D∗(τ ), τ ≥ 0. (35)

Letting τ = w − 1 in (35) yields

F(w) = G(w − 2) − D∗(w − 1), w ≥ 1. (36)

Furthermore, if we consider the interval 1 ≤ w ≤ 2, then −1 ≤ w − 2 ≤ 0, and if we set y = w − 2 in (32),
then G(w − 2) = 1

2V0. Substitution of this relation into (36) results in

F(w) = 1

2
V0 − D∗(w − 1), 1 ≤ w ≤ 2. (37)

Thus by (33) and (37),

F(w) =
{

1
2V0, 0 ≤ w ≤ 1,
1
2V0 − D∗(w − 1), 1 ≤ w ≤ 2.

(38)

If w → w + 2 in (36), or equivalently if τ = w + 1 in (35), then

G(w) = F(w + 2) − D∗(w + 1), w ≥ −1. (39)

Since G ∈ [−1,∞), we note that relation (39) allows us to completely determine G in terms of F and D∗.
Finally, if w = τ + y in (39), then

G(τ + y) = F(τ + y + 2) − D∗(τ + y + 1). (40)

On substituting (40) into (26), we eliminate G, and the non-dimensional stress in the flyer becomes

σ∗(y, τ ) = F(τ − y) − F(τ + y + 2) − D∗(τ + y + 1) + D∗(τ ). (41)

Similarly, the non-dimensional velocity (27) in the flyer becomes

v∗(y, τ ) = F(τ − y) + F(τ + y + 2) + D∗(τ + y + 1), for (y, τ ) ∈ [−1, 0] × [0,∞). (42)

With these equations, we are in a position to derive the impact boundary condition for a finite piezoelectric
flyer impacting a finite piezoelectric target.

We begin by considering the behavior at the impact face by letting y = 0 in (41) and (42):

σ∗(0, τ ) = F(τ ) − F(τ + 2) − D∗(τ + 1) + D∗(τ ), (43)

and

v∗(0, τ ) = F(τ ) + F(τ + 2) + D∗(τ + 1). (44)

Now add (43) and (44) to obtain

v∗(0, τ ) + σ∗(0, τ ) − D∗(τ ) = 2F(τ ), τ ≥ 0. (45)

Also, if we subtract (43) from (44), we obtain

v∗(0, τ ) − σ∗(0, τ ) = 2F(τ + 2) + 2D∗(τ + 1) − D∗(τ ), τ ≥ 0. (46)

On setting τ → τ − 2 in (46) and solving for 2F(τ ), we obtain

2F(τ ) = v∗(0, τ − 2) − σ∗(0, τ − 2) + D∗(τ − 2) − 2D∗(τ − 1), τ ≥ 2. (47)
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Then from (38),(45), and (47), we obtain

v∗(0, τ ) + σ∗(0, τ ) − D∗(τ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V0, 0 ≤ τ ≤ 1,
V0 − 2D∗(τ − 1), 1 ≤ τ ≤ 2,
v∗(0, τ − 2) − σ∗(0, τ − 2)
+ D∗(τ − 2) − 2D∗(τ − 1), τ ≥ 2.

(48)

On substitution of (21)2 and (25) into (48), we obtain the dimensional form of the impact boundary condition:

v0(0, t) + σ0(0, t)

z0
− h0

z0
D0(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V0, 0 ≤ t ≤ t∗,
V0 − 2 h0

z0
D0(t − t∗), t∗ ≤ t ≤ 2t∗,

v0(0, t − 2t∗) − σ0(0,t−2t∗)
z0

+ h0
z0
D0(t − 2t∗) − 2 h0

z0
D0(t − t∗), t ≥ 2t∗.

(49)

5 Additional boundary and electrical conditions

In addition to the stress-free boundary condition (17) on the back face of the finite flyer, four additional rela-
tionships are presented, in this section, for determining the five unknown functions F0,G0, F1,G1, and D1,
in terms of the field variables of velocity v1(x, t), stress σ1(x, t), and electric displacement D1(t) in the piezo-
electric target. These relationships are: (1) continuity of stress at the impact face, (2) the impact boundary
condition on the target, (3) the continuity condition between the target and semi-infinite elastic half-space, and
(4) the integral form of Maxwell’s first equation of electrostatics applied to the short circuit assumed to exist
between the back faces of the flyer and target, respectively (see Fig. 1).

5.1 Impact boundary condition on the target

Since velocity, stress, and electric displacement are continuous across the impact face x = 0 during the time2

that the piezoelectric flyer and target are in contact, we must have that

v0(0, t) = v1(0, t) and σ0(0, t) = σ1(0, t) and D0(t) = D1(t), t > 0. (50)

Here, we do not assume that the velocity, stress, and electric displacement of the flyer and target coincide at
t = 0. For example, v0(0, 0) = V0 by (16), whereas the target is assumed to be initially at rest at t = 0, i.e.,
v1(0, 0) = 0, so v0(0, 0) 
= v1(0, 0), and thus, a shock is formed at the flyer–target boundary (x, t) = (0, 0),
cf. section 8.1.2 of [4]. Recall that the initial conditions for the target are

v1(x, 0) = 0, and σ1(x, 0) = D1(0) = 0 for 0 ≤ x ≤ l. (51)

We obtain the impact boundary condition for a piezoelectric target by substituting the continuity conditions
(50) into Eq. (49) to arrive at

v1(0, t) + σ1(0, t)

z0
− h0

z0
D1(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V0, 0 < t ≤ t∗,
V0 − 2 h0

z0
D1(t − t∗), t∗ ≤ t ≤ 2t∗,

v1(0, t − 2t∗) − σ1(0,t−2t∗)
z0

+ h0
z0
D1(t − 2t∗) − 2 h0

z0
D1(t − t∗), t ≥ 2t∗.

(52)

Here we note that the stress σ1(0, t), particle velocity v1(0, t) and electrical displacement D1(t) at the impact
face are unknownquantities, and it is the relationship between them (52) that determines the boundary condition
corresponding to impact.

2 The contact time is infinite since it is assumed that the flyer and target adhere on impact; this assumption is in fact unnecessary
in those cases where flyer–target separation does not occur.
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5.2 Back face boundary condition on the target

In this section, we simply state the continuity condition between the back face of the target that is bonded to
the semi-infinite elastic half-space:

σ1(l, t) = z2v1(l, t), t ∈ R; (53)

the full derivation can be found in [10].

5.3 Electrical boundary condition on the flyer–target

In this section, we show that the time-varying electric potential V (t) is a function of particle displacement and
electric displacement during impact for the flyer and target arrangement shown in Fig. 1. The electric potential
is given by

V (t) = 0 = −
0∫

−k

E0(x, t)dx −
l∫

0

E1(x, t)dx . (54)

Unlike the gravitational field and other field potentials, the minus sign is used here since the electric field
is “governed by Coulomb’s law where elements of like sign repel,” cf. p. 22 of Sternberg and Smith [28].
On substituting (2) into (54) and specializing this to a short-circuit solution, where the electrical impedance
between the back face of the flyer and target is negligible (see Fig. 1), we obtain

V (t) = −h0 [u0(0, t) − u0(−k, t)] + kD0(t)/ε0 − h1 [u1(l, t) − u1(0, t)] + lD1(t)/ε1 = 0. (55)

Here, the quantities in brackets, u0(0, t) − u0(−k, t) and u1(l, t) − u1(0, t), represent the relative motion of
the flyer and target surfaces, respectively;3 displacement continuity at the impact face x = 0 requires that
u0(0, t) = u1(0, t).

6 Laplace transform of the d’Alembert solution

Solutions for the true impact problem with appropriate impact boundary conditions for a finite piezoelectric
flyer are obtained in this section by Laplace transform techniques. The derivation of these solutions requires
the Laplace transform of the field equations, which is considered here. Let f denote a real-valued, piecewise-
continuous function with the property f (t) = 0, t < 0 . We employ the right-sided or unilateral Laplace
transform L of f defined as

f (s) = L { f }(s) = Lt { f (t)}(s) ≡
∞∫
0

f (t) e−stdt . (56)

Here s = σ + i ω is generally a complex number with Re(s) > 0, and the overbar on f indicates that the
function is in the Laplace transform domain. The Laplace transform of field variables such as u1(x, t), σ1(x, t)
and v1(x, t) are taken with respect to the time variable t , for example,

σ 1(x, s) = Lt {σ1(x, t)}(s) =
∞∫
0

σ1(x, t) e
−stdt. (57)

Applying Laplace’s shifting theorem to generic d’Alembert functions we see that

Lt {F(t − x/c)} = e
−sx
c F(s), Lt {G(t + x/c)} = e

sx
c G(s). (58)

3 Similar behavior is observed in thickness-mode piezoelectric transducers excited by pulse voltage sources for ultrasonic
applications [29].
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On Laplace transformation of (11), (12), and (13), and use of (58), we obtain Laplace-domain expressions
for the displacement, stress, and particle velocity in the target in terms of the transforms of the d’Alembert
functions:

u1(x, s) = 1

s

[
e

−sx
c1 F1(s) + e

sx
c1 G1(s)

]
, (59)

σ 1(x, s) = z1
[
e

−sx
c1 F1(s) − e

sx
c1 G1(s)

]
+ h1D1(s), (60)

v1(x, s) = e
−sx
c1 F1(s) + e

sx
c1 G1(s). (61)

Similar equations hold for the flyer:

u0(x, s) = 1

s

[
e

−sx
c0 F0(s) + e

sx
c0 G0(s)

]
, (62)

σ 0(x, s) = z0
[
e

−sx
c0 F0(s) − e

sx
c0 G0(s)

]
+ h0D0(s), (63)

v0(x, s) = e
−sx
c0 F0(s) + e

sx
c0 G0(s). (64)

6.1 Laplace transform of the boundary and potential field conditions

In this section, we present the five equations that are necessary for determination of the five unknown functions
F0,G0, F1,G1, and D1 used to construct solutions for the stress and velocity in the flyer and target for all
time. The five expressions are presented in the Laplace transform domain which is a useful transformation that
converts time derivatives into algebraic functions of s. Therefore, we have the following five conditions in the
Laplace transform domain:

1. The stress-free boundary condition (17) on the back face of the flyer:

σ 0(−k, s) = 0. (65)

2. The stress continuity condition (50)2:

σ 0(0, s) = σ 1(0, s). (66)

3. The impact boundary condition (52):

v1(0, s) + σ 1(0, s)

z0
− h0

z0
D1(s) = V0

∫ 2t∗

0
e−st dt − 2h0

z0

∫ ∞

t∗
D1 (t − t∗) e−st dt

+
∫ ∞

2t∗

(
v1 (0, t − 2t∗) − σ1 (0, t − 2t∗)

z0
+ 2h0

z0
D1 (t − 2t∗)

)
e−st dt,

or

(
σ 1(0, s) − h0D1(s)

) (
1 + e−2st∗) + z0

(
v1(0, s) − V0

s

) (
1 − e−2st∗) + 2h0D1(s)e

−st∗ = 0. (67)

For a finite elastic flyer, D0(t) = 0 in (49), so that D1(t) = 0 in (52), which implies that (67) specializes to

σ 1(0, s)
(
1 + e−2st∗) + z0

(
v1(0, s) − V0

s

) (
1 − e−2st∗) = 0. (68)

For a semi-infinite elastic flyer, the travel time in the flyer approaches infinity, t∗ → ∞, and (68) further
specializes to

σ 1(0, s) + z0

(
v1(0, s) − V0

s

)
= 0. (69)
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Table 1 Elastic, dielectric, and piezoelectric properties of flyer, target, and half-space

Constant Quartz [30] PZT-4 [22] Half-space
CE (GPa) 86.736 115.41 –
z = ρ c (kgm−2/s) 2651 × 5744.68 7500 × 4533.38 2651 × 5744.68
ε0 (F/m) 8.854187817 ×10−12 8.854187817 ×10−12 –
εr 4.40 663.2 –
ε = ε0 εr (F/m) 3.89584 × 10−11 5.87209736 ×10−9 –
e (C/m2) 0.171 15.08 –
h = e/ε (V/m) 4.38929 ×109 2.5680773 ×109 –
CD = CE + e h (GPa) 87.487 154.136 –
Flyer/target dimensions (mm) k = 10 l = 5 ∞

The time-domain form of this impact boundary condition for a semi-infinite elastic flyer was derived in [10]
and used (without proof) in [11] for the case of a semi-infinite elastic flyer impacting a finite piezoelectric target.

4. The back face continuity condition (53):

σ 1(l, s) = zhv1(l, s). (70)

5. Maxwell’s first equation of electrostatics applied to the short-circuit equation (55) involving the flyer and
target:

− h0[u0(0, s) − u0(−k, s)] + k

ε0
D0(s) − h1[u1(l, s) − u1(0, s)] + l

ε1
D1(s) = 0. (71)

On substituting Eqs. (59) through (64) into Eqs. (65)–(67) and (70)–(71), and letting D0(s) = D1(s) and
u0(s) = u1(s), we obtain algebraic expressions for F0(s),G0(s), F1(s), G1(s), and D1(s). Resubstitution
of these algebraic expressions into Eqs. (59) through (64) allows determination of the stress, velocity, and
displacement in both the flyer and target in the Laplace transform domain. The algebraic expressions for
F1(s),G1(s), and D1(s) appear “Appendix 1”; these expressions will be inverted to the time domain in the
next section.

7 Numerical results

The elastic and piezoelectric properties [22,30] of the quartz flyer and PZT-4 target are given in Table 1. The
elastic properties for the quartz flyer and half-space are assumed to be identical z0 = zh .

Solutions in the time domain are illustrated in Figs. 2, 3, and 4 and are found by numerical inversion
of the Laplace transform domain expressions using the DAC algorithm [14,15], as modified by Laverty and
Gazonas [17] to mitigate the effects of Gibbs’ phenomenon. This is accomplished using the so-called Lanczos
σ -factors with 2048 terms in the Fourier series and a tolerance equal to 10−5. Laplace transform domain
solutions for the stress and particle velocity in the target can be determined through substitution of expressions
for F1(s),G1(s), and D1(s) found in “Appendix 1” into Eqs. (60) and (61).

A Mathematica [23] code for the numerical inversion of functions with jump discontinuities using the
modified DAC algorithm appears in “Appendix 2.” The stress in the target in the Laplace transform domain
s is given by the function containing the exponentials in Eq. (82). This same code works equally well for
continuous functions, and users need only to replace the last expression σ 1(x, s) in algorithm (81) with their
own Laplace-domain expression, as well as listing the constants appearing in their expression at the beginning
of theModule command.Mathematica code (81) computes the numerical ILT of the function Stress and stores
these values in the function �. The Mathematica compile function executes this code in less than 8s on a Dell
laptop with a 64-bit OS and 8GB of RAM running on an Intel(R) Core(TM) i5 CPU, M 560 at 2.67GHz. The
same code executes in 135s using uncompiled Mathematica code. Mathematica code (86) plots the stress �
at the center of the piezoelectric target (see Fig. 5); Fig. 5 also compares solutions to the piezoelectric impact
problem using a FDTD method, and the commercial finite element code, COMSOL multiphysics [22], both
of which exhibit wave dispersion effects.

The impact event that occurs at t = 0 induces jump discontinuities in the stress and velocity at the
flyer/target impact face. These jump discontinuities appear as step functions that travel into the target and flyer
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Fig. 2 Stress history at the center of a 5-mm-thick PZT-4 target backed by a semi-infinite elastic half-space under impact by a
finite 10-mm-thick quartz flyer with initial velocity V0 = 5 m/s, using material parameters from Table 1

Fig. 3 Velocity history at the center of a 5-mm-thick PZT-4 target backed by a semi-infinite elastic half-space under impact by a
finite 10-mm-thick quartz flyer with initial velocity V0 = 5m/s, using material parameters from Table 1

and are multiply-reflected/transmitted due to the impedance mismatch that exists between the flyer/target and
target/half-space interfaces. These wave reflections diminish in amplitude with time as the impact-induced
waves are transmitted into the semi-infinite elastic half-space. Finally, the pre-tensile wave that appears clearly
in Fig. 5 is due to the synthetic (artificial) material properties that were chosen in this example so as to
accentuate the differences between FDTD, COMSOL, and numerical simulations. A pre-tensile “wave” also
exists in Fig. 2, but is not perceptible due to the large magnitude in the vertical scale in this figure.

7.1 FDTD and COMSOL numerics

The finite-difference implementation of the problem proceeds using an auxiliary field approach so that (8)
is split into two coupled, first-order differential equations. Next, the result of (55) is used to include the
electrically induced stress as boundary terms. A central difference approximation of the spatial derivatives and
a backward Euler approximation of the temporal derivatives were then used to discretize the problem. As the
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Fig. 4 Displacement current time history at the center of a 5-mm-thick PZT-4 target backed by a semi-infinite elastic half-space
under impact by a finite 10-mm-thick quartz flyer with initial velocity V0 = 5m/s, using material parameters from Table 1

implementation is an implicitmethod, a sparsematrix is formeddescribing the spatial derivative approximations
and the appropriate boundary conditions are inserted into the matrix. The results in the following plots were
computed using a time step sizes of 1ns and a spatial grid size of 25μm.

Similarly, an FE model was implemented using the coupled 1-D weak-form partial differential equation
(PDE) interfaces in the COMSOLmultiphysics software. The governing equations used were Gauss’s law and
thewave equation, given by Eqs. (7) and (8). However, the constitutive relationswere given by the stress-charge
form of the piezoelectric constitutive relations (see Eq. B-5 of [31]) with the resultant change in the definition
for the wave speed, c, and the piezoelectric coupling coefficient. The impactor, target and semi-infinite elastic
half-space were each described by their own set of coupled PDE’s. Matching boundary conditions were then
used to enforce continuity between these components. An artificial damping weak term was added to remove
spurious high-frequency response. Results using both linear and quadratic Lagrange shape functions were
obtained. Time stepping was done with a generalized alpha scheme with the maximum time step limited to
1ns. The mesh density was 50μm. Results obtained using quadratic shape functions are presented in Figs. 2,
3 and 4.

8 Discussion and conclusions

Numerical solutions for stress, particle velocity, and electrical displacement in a lead zirconate titanate (PZT-4)
target, backed by an elastic half-space and under impact by a one-dimensional finite quartz flyer, compare well
with the numerical solutions obtained using a finite-difference time-domain (FDTD) code and the commercial
finite element code, COMSOL multiphysics [22] (see Figs. 2, 3, 4, 5). The numerical FDTD code and the
COMSOL simulations corroborate the derived numerical inverse Laplace transform solutions using a modified
DACalgorithm listed in “Appendix 2.”We are not aware of any other general elastodynamic flyer–target impact
solutions in the literature, where both the flyer and the target are composed of different piezoelectric materials,
are of arbitrary length, and treat the occurrence of multiply-reflected impact-induced waves. In “Appendix 3,”
we compute the relative error between our numerical ILT-derived solution and the exact analytical solution
derived by Le [12,13] for the special case of a finite-length piezoceramic rod, traveling at an initial constant
velocity, that impacts a second, identical, but stationary piezoceramic rod; it is shown that the numerical ILT
solutions are quite accurate over the two-way travel time or impact interval 0 ≤ t ≤ 2l/c.

The numerical solutions for a finite-thickness piezoelectric flyer impacting a finite-thickness piezoelectric
target composed of synthetic elastic and piezoelectric properties reveal the nearly instantaneous appearance
of a tensile stress wave at the center of the target. The tensile stress increases linearly in amplitude (see Fig. 5)
and is formed by the E -field-induced polarization of the material in the initially unstressed region of the target.
This behavior is similar to that observed for a semi-infinite elastic flyer that collides with a finite PZT-4 target
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Fig. 5 Stress time history at the center of a 5-mm-thick piezoelectric target backed by a semi-infinite elastic half-space under
impact by a 10-mm-thick piezoelectric flyerwith initial velocityV0 = 5m/s; synthetic elastic and piezoelectricmaterial parameters
from code (81) (see Table 2) are used to illustrate the differences between the FDTD, ILT, and COMSOL numerical solution
methods

Table 2 Synthetic elastic, dielectric, and piezoelectric properties of flyer, target, and half-space

Constant Flyer Target Half-space
CE (GPa) 2 3 –
z = ρ c (kgm−2/s) 8 × 0.687 9 × 0.733 8 × 0.687
ε0 (F/m) 1.5 1.5 –
εr 6 7 –
ε = ε0 εr (F/m) 9 10.5 –
e (C/m2) 4 5 –
h = e/ε (V/m) 0.444 0.476 –
CD = CE + e h (GPa) 3.778 5.381 –
Flyer/target dimensions (mm) k = 10 l = 5 ∞

studied in [11]; the magnitude of this effect is negligible in the “quartz on PZT-4” impact solution illustrated
in Fig. 2.

For nonlinear piezoelectric media, Chen et al. [1] report that this wave cannot be a shock wave but must
be an acceleration wave since the wave speed depends upon a time-dependent displacement current D(t) (see
Chen et al. [1] equation (4.12)). The nearly instantaneous appearance of the stress wave occurs since the speed
of light is about five orders of magnitude greater than the longitudinal wave speed in the target. The tensile
stress wave is eventually overcome by the impact-induced compressive stress wave at about 1.25ms, cf. Fig. 5.

Finally, we have shown that the new impact boundary condition (52) for a finite piezoelectric flyer includes
as a special case the impact boundary condition for an elastic flyer of finite extent or an elastic flyer of
semi-infinite extent [10,11].

Acknowledgments The authors wish to thank reviewer 1 for identifying the closed-form solutions found in the Le [12,13]
references that were used to verify the ILT numerical solutions appearing in “Appendix 3.”

Appendix 1: Laplace transform domain functions F1(s),G1(s), and D1(s)

Appendix 1 lists theLaplace transformdomain functions F1(s),G1(s), and D1(s) that are substituted into (60)
for the Laplace transform domain stress σ 1(x, s) in the target that is inverted to the time-domain using the
Mathematica algorithm in “Appendix 2.”
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F1(s) = nF1(s)

dF1(s)
, (72)

where

nF1(s) = V0z0e
− ks

c0

(
e

ks
c0 − 1

)(
e

ks
c0

+ ls
c1 (ε1(ε0(−2h20(z1 + z2) + h1h0(z1 + z2) − h21z0

)

+ ksz0(z1 + z2)) + lsz0(z1 + z2)ε0) + e
ls
c1 (ε1(ksz0(z1 + z2) − ε0(−2h20(z1 + z2)

+ h1h0(z1 + z2) + h21z0)) + lsz0(z1 + z2)ε0) + h1ε0ε1(h1z0 − h0z1)e
ks
c0

+ h1ε0ε1(h1z0 + h0z1)), (73)

dF1(s) = 4s(sinh

(
ks

c0

)(
sinh

(
ls

c1

)
(ε1(ksz

2
0z2 − ε0(h

2
1z

2
0 + h20z

2
1)

)
+ lsz2z

2
0ε0)

+ z1 cosh

(
ls

c1

)
(h20(−z2)ε0ε1 + ksz20ε1 + lsz20ε0))

+ z0 cosh

(
ks

c0

)(
sinh

(
ls

c1

)
(ε1(ksz

2
1 − (2h20 − 2h1h0 + h21)z2ε0) + lsz21ε0

)

+ z1 cosh

(
ls

c1

)
(ε1(ksz2 − 2(h20 − h1h0 + h21)ε0) + lsz2ε0) + 2h1(h1 − h0)z1ε0ε1)

+ 2h0z0ε0ε1

(
(h0 − h1)

(
z2 sinh

(
ls

c1

)
+ z1 cosh

(
ls

c1

))
+ h1z1

))
. (74)

G1(s) = nG1(s)

dG1(s)
, (75)

where

nG1(s) = V0z0

(
e

ks
c0 − 1

)
e
− ks

c0
− ls

c1 (ε1(ksz0(z1 − z2)

(
e

ks
c0 + 1

)

− ε0(h1h0

(
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ks
c0 − 1
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(z1

(
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ks
c0 − 1
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+ lsz0(z1 − z2)ε0

(
e

ks
c0 + 1)

)
, (76)

dG1(s) = V0z0

(
e

ks
c0 − 1

)
e
− ks

c0
− ls

c1 (ε1(ksz0(z1 − z2)(e
ks
c0 + 1)

− ε0(h1h0

(
e

ks
c0 − 1

)
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(
e

ls
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)
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(
e
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)
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(
e

ks
c0 − 1
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+ lsz0(z1 − z2)ε0

(
e

ks
c0 + 1
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. (77)

D1(s) = nD1(s)

dD1(s)
, (78)

where

nD1(s) = V0z0ε0ε1

(
e

ks
c0 − 1

)(
−e

− ks
c0

− ls
c1

) (
h1z0

(
e

ks
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)(
e

ls
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)(
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ls
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e
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)(
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, (79)

dD1(s) = 4s

(
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(
ks

c0

) (
sinh

(
ls

c1

) (
ε1

(
ksz20z2 − ε0

(
h21z

2
0 + h20z

2
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)) + lsz2z
2
0ε0

)
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+ z1 cosh

(
ls

c1

) (
h20(−z2)ε0ε1 + ksz20ε1 + lsz20ε0

))

+ z0 cosh

(
ks

c0

)(
sinh

(
ls

c1

) (
ε1

(
ksz21 − (

2h20 − 2h1h0 + h21
)
z2ε0

) + lsz21ε0
)

+ z1 cosh

(
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c1

) (
ε1

(
ksz2 − 2

(
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ε0
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(
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(
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c1

)
+ z1 cosh

(
ls

c1

))
+ h1z1
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. (80)

Appendix 2: Mathematica code for determining the numerical ILT using the modified DAC
algorithm [11, 17]

The followingMathematica [23] source code is useful for determining the numerical inverse Laplace transform
(ILT) of functions with jump discontinuities using the modified Dubner–Abate–Crump (DAC) algorithm [11,
17]. Figure 5 illustrates the stress time history in the target and use of the ILT algorithm for a set of synthetic
flyer and target elastic and piezoelectric properties.

Mathematica code to compile the Laplace transform domain function σ 1(x, s)

Stress = Compile

[
{{s, _Complex}},Module

[
{l, k, x, eo, e0, e1,Ce0,Ce1, ers0, ers1, ε0, ε1, h0, h1,

M0,M1, ρ 0, ρ 1, c0, c1,V0, z0, z1, z2, t0}, l = 5 × 10−3; k = 10 × 10−3; x = l

2
; eo = 1.5;

Ce0 = 2;Ce1 = 3; e0 = 4; e1 = 5; ers0 = 6; ers1 = 7; ε0 = eo ers0; ε1 = eo ers1;
h0 = e0

ε0
; h1 = e1

ε1
;M0 = Ce0 + e0 h0;M1 = Ce1 + e1 h1; ρ 0 = 8; ρ 1 = 9;

c0 =
√
M0
ρ 0

; c1 =
√
M1
ρ 1

;V0 = 5; z0 = ρ 0 c0; z1 = ρ 1 c1; z2 = z0; σ 1(x, s)

]]
; (81)

σ 1(x, s) in the above code is given by the following Laplace transform domain expression for the stress in the
target

σ 1(x, s) = Num(x, s)

Denom(s)
, (82)

where

Num(x, s) = V0z0
(
e
ks
c0 − 1

)
e− sx
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(−z1e
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(
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(
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) + lsz0ε0(z1 + z2)

) − h1ε0ε1(z1 + z2)(h0z1 + h1z0)e
s(c0(2l+x)+c1k)

c0c1

+ h1z1ε0ε1(h0z1 + h1z0)e
s(c0(l+2x)+c1k)

c0c1 + h1z1ε0ε1(h1z0 − h0z1)e
ks
c0+ ls

c1

− h1ε0ε1(z1 − z2)(h1z0 − h0z1)e
ks
c0+ sx

c1 + 2h12z0z1ε0ε1e
s(c0(l+x)+c1k)

c0c1

− z1e
2sx
c1

(
ε1

(
ε0

(
2h02(z1 − z2) + h0h1(z2 − z1) + h12z0

) + ksz0(z1 − z2)
)

+ lsz0ε0(z1 − z2)
) + z1e

2ls
c1

(
ε1 (ksz0(z1 + z2)

− ε0
(−2h02(z1 + z2) + h0h1(z1 + z2) + h12z0

))
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+ lsz0ε0(z1 + z2)
) − h1ε0ε1(z1 + z2)e

s(2l+x)
c1 (h1z0 − h0z1)

+ h1z1ε0ε1e
s(l+2x)

c1 (h1z0 − h0z1)

+ h1z1ε0ε1e
ls
c1 (h0z1 + h1z0) − h1ε0ε1(z1 − z2)e

sx
c1 (h0z1 + h1z0)+ 2h12z0z1ε0ε1e

s(l+x)
c1

)
,

(83)

and

Denom(s) = s
(
ε1

(
ε0

(−h02
(
e
ks
c0 − 1

) (
2z0

(
e
ks
c0 − 1

)(
z1

(
e
2ls
c1 + 1

) + z2
(
e
2ls
c1 − 1

))
+ z1

(
e
ks
c0 + 1

)(
z1

(
e
2ls
c1 − 1

) + z2
(
e
2ls
c1 + 1

)))

+2h0h1z0
(
e
ks
c0 − 1

)2(
e

ls
c1 − 1

)(
z1

(
e

ls
c1 − 1

)
+ z2

(
e

ls
c1 + 1

)) − h12z0
(
e

ls
c1 − 1

)(
z0

(
e
2ks
c0 − 1

)(
e

ls
c1 + 1

)
+(

e
2ks
c0 + 1

)(
2z1

(
e

ls
c1 − 1

) + z2
(
e

ls
c1 + 1

))))
+ ksz0

(
z0

(
e
2ks
c0 − 1

)(
z1

(
e
2ls
c1 + 1

) + z2
(
e
2ls
c1 − 1

))
+z1

(
e
2ks
c0 + 1

)(
z1

(
e
2ls
c1 − 1

) + z2
(
e
2ls
c1 + 1

))))
+ lsz0ε0

(
z0

(
e
2ks
c0 − 1

)(
z1

(
e
2ls
c1 + 1

) + z2
(
e
2ls
c1 − 1

))
+z1

(
e
2ks
c0 + 1

)(
z1

(
e
2ls
c1 − 1

) + z2
(
e
2ls
c1 + 1

))))
. (84)

Mathematica code to perform the ILT of function Stress defined in “Mathematica code to compile the Laplace
transform domain function σ 1(x, s)”

� = Compile
[{},Module

[{sumcp, sumsp, tf, tol, a, tot, c0, τ, dt, σ, arg, coeffs, cospart, c1, c2, sinpart,

kpd, t, kpt}, tf = 0.1; tol = 0.00001; a = −Log(tol)
2.tf

; tot = 2048;

c0 = Stress[a]; τ = 1000; dt = tf

τ
;

Table
[
sumcp = 0.; sumsp = 0.;Do[kpd = π k

tot
; kpt = π k

tf
;

σ = Sin[kpd]
kpd

; coeffs = Stress[a + i kpt];
c1 = Re[coeffs]; c2 = Im[coeffs]; cospart = c1 σ Cos[kpt t]; sumcp = cospart + sumcp;

sinpart = c2 σ Sin(kpt t); sumsp = sinpart + sumsp, {k, 1, tot}]; Exp(a t)
( c0
2. + sumcp − sumsp

)
tf

,

{t, dt, tf, dt}]],CompilationOptions →
{“InlineExternalDefinitions” → True, "InlineCompiledFunctions" → True}]; (85)

Mathematica code to plot the numerical ILT of � defined in (85)

Ce0 = 86.736 × 109;Ce1 = 115.41 × 109; ρ 0 = 2651; ρ 1 = 7500;
c0 =

√
Ce0
ρ 0

; c1 =
√
Ce1
ρ 1

;V0 = 5; z0 = c0 ρ 0; z1 = c1 ρ 1;
ListPlot

[
�[ ], Joined → True,BaseStyle → {FontFamily → “Times”,FontSize → 14},

AxesLabel → {“Time (s)”, “ σ(l/2, t)′′},PlotLabel → “Stress”,DataRange → {0, 0.1},
PlotRange → {{0, 0.1}, {−10, 25}},PlotStyle → Black

]
(86)
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Appendix 3: Verification of the numerical ILT solutions with the closed-form results of Le [12,13]

In this Appendix 3, we determine the relative error between the exact solution for the electric displacement
derived by Le [12,13] and the numerical ILT solution using the Mathematica algorithm listed in “Appendix
2.” Le [12,13] studies the problem of a finite-length piezoceramic rod, traveling at an initial constant velocity,
that impacts a second, identical, but stationary piezoceramic rod; exact solutions for electric displacement
and stress are provided, up until the first wave reflection, for the case when the external ends of the rods are
electrically short-circuited. For identical piezoceramic rods, the electric displacement can be written as

D(t) = εh

2l
[u(l, t) − u(−l, t)]. (87)

Le [12,13] provides closed-form analytical expressions for the relative displacement u(l, t) − u(−l, t) of the
rod ends used in Eq. (87) and illustrated in Fig. 6 for the time interval 0 ≤ t ≤ 2l/c. Since the piezoceramic rods

Fig. 6 Comparison of numerical and exact displacement current time histories in a 5-mm-thick PZT-4 target under impact by a
5-mm-thick PZT-4 flyer with initial velocity V0 = 5m/s, using PZT-4 material parameters from Table 1; the exact solution of
Le [13] is plotted for the time interval time 0 ≤ t ≤ 2l/c

Fig. 7 Numerical accuracy of the modified DAC displacement current solution depicted in Fig. 6 for two tolerance values tol
= 10−5 and tol = 10−7 used in the ILT algorithm [Eq. (85)] over the time interval 0 ≤ t ≤ 2l/c; over this interval, the numerical
solution accuracy ranges from about 3 to 9 significant digits
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are finite in extent, the electric displacement sinusoidally oscillates in time and does not diminish in amplitude
as in the example where the target is backed by a semi-infinite half-space (Fig. 4); the PZT-4 constants used
to generate the solutions appearing in Fig. 6 can be found in Table 1.

If D(t) represents the exact value of the electric displacement given byEq. (87), and D̃(t) is the approximate
ILT value; then, the relative error, relerr, of D̃(t) is given by

relerr = 1 − D̃(t)

D(t)
. (88)

It can be shown that −Log10[|relerr|] (see Fig. 7) is a measure of the approximate number of significant digits
in the solution. Note that relerr is defined only if D(t) 
= 0.
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