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Executive Summary

Imposing nonnegative constraints on least squares problems arises naturally in many

fields, usually to avoid nonphysical solutions, such as negative chemical concen-

trations in chemical compositions or negative pixel intensities in computer graph-

ics. The motivation for this work comes from a particular method for constructing

nonlinear reduced-order models (ROMs) where nonnegative constraints on associ-

ated least squares problems are imposed to maintain the stability of the ROM. This

methodology was developed for finite element models at the Army High Perfor-

mance Computing Research Center.1 The nonnegative least squares (NNLS) prob-

lem comes from the embedded hyper-reduction step referred to as Energy Conserv-

ing Sampling and Weighting (ECSW). ECSW reduces the complexity of a ROM by

choosing a minimal subset of the finite element mesh, referred to as a reduced mesh,

on which to evaluate the nonlinear function when integrating the ROM. Choosing

this mesh requires the solution of a NNLS problem where the sparsity of the solu-

tion is associated with the reduced mesh. Each nonzero entry in the solution vector

defines the reduced mesh and is a weighting factor for evaluating the nonlinear

function at that mesh point; hence, the overall complexity of the ROM is tied to the

sparsity of the NNLS solution. For this case the NNLS solution does not have to

be optimal, but it must satisfy some tolerance associated with the accuracy of the

ROM.

Solving large NNLS problems is computationally intensive and on a single pro-

cessor can sometimes take days. In many cases, as with problems that arise from

ECSW, they are too big to fit on a single node so a parallel implementation is nec-

essary. As will be shown, ECSW NNLS problems are not solved to completion

but to a tolerance to achieve the goal of a minimal, reduced mesh with acceptable

accuracy. Thus, a stopping criteria needs to be imposed, and the method must pro-

duce a sparse solution. Unfortunately, there are no readily available parallel NNLS

software packages that do this.

There are a number of algorithms that solve NNLS problems.2 In this work, 2 algo-

1Farhat C, Avery P, Chapman T and Cortiel J. Dimensional reduction of nonlinear finite element

dynamic models with finite rotations and energy-based mesh sampling and weighting for computa-

tional efficiency. Int J Numer Meth Engng. 2014;98:625–662.
2Chen D, Plemmons R. Nonnegativity constraints in numerical analysis. In proceedings of the

2007 Symposium on the Birth of Numerical Analysis; World Scientific Publishinc Co., 2010, 109–

140.
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rithms are implemented and parallelized using ScaLAPACK. They are the Lawson

and Hanson active set method and the projected quasi-Newton iterative method.

The projected quasi-Newton method does not, in general, produce a sparse solu-

tion, so modifications to the basic method are made to promote this. These methods

and their implementations are discussed in Section 3. Performance results for both

are presented in Section 4. Both methods were integrated into the "aeros" finite

element structures code developed at the Army High Performance Computing Re-

search Center at Stanford University by the Farhat Research Group. This code is

equipped with model order reduction capabilities and ECSW hyper-reduction. Re-

sults using the 2 methods when constructing a reduced-order model of a general

V-Hull vehicle subjected to an under-body blast are presented. For technical details

of the code and its model order reduction capabilities, see the works of Farhat et

al.1

vii
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1. Introduction

Nonlinear model order reduction methods are being developed at the Army High

Performance Computing Research Center (AHPCRC) at Stanford University by the

Farhat Research Group for the purpose of enabling parametric studies of complex

physical processes, such as under-body blasts, in a reasonable amount of time. Be-

cause of nonlinearity, the complexity of the reduced-order model (ROM) remains

on the order of the high-dimensional model since evaluation of the nonlinear func-

tion cannot be computed off-line during construction of the ROM; thus, a second-

tier approximation, known in the literature as hyper-reduction, is necessary for fast

evaluation of the nonlinear function when integrating the ROM. One such hyper-

reduction approach is the Energy Conserving Sampling and Weighting (ECSW)

method developed at the AHPCRC. It is designed specifically for finite element

models and derived from an energy conservation argument that seeks to maintain

the total energy in the reduced model as in the high-dimensional model. This proce-

dure requires a sparse, approximate solution to a nonnegative least squares (NNLS)

problem, where the sparsity represents the element set used to evaluate the nonlin-

ear terms, and the values are the weights applied to these elements. The sparsity

reduces the overall complexity of the nonlinear reduced-order model, thus allowing

parametric studies to be done in a reasonable amount of time.

NNLS problems that emerge from the ECSW hyper-reduction procedure are gener-

ally large, ill-conditioned matrices whose column dimension is equal to the number

of elements in the finite element model and whose row dimension is the number

of basis vectors in the reduced-order model times the number of snapshots used to

produce the model. By way of construction, x = 1 is always a dense solution to

these systems; however, the objective is to find a sparse, approximate solution that

is sufficiently accurate. The solution to such a problem on a single processor can

take days and so the objective of this work is to develop scalable solution techniques

that are compatible with the ECSW procedure and produce solutions quickly.

Two NNLS solution methods are considered: the Lawson and Hanson active set

method and a projected quasi-Newton (PQN) iterative method. Active set methods

are a natural choice for use with the ECSW hyper-reduction procedure since they

typically remove one or more variables from the active set (i.e., the set of optimiza-

tion variables that are constrained) so that a sparse, approximate solution can be

1
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achieved with a simple stopping criterion. Iterative methods on the other hand, typ-

ically do not do this. The PQN method presented here is modified to control the size

of the active set, thereby making it appropriate for hyper-reduction. Both methods

are implemented and parallelized using ScaLAPACK.

The general NNLS problem and some details about ECSW are presented in Section

2. Section 3 discusses the Lawson and Hanson (LH) and PQN algorithms and their

parallel implementation. Results and conclusions are presented in Sections 4 and 5,

respectively.

2. Nonnegative Least Squares

The NNLS problem1 is a constrained least squares problem where all components

of the solution vector must be greater than or equal to zero. Given a matrix A ∈

R
M×N and a right-hand side b ∈ R

M , the problem is to find an x ∈ R
N that satisfies

min
x

f(x) =
1

2
‖Ax− b‖2

2

subject to x ≥ 0.
(1)

It is well known that the solution x must satisfy the Karush-Kuhn-Tucker (KKT)

optimality conditions given by

x ≥ 0

∇f(x) ≥ 0

∇f(x)Tx = 0.

(2)

(For proof of the KKT conditions, see Nocedal and Wright,2 chapter 12.) Associated

with the solution, and indeed any feasible vector x, is a set of indices where xi = 0.

This is referred to as the active set.2 If the active set at the optimal solution is

known a priori, then solving Eq. 1 is equivalent to solving an equality constrained

least squares problem.

When the matrix A comes from the ECSW hyper-reduction procedure, it consists

of the unassembled elemental contributions to the reduced vector of forces to be

approximated, and the right-hand side b is the assembled reduced vector of forces,

2
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see Farhat et al.3 Each component of b is then the sum over the columns of A for

the associated row. That is,

bi =
N∑

j=1

aij. (3)

Problems constructed in this way obviously have a dense solution given by x = 1;

however, the ECSW objective is to find a sparse solution x that is accurate enough

for approximating the nonlinear functions in the reduced model. The sparsity rep-

resents the element set with which to evaluate the nonlinear terms and the values

the weights applied to these elements. As discussed in Farhat et al.,3 the accuracy

of the desired solution is controlled by a parameter τ that controls the residual. The

corresponding approximate problem is

min
x∈Φ

f(x) =
1

2
‖Ax− b‖2

2

Φ = {x ∈ R
N | ‖Ax− b‖

2
≤ τ ‖b‖

2
, x ≥ 0}.

(4)

The ECSW matrix generally has a large condition number making it difficult to

solve. As a result, both methods are implemented with an option to scale the matrix

columns so that the L2 norm of each column is 1.

3. Methods and Implementations

This section describes the LH and the PQN algorithms and their parallel implemen-

tations. The implementations are not limited to ECSW hyper-reduction problems;

they are both capable of solving the usual NNLS problem Eq. 1. A simple stopping

criterion, based on a user-supplied input parameter, is added to both methods to

promote sparse solutions. This is sufficient for the LH method but not for the PQN

method. For the latter method the size of the active set is controlled to promote

sparse solutions. This is described in Section 3.2.1.

3.1 Lawson and Hanson

The LH algorithm is an active set method that solves Eq. 1 in a finite number of

iterations by constructing a sequence of active sets and associated feasible vectors,

which converge to the optimal solution. This iterative procedure consists of 2 loops:

an outer iteration loop and a sub-iteration loop referred to as the downdate proce-

dure. Each outer iteration decreases the current active set by one and checks its

validity by solving an equality constrained optimization problem. If the solution is

3
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feasible, then the new active set is valid and the next outer loop iteration begins. If

not, the downdate procedure is invoked where selected optimization variables are

added back to the active set, and an equality constrained problem associated with

the new, larger active set, is solved. If this produces a feasible vector, the next outer

loop iteration begins, otherwise, the downdate procedure is repeated until the solu-

tion becomes feasible again. The method terminates when the active set cannot be

decreased without producing an infeasible solution, or by some other criteria, such

as the tolerance on the residual.

The implementation is best described by reformulating the optimality conditions

Eq. 2 in terms of the active set as

w = −∇f(x) = AT (b−Ax)

xi = 0 for i ∈ Z , xi > 0 for i ∈ P

wi ≤ 0 for i ∈ Z , wi = 0 for i ∈ P ,

(5)

where the set [1, 2, . . . , N ] is partitioned into 2 sets

P = {i | xi > 0}

Z = {i | xi = 0} = {1, 2, . . . , N} \P .
(6)

The active set is Z and is the complement of P . If x, w ∈ R
N satisfy Eq. 5 then x

satisfies Eq. 2.

The algorithm produces a sequence of active sets and solve the associated equality

constrained minimization problem

min
x

f(x) = 1

2
‖Ax− b‖2

2

subject to xi = 0, i ∈ Z
(7)

for each set. The solution to Eq. 7 is obtained by partitioning A and x according

to P and solving the unconstrained least squares problem for the portion of A and

x associated with P . If ¶p ∈ R
N×N is a permutation matrix that permutes the p

columns of A whose indices are in set P to the first p columns of the matrix, then

4
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the desired partition is given by

A¶p = [Ap Az] , ¶Tp x = y =


 yp

yz


. (8)

There is no required ordering of the columns of Ap so ¶p is not unique. The permu-

tation matrix defines an ordering on the set P denoted by P̂ = (P ,¶p).

With this partition problem Eq. 7 is equivalent to the unconstrained least squares

problem

min
yp

1

2
‖Apyp − b‖2

2
(9)

with yp ∈ R
p. It is solved using a QR factorization of Ap written as

Ap = Qp


 Rp

0


 , Qp = H1 H2 . . . Hp, (10)

where Qp is a composition of elementary reflectors Hi. If

QT
p b = g =

[
gp

gz

]
, (11)

then the solution to Eq. 9 is

yp = R−1

p gp. (12)

The solution exists if Ap is linearly independent. The solution to Eq. 7 is then

x = ¶p

[
yp

yz = 0

]
(13)

and the residual r is

r = b−Ay = Qp

[
0p

gz

]
. (14)

Algorithm 1 presents the ScaLAPACK implementation where the main parts are the

outer iteration loop starting at line 4, the downdate procedure starting at line 13, and

the QR update procedure starting at line 27. Some comments on the right of each

line contain the equation number for reference back to the text and, if appropriate,

the ScaLAPACK routine used at that point. Inputs are the matrix A, the right-hand

5
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side b, optional stopping criteria τ the controls the residual and pmax that limits the

size of set P , a flag for scaling the matrix, and various ScaLAPACK parameters

that control the processor grids and block sizes (not shown). Parameter τ stops the

calculation when the L2 norm of the residual drops below τ ‖b‖
2

and pmax stops the

calculation if the size of set P reaches pmax. If scaling is selected, then the matrix

A is postmultiplied by a diagonal scaling matrix Λs whose diagonal entries are the

inverse of the L2 norm of each column vector. The Output is the solution vector x.

After initialization, the outer iteration loop is entered where r, w, and w imax
, the

maximum component of w over indices in set Z , are computed (lines 5, 6 and 7).

If w imax
> 0, then there is a potential for finding a new feasible vector that reduces

the objective function f(x) so index imax, the most likely candidate for removing

from the active set, is moved to P . If w imax
≤ 0 then the calculation is complete.

Equation 9 is then solved for yp, and if the minimum component of yp is strictly

greater then zero, then y = [yp,0]
T

is feasible and the current active set is valid.

If, on the other hand, any component of yp is less than or equal to zero, the current

active set is not valid and the downdate procedure is invoked. First, the previous

solution y is updated using the new but infeasible yp as follows:

y = y + α (ȳp − y) , ȳp =
[
yp,0(N−p)

]T

α = min

{
yi

yi − ȳpi
| ȳpi ≤ 0, i ∈ {1, 2, ..., p}

}
.

(15)

This choice of α ensures y remains feasible and has at least one component equal

to zero with an index in P . This component is moved from set P to Z along with

any others that are zero. Equation 9 is solved again and the process repeats until a

new active set is found that produces a feasible yp.

The QR factorization of Ap is required in both the outer iteration loop and the

downdate procedure. The outer loop constructs Ap from Ap−1 by adding a new col-

umn vector at index p and the downdate procedure removes one or more columns.

Because it is stored compactly consistent with ScaLAPACK, the factorization can

be incrementally updated by computing and applying new elementary reflectors

where appropriate. If the only change is a new column vector at index p, then only

Hp in Eq. 10 needs to be computed. If one or more column vectors are removed

and qmin is the smallest index in the ordered set P̂ of the vectors that are to be

6
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removed, then only elementary reflectors Hqmin
,Hqmin+1, ...,Hp need to be recom-

puted. Maximizing qmin, therefore, reduces the work associated with the downdate

procedure.

Updating the QR factorization is done in procedure UpdateQR(k). It starts by copy-

ing the columns of A associated with indices k through p of Ap to the appropriate

sub-matrix of the ScaLAPACK matrix that holds the factorization represented by

[q1,q2, . . . ,qp] in Algorithm 1. The ScaLAPACK routine pdormqr is called at line

32 to multiply the sub-matrix [qk,qk+1, . . . ,qp] by Qk−1, followed by a call to

pdgeqrf at line 33 to complete the factorization. The vector g is either incremen-

tally updated at line 35 or recomputed from b at line 37. It is worth noting that the

storage requirement for holding the factorization is O(M × M); however, if the

optional stopping criteria pmax is specified, then the storage requirement is reduced

to O(M × pmax).

When the downdate procedure increases the active set, or equivalently removes

column vectors from Ap, the new ordering imposed on the columns, although not

unique, could have an impact on performance through the value of qmin at each

iteration. Two orderings were implemented. The first fills in the holes with column

vectors that were added most recently, and the second shifts all columns to the left.

The shift ordering performed better most likely because any column vector that is

associated with the optimal active set tends to migrate to the lower column indices

of matrix Ap, hence maximizing qmin on subsequent iterations.

The processor grid used by ScaLAPACK to distribute the matrices and parallelize

the computations can have a large influence on performance. Using the assumption

that Ap ∈ RM xp where p ≪ M , the most efficient processor grid for the QR fac-

torization is Nprocs × 1, where Nprocs is the number of processors. This assumption

is true for the early part of any calculation when p is small and is also true for the

optimal solution of many problems; however, it is not true in all cases. But, since

the goal of ECSW hyper-reduction step is to produce a sufficiently optimal solution

with p≪M , the assumption is valid here.

For large matrices the most expensive part of the algorithm is computing w. Be-

cause the optimal processor grid for the QR factorization is not necessarily the

best for computing w, 2 separate processor grids, or BLACS contexts, were imple-

mented. One context is used for the QR factorization and all computations aligned

7
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with it, while the other is used for computations aligned with the matrix A. It was

found that the overhead associated with multiple BLACS contexts generally ex-

ceeded the benefit, so, in general, the single processor grid Nprocs × 1 is used for

both.

Not shown in Algorithm 1, but implemented in the code, is a check on linear inde-

pendence of Ap as each new column vector is added. It closely follows the original

implementation in Lawson and Hanson.4 It is rarely executed so it was not included

in Algorithm 1.

8
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Algorithm 1 Parallel LH (PLH) NNLS Algorithm

Input:

A ∈ R
M×N , b ∈ R

M , τ , pmax, scale

Output:

x

1: Initialize: x = y = 0, P̂ = ∅, p = 0, g = b, Q0 = I

2: if scale then

3: A← AΛs ⊲ pdnrm2

4: repeat

5: r← Qp

[
0p, g(N−p)

]T
⊲ Eq. 14, pdormqr

6: w← −∇f(x) = AT r ⊲ Eq. 5, pdgemv

7: w imax
= max {wi | i = 1, 2, ... N, i /∈ P̂}

8: if w imax
> 0 then

9: p← p+ 1, P̂(p) = imax

10: UpdateQR(p)

11: Solve Rp yp = gp ⊲ Eq. 12, pdtrsv

12: ymin = min {ypi | i = 1, 2, ...p}

13: while ymin ≤ 0 do ⊲ Downdate

14: α = min
{

yi
yi−ypi

| ypi ≤ 0, i ∈ {1, 2, ..., p}
}

15: y← y + α(ȳp − y), where ȳp =
[
yp,0(N−p)

]T

16: P0 = {P̂(i) | yi = 0, i = 1, 2, ..., p}

17: qmin = min i ∈ P0

18: P̂ = P̂ \P0, p←| P̂ |

19: UpdateQR(qmin)

20: Solve Rp yp = gp ⊲ Eq. 12, pdtrsv

21: ymin = min {ypi | i = 1, 2, ...p}

22: x← ¶p
[
yp,0(N−p)

]T

23: until wi ≤ 0 ∀i ∈ Z or p = pmax or ‖r‖
2
≤ τ ‖b‖

2

24: if scale then

25: x← Λsx

26: Return x

9
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27: procedure UPDATEQR(k)

28: for i = k → p do

29: j = P̂(i)

30: qi ← aj

31: if k > 1 then

32: [qk,qk+1, . . .qp]← Hk−1,Hk−2, . . .H1 [qk,qk+1, . . .qp] ⊲ pdormqr

33: [qk, qk+1, . . . qp ]← QR (k, [qk, qk+1, . . . qp ]) ⊲ pdgeqrf

34: if k = p then

35: g← Hp g ⊲ pdormqr

36: else

37: g← Qp b ⊲ pdormqr

3.2 Projected Quasi-Newton

The PQN algorithm is an iterative method, not an active set method, and as such

does not lend itself to a threshold based termination criterion that encourages a

sparse solution as required by the ECSW hyper-reduction procedure. A simple mod-

ification that controls the size of the active set makes it usable for ECSW and results

in an algorithm that is referred to here as the Limited PQN (LPQN) method. The

parallel implementation of the original method is described first followed by Sec-

tion 3.2.1, which describes the LPQN modifications. The reader is referred to Kim

et al.5 for details about the algorithm and its convergence properties.

The PQN algorithm is an iterative procedure that produces a sequence of feasible

vectors {xk}, k = 0, 1, · · · , xk ∈ R
N , that, under certain conditions, converge to

the solution of Eq. 1. It is initialized with any feasible vector, usually x0 = 0. At

each iteration the components of xk are partitioned into sets of free and fixed vari-

ables where the fixed variables are constrained to zero. A NNLS problem is con-

structed for the free variables and the current iteration operates on it. The updated

free variables combined with the fixed variables, produces the next iterate xk+1.

The projection step guarantees feasibility. Once the optimal active set is reached,

the method reduces to solving an unconstrained least squares problem for the free

variables.

The implementation is described from the point-of-view of the kth iteration where

10
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xk and rk are known and iterate xk+1 and residual rk+1 are computed. The iteration

starts by partitioning xk into sets of fixed and free variables as,

Z
k
pqn =

{
i | xk

i = 0,
[
∇f(xk)

]
i
> 0

}

P
k
pqn = {1, 2, . . . , N} \Zpqn,

(16)

where subscript i is the component index. Because of the positivity constraint on

the gradient, the fixed set Zk
pqn is a subset of the active set. The free set Pk

pqn is the

complement of Zk
pqn. Only the free variables are updated during the iteration. The

fixed variables, appropriately named, are not.

The partition induces a NNLS problem on the free variables. For convenience, the

matrix is permuted so that the free variables are associated with a contiguous block

of column vectors starting at column 1, so the NNLS problem description is given

in terms of the permuted matrix Ak+1 used to compute xk+1. If Pk ∈ R
N×N is a

permutation matrix that permutes the pk = | Pk
pqn | columns of a matrix whose

indices are in set Pk
pqn to the first pk columns, then the partitioned matrix can be

written as

Ak+1 = AP0 P1 . . . Pk = Ak Pk =
[
Ak+1

p
k

, Ak+1

z
k

]
, (17)

where the subscripts pk and zk denote the partitioning based on P
k
pqn and Z

k
pqn,

respectively, and A0 = A. The resulting problem in the free variables is

arg min
z∈R

pk , z≥0
gk+1(z) = 1

2

∥∥∥Ak+1

p
k

z− b
∥∥∥
2

2

. (18)

The feasible vector xk and the gradient∇f
(
xk

)
, which are aligned with the matrix

Ak from the previous iteration, are permuted to align with the matrix Ak+1 and are

given by

yk = PkT xk =




yk
p
k

yk
z
k


 ,

∇f
(
yk

)
= PkT ∇f

(
xk

)
=



∇f

(
yk

)
p
k

∇f
(
yk

)
z
k


 .

(19)

The notation is such that the partition of the gradient follows that of the argument

11
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to f ; therefore, ∇f
(
yk

)
is aligned with yk. The feasible vector at the end of the

k + 1th iteration is written

xk+1 =




xk+1

p
k

yk
z
k

= 0


 , (20)

where xk+1

p
k

is an approximate solution to Eq. 18 given by the current PQN iteration.

The PQN algorithm, as presented by Kim et al.,5 uses a line search method and a

projection that guarantees feasibility. The iteration update is computed as

xk+1

p
k

= yk
p
k
+ αk dk, (21)

where the search direction, dk, is given by

dk = γk
(
β;yk

p
k

)
− yk

p
k

. (22)

Parameters α and β define the line search method. Projection γk is

γk
(
β;yk

p
k

)
= P

[
yk
p
k

− β Sk
p
k

∇g
(
yk
p
k

)]
, (23)

where P is the projection onto R
p
k

+ and the matrix Sk
p
k

is the principal submatrix

of an approximation to the inverse of the Hessian, ∇2f(xk)
−1

suitably permuted.

Two line search methods were discussed in Kim et al.5 and both were implemented.

The first is the limited minimization method that fixes β and computes α as the

minimum of g(yk
p
k

+α dk) over the variable α. The resulting line search parameters

are

αk =
dkTAk+1

p
k

T
[
b−Ak+1

p
k

yk
p
k

]

∥∥∥Ak+1

p
k

dk

∥∥∥
2

2

, β = fixed constant. (24)

The convergence proof in Kim et al.5 requires β to be sufficiently small. The imple-

mentation fixes β = 1 but reduces it if dk is not a descent direction.

The second line search method used is Armijo along projection arc. This method

fixes α = 1 and computes β as

β = smσ, (25)

12
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where parameters s ∈ (0, 1) and σ > 0 are fixed and m is the smallest nonnegative

integer for which

gk
(
yk
p
k

)
− g

(
γk

(
smσ;yk

p
k

))
≥ η∇gk+1

(
yk
p
k

)T (
yk
p
k

− γk
(
smσ;yk

p
k

))
.

(26)

Parameter η ∈
(
0, 1

2

)
is also fixed.

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method of approximating the in-

verse Hessian Sk
p
k

requires storing a dense matrix of size N2, which is prohibitively

large so the limited memory BFGS, or L-BFGS, as given in Nocedal and Wright’s2

work, is used instead. L-BFGS is a recursion algorithm that approximates the prod-

uct Sk
p
k

∇g
(
yk
p
k

)
and is given in Algorithm 3. It computes the approximation to

the inverse Hessian using a fixed number, K, of difference quantities for both the

feasible vector and the gradient of the objective function. Since, in general, a permu-

tation is applied at each iteration, these difference quantities are also be permuted

and are defined as

uj = PkT PkT . . .Pj+1T
[
xj+1 − yj

]

wj = PkT PkT . . .Pj+1T
[
∇f(xj+1)−∇f(yj)

]
,

(27)

where k is the current iteration counter and j ∈ [0, 1, . . . , K − 1] is the index of the

saved difference quantities. These vectors are saved in a round-robin fashion with

index j = l representing the latest vector stored.

The PQN implementation with the limited minimization line search method is given

in Algorithm 2. Inputs are the matrix A, right-hand side b, a flag to scale matrix by

the diagonal matrix Λs, which scales A so that the L2 norm of each column is 1,

and stopping criteria τ , which stops the calculation when
∥∥rk+1

∥∥
2
≤ τ ‖r0‖

2
, and

ztol, which stops the calculation when the active set has been found and norm of the

gradient associated with the free variables drops below ztol.

Steps 5–7 compute the gradient, and if at least one iteration is performed stores

∆∇f . Steps 8–13 construct the set Pk
pqn and apply the associated permutation ma-

trix. Step 14 computes the approximation to the inverse Hessian times the gradient

using the L-BFGS method. Steps 15–22 are the PQN iteration using limited mini-

mization with β = 1. This choice of β does not always produce a descent direction,

so steps 17–19 are executed until it does. The round-robin counter l is updated in

13
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step 23 and ∆x is saved step 24. The iteration is complete after computing the

residual at step 25. When the algorithm terminates, the solution is permuted back

to its original order at step 28. Algorithm 3 was taken directly from Nocedal and

Wright’s2 book. It is included for completeness but is not discussed.

Both algorithms require primarily matrix-vector multiplications, dot products and

permutations, making it ideally suited for parallelizing with ScaLAPACK. Routines

pdgemv, pddot, pdgeadd, and pdlapiv were used for this purpose.

14
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Algorithm 2 PQN with Limited Minimization

Input:

A ∈ R
M×N , b ∈ R

M , scale, τ , ztol.

Output:

x

1: Initialize: k = 0, l = −1, x0 = 0, r0 = −b, A0 = A, P0
pqn = ∅.

2: if scale then

3: A← AΛs

4: repeat

5: ∇f
(
xk

)
← AkT rk;

6: if k > 0 then

7: wl ← ∇f(xk)−∇f(yk−1)

8: Construct set Pk
pqn and associated permutation matrix Pk

9: Ak+1 ← AkPk

10: yk ← PkTxk

11: ∇f
(
yk

)
← PkT∇f

(
xk

)

12: if k > 0 then

13: uj ← PkTuj ; wj ← PkTwj ; j = 0, 1, . . .min(K, k)− 1

14: Sk
p
k

∇f
(
yk

)
p
k

= LBFGS(l,min(K, k))

15: β ← 1

16: d← P

[
yk
p
k

− β Sk
p
k

∇f
(
yk

)
p
k

]
− yk

p
k

17: while dT ∇f(yk)p
k
≥ 0 do

18: β ← 1

2
β

19: d← P

[
yk
p
k

− β Sk
p
k

∇f
(
yk

)
p
k

]
− yk

p
k

20: α← −
dT ∇f(yk)p

k

‖Akd‖2
2

21: αk ← mid(0, α, 1)

22: xk+1 ←


 yk

p
k

+ αk d

0z
k




23: l = (l + 1) mod K

24: ul ← xk+1 − yk

25: rk+1 ← Ak+1xk+1 − b

26: k ← k + 1

27: until
∥∥rk

∥∥
2
≤ τ

∥∥r0
∥∥
2

or

∥∥∥∇f(xk+1

p
k

)
∥∥∥
2

≤ ztol

28: Return
[
¶1¶2 . . .¶k+1

]
xk+1

15
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Algorithm 3 L-BFGS 2-loop recursion

29: procedure LBFGS(l,m)

30: if l < 0 then

31: Return ∇f(yk)p
k+1

32: q← ∇f(yk)p
k+1

33: for i = 0, 1, . . .m− 1 do

34: j = (l − i)modm

35: ρj =
1

(
wj

p
k+1

)T

uj

p
k+1

36: νj = ρj

(
uj

p
k+1

)T

q

37: q← q− νj w
j

p
k+1

38: if m = 0 then

39: s← q

40: else

41: s←

(
ul
p
k+1

)T

wl
p
k+1

(
wl

p
k+1

)T

wl
p
k+1

q

42: for i = 0, 1, . . .m− 1 do

43: j = (l + 1 + i)modm

44: ηj ← ρj

(
wj

p
k+1

)T

s

45: s← s+ uj

p
k+1

(νj − ηj)

46: return s

3.2.1 Limited PQN (LPQN) Method

The LPQN algorithm is identical to the original algorithm with the exception that a

limit is imposed on the number of free variables. This limit can be global, variable

with each time step or both. Assuming the imposed limit at time step k+1 is nf
k+1

max

the set of free variables is given by

P
k
lpqn =

[
P

k−1

lpqn \Z
k
lpqn

]
∪P

k
+, (28)
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where

P
k
+ ⊂ P

k
select

P
k
select =

{
i | i ∈ P

k−1

lpqn \Z
k
lpqn,

[
∇f(xk)

]
i
< 0

}

[
∇f(xk)

]
i
≤

[
∇f(xk)

]
j
∀i ∈ P

k
+ & ∀j ∈ P

k
select \P

k
+

∣∣Pk
+

∣∣ ≤ nf
k
max
−
∣∣Pk−1

lpqn \Z
k
lpqn

∣∣ .

(29)

The free variables at time step k + 1 are then the free variables at the previous step

provided they have not moved to set Zk
lpqn, plus any additional variables whose

gradients are the most negative up to a total limit of nf
k
max

. This is implemented by

sorting in increasing order the components of∇f(xk) that are in P
k
select and adding

the appropriate number of them to P
k
lpqn so as not to exceed the limit.

The convergence proofs in Kim et al.’s5 report are valid for the LPQN method pro-

vided the limit imposed is greater than or equal to the number of free variables in

the optimal solution.

4. Results

This section presents results using the PLH and PQN methods implemented as dis-

cussed in the previous section. The codes are first validated on a number of small,

random NNLS problems by comparing the optimal solutions generated by each

to the original LH code.6 Scalability results are then presented on a larger ran-

dom matrix, again solving for the optimal solution. Finally, the codes are applied

to NNLS problems associated with the ECSW hyper-reduction step for a reduced-

order model associated with the dynamic response of a generic V-hull vehicle to an

under-body blast.

All calculations were run on haise.navo.hpc.mil or kilrain.navo.hpc.mil, which are

nearly identical 435 TFLOPS IBM iDataPlex HPC systems located at the Navy

Distributed Computing Research Center in Mississippi. Each has 1,220 standard

memory nodes with 27 GB of accessible memory per node and 2 Intel Xeon Sandy

Bridge E5-2670 processors per node with 8 cores/processor. Wall clock times are

measured with the "gettimeofday()" function and only include the times to solve the

NNLS problems. Times for constructing or reading the matrices are not included.

See Navy DSRC7 for more details on these systems. All calculations were done in

double precision.
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The solutions are validated on 3 small random NNLS problems with matrices ∈

R
M×N where M < N , M = N , and M > N by considering the solutions from

the original LH code as exact. The first set of problems are randomly generated so

that the off-diagonal elements of the matricies and the components of the right-hand

side are in [0, 1], and the random diagonal elements of the matrices are in [1, 10].

These positive matrices produce large active sets, equivalently a small number p of

free variables, and the PLH algorithm requires very few entries into the downdate

procedure. The PLH code and 3 variations of the PQN code are tested: the original

algorithm with no active set limiting, the LPQN and a limited projected Newton

(LPN) method, which is the LPQN but with the exact inverse Hessian. For large

active sets, it can be advantageous to compute the exact inverse Hessian instead of

approximating it as done in Algorithm 3. For method LPN, the call to L-BFGS at

line 14 of Algorithm 2 is replaced with a call to a similar subroutine that uses the

exact inverse hessian.

For this first set of NNLS problems, the relative errors e∗ between the solution x∗

from each code and the LH solution xlh is computed by

e∗ =
‖x∗ − xlh‖2
‖xlh‖2

(30)

and given in Table 1. The PLH solutions are exact to machine accuracy as expected.

The errors in the PQN and LPQN solutions are O(10−7) - O(10−8). When the so-

lution reaches this level of accuracy the PQN method slows down and additional

iterations are not cost effective so the calculation is stopped. Continuing to iterate

or solving a least squares problem based on the free variables, which at this point is

the complement of the optimal active set, produces a relative error within machine

accuracy, but neither is necessary or cost effective. (The code has options to do

both.) LPN solutions are exact to machine accuracy. This is because the objective

function is quadratic, and once the correct active set is found, the LPN method is

exact. Parallel results on more than one processor, not shown in tables, have similar

relative errors.

The single processor wall clock times in Table 2 correspond to the calculations

reported in Table 1. Compared to LH, PLH code is about 4 times faster, PQN is on
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average 6.3 times faster, and LPQN is on average 14.3 times faster. LPQN and LPN

used a global limit of 1,000 free variables. The column labeled CN is the matrix

condition number.

Table 1 Relative error of PLH, PQN, LPQN and LPN solutions when compared to the orig-

inal LH code. All calculations are in double precision. LPQN and LPN calculations used a

global limit of 1,000 free variables.

Matrix eplh epqn elpqn elpn

7,000× 10,000 4.0× 10−14 5.2× 10−8 6.0× 10−8 1.2× 10−14

10,000× 7,000 2.2× 10−14 2.3× 10−8 6.5× 10−7 1.6× 10−14

20,000× 20,000 3.4× 10−14 2.2× 10−7 7.0× 10−8 1.3× 10−14

Table 2 Single processor wall clock time in seconds corresponding to the calculations re-

ported in Table 1. The column labeled CN is the matrix condition number.

Wall clock time (s)
Matrix CN

LH PLH PQN LPQN LPN

7,000× 10,000 8.65× 102 45.9 11.4 8.6 3.9 3.1

10,000× 7,000 8.72× 102 50.1 13.7 8.5 5.7 4.9

20,000× 20,000 1.90× 107 412.6 92.6 53.0 23.0 11.9

Table 3 shows the number of iterations needed by each method to reach the optimal

solution. The column labeled p is the number of free variables. For the PLH method,

the number of iterations that exceeds p is an indication of the number of times

the downdate loop was executed. For these matrices, execution of the downdate

procedure was minimal.

Table 3 Number of iterations required for each method corresponding to the calculations

reported in Table 1. The column labeled p is the number of free variables in the optimal

solution.

Iteration count
Matrix p

PLH PQN LPQN LPN

7,000× 10,000 250 252 235 152 44

10,000× 7,000 275 277 222 178 43

20,000× 20,000 379 379 312 197 47

Additional validations are done using 3 matricies of the same size as before but this

time the off-diagonal elements and the components of the right-hand side are in
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[−1, 1]. The diagonals elements are as before. These matrices are reasonably well-

conditioned, produce small active sets (equivalently large p), and the PLH method in

one case requires significantly more executions of the downdate loop than required

by the positive matrices. The single processor wall clock time in seconds and the

iteration counts are in Tables 4 and 5, respectively. Here the benefit of PQN is clear.

It is better than 2 orders of magnitude faster than LH. For these problems PLH

is significantly slower than LH, but this is as expected since it violates the design

assumption that p ≪ N . The downdate costs are high in first of the 3 problems.

As before, the computed active sets are identical for each method, and the relative

errors similar to the positive matrices. When p becomes large, computing the exact

inverse Hessian is expensive, as expected. Also, when p is large, limiting the size of

the free set is not appropriate, so no such calculations were made for this case.

Table 4 Single processor wall clock times for the LH, PLH and PQN methods for 3 random

matrices where the off-diagonal entries and the right-hand sides are between –1.0 and 1.0

and the diagonal entries are between 1 and 10. The column labeled CN is the matrix condition

number.

Wall clock time (s)
Matrix CN

LH PLH PQN PN

7,000× 10,000 1.13× 101 539.7 2,154.0 4.9 747.1

10,000× 7,000 1.13× 101 571.3 632.6 2.0 78.1

20,000× 20,000 2.84× 104 6,607.0 15,884.4 12.3 2,327.4

Table 5 Number of iterations required for each method corresponding to the calculations

reported in Table 4. The column labeled p is the number of free variables in the optimal

solution.

Iteration count
Matrix p

PLH PQN PN

7,000× 10,000 5,060 5,468 100 68

10,000× 7,000 3,512 3,518 35 25

20,000× 20,000 10,185 10,321 52 35

The wall clock times in Table 2 show that the PLH code on a single processor

performs about 4 times faster than the original LH code when p ≪ N ; however,

Table 4 shows the opposite when this assumption is violated. Both codes implement

the same algorithm; however, the implementation differs in a significant way. The

original code applies each elementary reflector to the entire matrix but the PLH
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code applies them only to Ap. When the downdate procedure is invoked, the LH

code applies Givens rotations to move the offending column vector back to the

active set, whereas the PLH code rebuilds the QR factorization from the point of

removal. This can be costly or cheap depending on the location of the column vector

that needs to be removed.

There are also storage implications in each of these designs. The storage require-

ment for the PLH code is greater because it keeps a copy of the original matrix

and operates on the matrix Ap. This is mitigated by the assumption that p ≪ N

and so the storage requirement for Ap ∈ R
M×p is significantly reduced. When this

assumption is not true, that is when p is large, the storage requirements for Ap sig-

nificantly increases, and the code becomes less efficient. Table 2 clearly shows the

PLH approach is much better when the assumption that p≪ N is true.

A scalability study was performed using a random, positive matrix of size 65, 536×

131,072 and a random, positive right-hand side. The problem was chosen so that

p ≪ N at the optimal solution. Figures 1a and 1b show the wall clock times and

speedup, respectively, versus processor count. Here speedup, Sp, is defined as

Sp =
T1

Tn

, (31)

where T1 is the sequential time and Tn is the time using n processors. These prob-

lems were too large to fit on a single node, so T1 was estimated by T1 = mTm,

where m is the smallest number of processors used, in this case 8. This puts the first

point on the ideal line.

The results show the PLH code achieves near linear speedup and the PQN codes

achieve reasonable speedup but not ideal. Despite lower scalability, for this problem

and at these processor counts the PQN codes are still faster than the PLH code, and

significantly so for the limited versions.

The PLH and PQN codes were integrated into the ECSW hyper-reduction procedure

of the Farhat Research Group8 "aeros" code and used in constructing reduced-order

models of a generic V-hull vehicle, shown in Fig. 2, subjected to an under-body

blast. The high-dimensional, finite element model has 236,995 flexible shell and

rigid beam elements with 6 degrees of freedom per node. The aeros code is also

used to obtain the high-fidelity solution. The response of the vehicle to an under-
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body blast is computed out to time 1.0 × 10−3. For the purposes of building the

reduced-order model, 200 snapshots were collected at uniform time intervals over

this period and are used to construct a ROM with 100 basis vectors using a proper

orthogonal decomposition. With 200 snapshots and 100 basis vectors the size of

the ECWS matrix is 20, 000 × 236, 995. Using tolerances of τ = .1 and τ = .01,

reduced meshes and associated reduced-order models are constructed. Scalability

results and a comparison of solutions from the resulting reduce order models to the

high-fidelity results are presented.
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Fig. 1 Scalability study using a 65,536 × 131,072 random matrix. Each calculation uses a

single MPI process per node. nmax
f = 1,000 for each LPQN and LPN calculation. The num-

ber of free variables in the solution is 821. The relative error between the PLH and PQN

solutions is O(10−7) or better.

Fig. 2 V-hull finite element model.

Figure 3 shows the results of a scalability study using the generic V-hull vehicle

ECSW matrix and τ = .1. The PLH method was applied to both the scaled and un-

scaled matrix to highlight the performance differences. To understand the character

of this matrix, its singular values when scaled and unscaled are plotted in Fig. 4. The

PLH data show a significant increase in compute time and a decrease in scalability
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for the unscaled case. The primary reason for this increase is the downdate proce-

dure is executed many more times when the matrix is unscaled then scaled. The data

therefore indicates the scalability of the downdate procedure is not as good as the

main iteration loop. The number in parenthesis beside the figure labels is the size

of the reduced mesh generated, or equivalently, the nonzero entries in the NNLS

solution.
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Fig. 3 Scalability study using ECSW matrix from ROM of the generic vehicle.
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Fig. 4 Singular values for the ECSW matrix for the scaled and unscaled generic V-hull prob-

lem.

Scaling, or preconditioning, is generally a good and sometimes necessary step.

There is, however, a question as to whether or not it is appropriate for ECSW hyper-

reduction. A finite element model might consist of materials with widely varying

properties and scaling might bias the construction of the reduced mesh in a way
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not intended or wanted. The answer to this is not clear and not addressed here. It is

pointed out because if scaling is not desired, the current implementation of the PQN

method would not be usable on this particular ECSW matrix because it performs

poorly when not scaled. Consequently, no results are presented for the PQN method

for the unscaled matrix.

For the scaled matrix, the results in Fig. 3 show the PQN method is faster than

the PLH method, but the implementation is not as scalable. The degradation in

scalability is more pronounced here then in the larger, random matrix presented

before. This could be due in part to M = 20, 000 being smaller.

Because the PQN method is not appropriate for hyper-reduction without limiting the

active set, a global limit and a per iteration limit are imposed. The global limit was

set to 3,200 free variables, and the per iteration limit was set to 3 plus the limit at the

previous iteration. It was found that if just a global limit is imposed, that limit, as

expected, is reached immediately, but the iteration stalls trying to reach the specified

tolerance, that is, the residual rate of decrease drops significantly. Imposing a per

iteration limit improved convergence. The global limit of 3,200 was reached in the

τ = .01 case. In both cases, PQN produced larger reduced meshes than PLH.

Figures 5 and 6 show the results of the displacements and velocities computed with

reduced-order models constructed with results form PLH and PQN methods and

also shows the corresponding results from the high-fidelity model. The results are

from an element on the bottom surface of the vehicle near the explosion. Table 6

shows the reduced mesh sizes associated with the the difference tolerances and

methods presented it these figures. Two tolerances are used in the ECSW step: the

figures on the left are the results with τ = .1 and the ones on the right are with

τ = .01. In this case, both tolerances are acceptable. With τ = .01 the error over

the entire domain was computed to be less than 2%.
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Fig. 5 Displacements at an element on the vehicle near the explosion computed by a reduced-

order model constructed using PLH and LPQN compared to the high-fidelity model. Left plots

used τ= 0.1 and right plots used τ= .01.
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Fig. 6 Velocities at an element on the vehicle near the explosion computed by a reduced-order

model constructed using PLH and LPQN methods compared to the high-fidelity model. Left

plots used τ= 0.1 and right plots used τ= .01.

Table 6 Reduced mesh sizes produced for each solver in the ECSW hyper-reduction step.

Method τ = .1 τ = .01

plh 902 2,826

lpqn3 1,017 3,200
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5. Conclusions

When solving for optimal solutions, the PLH code displays the best scalability and

performs very well when the design assumption that the number of free variables

in the solution is significantly less than the column dimension of the matrix is met.

It also outperforms the PQN code when the matrix is ill-conditioned and scaling,

or preconditioning, is not done. However, in most situations the PQN code outper-

forms the PLH code, and in many cases significantly so, particularly if the design

assumption is violated. PQN is therefore the method of choice for well-behaved

NNLS problems.

When applied to ECSW hyper-reduction for the under body blast problem, the re-

sults from the 2 codes are mixed. If the matrix is scaled, the PQN method with cer-

tain free variable limiting parameters produced solutions significantly faster than

the PLH code; however, in all cases the PLH code produced the sparsest solution.

When the matrix is not scaled, convergence of the PQN method is either too slow

or nonexistent and PLH is the only option. Scalability of the PLH code on this

problem is again better than the PQN code. It is even more pronounced here but a

contributing factor is most likely due in part to the relatively small row dimension

(20,000) of matrix.

Limiting the number of free variables in the PQN method for the ECSW problem

is absolutely necessary, but determining the limit per iteration and the global limit

is not straightforward. The generic vehicle results presented used a growth factor

of 3 free variables per iteration with a maximum of 3,200. This produced solutions

significantly faster than PLH, but some trial and error is required to do this. On

the other hand, solving for the optimal solution of well-behaved NNLS problems

benefited greatly from limiting and only a global limit needed to be defined. Some

prior knowledge or some trial and error may be needed to be sure the global limit

does not interfere with finding the optimal solution, but it can be large and still

beneficial. This is not as restrictive as in the hyper-reduction case.

The PLH code is the best choice for use with ECSW hyper-reduction when the

system is large and ill-conditioned and the PQN is best for finding the solutions for

well-behaved NNLS problems. More work clearly needs to be done to improve the

scalability of the PQN code to make it competitive on very large problems. Even
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so, with or without limiting it is the best method for finding optimal solutions on

many size problems. Additional work needs to be done to make it competitive for

hyper-reduction.
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List of Symbols, Abbreviations, and Acronyms

AHPCRC Army High Performance Computing Research Center

BFGS Broyden-Fletcher-Goldfarb-Shanno

ECSW energy conserving sampling and weighting

KKT Karush-Kuhn-Tucker

L-BFGS Limited memory Broyden-Fletcher-Goldfarb-Shanno

LH Lawson and Hanson

LPN limited projected Newton

LPQN limited projected quasi-Newton

NNLS nonnegative least squares

PLH parallel Lawson and Hanson

PN projected Newton

PQN projected quasi-Newton

ROM reduced-order model
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