Mechanisms of Brain Injury: Effect of different loading rates on mechanical/electrical/chemical responses in cells and tissue

Research Objective

1. Develop novel experimental methods to apply high rate loading at different length scales
2. Systematically evaluate the mechanical/electrical/chemical (MEC) response and associated mechanisms following controlled high-rate loading paradigms
3. Formulate cellular injury criteria from MEC thresholds

Challenges

- Novel in situ experimental methods are needed to understand the effects of different loading rates and stress-states on cells.
 - Mechanical/electrical/chemical response of cells is not fully understood.
 - MEC coupling is not understood.
- New mathematical models needed to relate MEC response to different rates of loading.
- Stress measuring methods do not exist.
- Visualizing cells in real time during injury.
- Response of cell and tissues to coupling of pressure and strain is not understood. New experimental methods are needed to understand the pressure-strain coupling.

ARL Facilities and Capabilities

Available to Support Collaborative Research

- We are developing in situ experimental methods to monitor the Mechanical response of cells and tissues during and following various loading paradigms.
- Establishing techniques to measure the Electrical response from the cellular to network level following mechanical loading.
- Institute methodologies to evaluate Chemical response following mechanical loading.

Complementary Expertise/ Facilities/ Capabilities Sought in Collaboration

- Modeling uncoupled and coupled MEC responses to rate dependent mechanical loading.
- Cell culturing methods.
- Novel staining methods to quantitatively evaluate cell and tissue response.
- Stress measuring methods at cellular scale.
- Micro-electrode arrays embedded in flexible substrates.
- Behavioral studies to correlate with measured MEC responses.

Ann Mae DiLeonardi, Ph.D. (410) 306-0689
ann.m.dileonardi.ctr@mail.mil