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Detection and estimation of aeroacoustic shock waves generated by supersonic projectiles are
considered. The shock wave is BRshaped acoustic wave emanating in the form of an acoustic
cone trailing the projectile. An optimal detection/estimation scheme is considered based on a
parametric signal plus white Gaussian noise model. To gain robustness and reduce complexity, we
then focus on gradient estimators for shock wave edge detection, exploiting the very fast shock rise
and fall times. The approach is cast in terms of a wavelet transform where the level of smoothing
corresponds to scale. A multiscale analysis is described, consisting of multiscale products, to
enhance edge detection and estimation. This method is effective and robust with respect to unknown
environmental interference that will generally not exhibit singularities as sharp Akeave edges.
Experimental results are presented for discriminatihgvaves in the presence of vehicle noise.
Results are also shown, as a function of miss distance, for gradient-based detection of simulated
small projectile shocks inserted into recorded tank noise.1998 Acoustical Society of America.
[S0001-496608)03008-2

PACS numbers: 43.60.Cg, 43.28.MiLK]

INTRODUCTION native form, often used in supersonic aircraft studies, gives

e length of the observed shock wave along the ground as

. : : . t
_We_ consider optlmal_ and gradient-based detection an{’:LM, e.g., see Gierk® Although somewhat complex in
estimation of aeroacoustic shock waves generated by super-

. L ) ) . . nature when first formed, the shock wave assumes the N
sonic projectiles. This problem arises in military, law en- hape after propagating 50 proiectile diameters. so that
forcement, and other cases. It is desired to detect the prei— p(l) d ?2) pagating . P t'J that hold f ' p
ence of a bullet or other projectile, and to estimate the gs- an are approximations that hold fot suth-

parameters of the shock wave. Detection is useful in a vari(—jemIy large’ From Eqs(1) and(2) we see that the primary

ety of scenarios with application in sniper location as well ag@ctors affecting amplitude and length at@ndx (x can be
on vehicles and aircraft. Of particular interest are robusfélatively large; amplitude and length are otherwise weakly

methods that will work at moderate signal-to-noise ratiodePendent on the projectile’s overall shape and velocity. Ex-

(SNR) in the presence of platform noise. periments show reasonalzly good agreement with Ebs.
The shock wave is an “N-shaped” wave emanating inand(2), e.g., see Basst al." and Stoughtof. S
the form of an acoustic cone trailing the projectiiéhe cone Theoretical characterization of tié-wave rise time is

angle is given by arcsinfp)=arcsin(1M), wherec is the  somewhat more problematic. Weak-shock predictions agree
velocity of sound in airp is the projectile velocity, andl qualitatively with measurements, but tend to significantly un-
=v/c is the Mach number. Lettind P denote the pressure derestimate rise timeslssues include the shock strength,
jump at the start of the\ wave, andP, denote ambient turbulence effects, and molecular vibrational relaxafion.

atmospheric pressure, ttfen Experiments with small caliber shocks consistently show rise
p (M2—1)%8 times ranging from less thans for smallx, to greater than
P_: K| T IHTE (1) 100 us for x>100 m.
0

The very fast rise and fall of the shock wave edges leads
whered and| are the projectile diameter and length, respec+o the observedN-wave characteristic, and the linear slope
tively, andx is the perpendicular distance from the projectile between the edges is generally not dependent on the projec-
trajectory to the sensdthe nearest point of approach or miss tjle shape at large miss distandeShus the observed shock
distance. Denoting the length of th&l wave asL, then wave shape is largely independent of the projectile shape and
1/4 x| 174 velocity after a short propagation distan@ee also Refs. 6
L=1.8A (MZ=1) |14~1.82b|(|— (2)  and 9. This in turn implies that a general purpose detector
. _ can be developed that is applicable to a wide variety of pro-
In Eq. (2) L=cT is the N-wave length, whereT is the jgctiles.
N-wave time duration observed by a single sensor. An alter-  Note that the magnitude of the shock decreases with the
miss distance as~ %%, while the length increases a¥* We
dPart of the results in this paper were presented in the 130th meeting of thassume that the miss distancés not knowna priori and
Acoustical Society of America, St. Louis, MO, November 1995Acoust. this, coupled with the direct dependence on projectile diam-
Soc. Am.98, 2968A) (1995]; and at the Intl. Conf. Acoust., Speech, and . .
Signal Process(ICASSP-97, Munich, Germany, April 1997Proc. Intl. eterd, implies th_at an obsgrvdtl-waye may_ ha\_le been_ gen-
Conf. Acoust. Speech, and Signal Process. Vol. 3, pp. 1889-1982)]. erated by a continuum of different size projectiles at different
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f(t‘T,A,L) I. OPTIMAL DETECTION AND ESTIMATION IN
’ A GAUSSIAN NOISE

A+ In this section we consider optimal Bayes and
maximume-likelihood methods for detection of the shock
wave and estimation of its parameters. These methods rely

>t on an additive Gaussian noise assumption, leading to a pa-

T rameterized matched filter-bank approach. However, as often
happens under an additive Gaussian noise assumption, the
-A + resulting detector is generally not robust to violations of this

L assumption, such as in the presence of strong interfering
acoustic sources.
Consider the binary hypothesis test

Hy: r(t)=f(t;0)+n(t), O<t<T>L,

ranges. For example, one cannot necessarily discriminate be- Ho: r(t)=n(t), ®)
tween a larger projectile further away versus a smaller pro-
jectile that is closer to the sensor. Estimationxpfv, and ~ Wheren(t) is white Gaussian noise with variandg. We
projectile type from a single sensor are generally not possibl@ssume that(t; ) is completely contained in the interval
without a priori knowledge or constraints on the problem. It This problem is well studied in the context of radar where
is possible, however, to estimate these quantities in som&t) is typically a narrow-band sinusoidal pulse of possibly
scenarios, especially with multiple sensors. An example is &nknown time-of-arrival, frequency, and phase; e.g., see
ﬁring range app”catioﬁ'_g Here the ang|e of arrival is Helstrom.ll If 8 were known then the optimal decision would
known, allowing estimation of the projectile velocity via the be based on the matched filter. The Bayes-optimal decision
change inL versus time, obtained with multiple sensors rule is based on the likelihood ratio
along the projectile path. T_he veI(_)C|ty and length estimates T op2(r|O)w,(6)d @ H
may then be used to classify projectiles. We also note that \(r)= =g, (6)
low precision microphones may be used in practice, reducing Po(r) Ho
system cost but mgklng absolute determination of Shoc'&/herewe(e) is the a priori joint probability density ofé,
wave pressure unreliable. o _ pi(-) is the likelihood function under thigh hypothesis, and

_The N-wave can be parameterized in terms of time ofy js the set of samples aft), 0<t<T. We further assume
arrival 7, amplitudeA, and lengthL. In the following, for  ihat the unknown parameters éhare independent. This last
convenience, we use amplituderather than pressur@P.  asgumption is not strictly trued andL both depend on the
An |d§allzed constant sl_orm wave is shown in Fig. 1 and ¢5me parameters in Eq4) and (2). However, we are as-
described bye.g., see Pierc€,Chap. 11 suming the quantitied, v, |, andx are unknown.

FIG. 1. Ideal parameterized shock watee N-wave f(t).

—r Next we consider the form of the optimal detection re-
f(t;0) =Af(T) , TSts7+L, (3)  ceiver. We begin by assumirgis random, and then broaden
the analysis to allowr and thenA also to be random. Sup-
where pose that. is random with7 and A known, and assume a
f(t)=1—-2t, O=<t=l1, (4) uniform prior probability density onL, so that L

. i i . NI?J[LQ,L]_], W|th 0<L0<Ll NOW,
is the amplitude and length-normalized signal, add

=[7,A,L] denotes the parameter vector. Acceptable ranges py(r)=c f"l ex __1 IT[r(t)
for 6 are assumed to be known from context, based on Egs. "' 0 Lo No Jo
(1) and(2).
In the following we discuss two approaches for detect- —f(t:L) ]2 dt] L @
ing f(t;0) and estimating,, A, andL. First, we consider the ' Li—Lo’

optimal detection-estimation scheme based on a GaussifilNr}1
noise assumption, leading to a matched filter-type implemen-
tation. This approach has high complexity and does not -1 (T )

model interference. Next, as an alternative, we consider the Po(F)=Co €X Ny Jo [n(®)] dt]’ ®)
use of gradient estimators as a means of detecting the rising

and falling edges of th&l wave, an approach that requires With ¢, a constant. Defining the signal energy
sufficient SNR but has much lower complexity and is robust T 2

to interference. Smoothed gradient estimators are described Ef=f [f(t)]? dt=——, 9
in the context of wavelets, and a multiscale analysis is de- 0 3

scribed that exploits multiple levels of smoothing simulta-and also defining

neously. Simulations and experiments with measured .

N-waves and vehicular interference sources complete the pa- q(L) = f r(tf(t:L)dt, (10)
per. 0

ile underH,
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then we can write the likelihood ratio as

A(r)sz)\(rlL)w(L)dL

le _Ef+2A (L)]
= exp —— _
Lo No  No q

dL
Li—Lo

11

MF(L,) —&X—D %3
24 1|5 53
. 2A Er 2 3
l'(t) : Ny N, 32
2t
MF(Ly)—R——P CE=
l |
24 E
N, N,

&

For the purposes of implementation we partition the uniform

density forL into a discrete set of equally likely lengths,
i=1,...M, so that we may replace the integration of Etj)
by the summation

M
1
NOESVIRNUINE (12)
i=1
A similar argument for the time of arrivat may be
applied, where we take~ 7/[0,7,]. For L and r random
and assuming\ known, then

™ dr
an= [ Maln S
0 T1
lele p{—Ef_'_ZA (L)} dL dr 13
= exp —+ — —,
0 Jig No No a Li-Lo 7y

where\(r|7) is now given by Eq(11). Partitioning the de-

lays 7 into an equally likely set;, j=1,...N, then
1 M N
A(r %WZ&; N(rILi 7)), (14)
with
)\(r|Li,rj)=exp<_N—Ef+'2\|—Aq(L)]. (15
0 0

Note that forL and/orA randomE;=LA?/3 is not constant

from realization to realization. Thus in the implementation

based on Eq(14) the correction term-E; /N is applied in
each branch for normalization.

Finally, consider the effects of\, L, and 7 random.
Now A (r|A) is given by Eq.(13), and we note that (r|A) is

FIG. 2. Maximum-likelihood shock wave detector in white Gaussian noise.

to forming the maximume-likelihood estimates of the param-
eters and then using these in the likelihood ratio as if they
were the truef. Thus the detector of Fig. 2 is appealing for
our problem because it simultaneously yields estimatasd
L. GivenT andL an optimal estimate oA is easily obtained
via linear regression ovetr<t<7+L. BecauseE; can
change, a normalization is required before applying the com-
mon threshold\. Alternatively, the correlation statistigin
Eg. (10) can be employed requiring a separate threshold for
each channel.
Note that the complexity of the scheme in Fig. 2 is pro-
portional toM X N [see Eq(14)]. With fast implementation
of the matched filtergvia the FFT the complexity is there-
fore of orderO(M XT log T), whereT is the data record
length[see Eq(5)]. Thus the search ovéM different shock
wave lengths creates significant complexity in the detector.
Without knowledge of the prior probabilities &1, vs
Hy it is prudent to select the decision threshalgl via the
Neyman—Pearson criterion so as to maximize the probability
of detection for a fixed probability of false alarm. This as-
sumes thalN, is known or can be estimated. Helgy is a
simple hypothesis, so that for known the probability of
false alarmPs, is given by

1 o 2
Pia= dy= f e Y2y, 1
fa lepo(y) Y=zm™ ), y 17
where po(y) is the Gaussian pdf of the noise and the last
equality assumes unit variance. Given a deskegd, y may
be obtained from Eq(17). This, together with known or

maximized for any fixedA>0 if q is maximized. Note from  estimated values foN, and E;, are sufficient to set the
Eqg. (10) thatq(L) is a simple correlation between the model detection threshold; for example, see Ref. 12, Sec. 6.2. In the
and the received data. Thus a decision may be made by comore general case of the ML detector in Fig. 2 with un-
paring the correlatiory to a threshold, and] provides a  known arrival time P, and the probability of detectioR e
uniformly most powerfu(UMP) test with respect to ampli- are more difficult to calculate. When the SNR is large
tudeA. Note that we are eXplOiting the fact thé.l>0, if A enough to be useful in practice thﬂet can be approxi_

is bipolar then no UMP test exists and we must resort to gnated by the detection probability arising as if the arrival
suboptimal two-sided test. time 7 were knowna priori. Py, can be approximated using

An alternative to Eq(14) is the “maximum-likelihood”  the rate at which the detection statistic crosses the threshold,
(ML) detector, which is an approximation to Ed4). This e g., see Ref. 11, Chap. 7.

detector proceeds by taking the maximum of khegaths, as
shown in Fig. 2, and corresponds to a bank of matched filters

matched to the various lengths[denoted MF ;) in the Il. EDGE DETECTION AND MULTISCALE WAVELET
figure]. It arises from the multiple hypothesis test ANALYSIS

Ho: r(t)=n(t),
. e estimation schemes as an alternative to the optimal Gaussian
H,: r()=f(t;0,)+n(t) . ; . : . :
noise solution of the previous section. This approach exploits
fori=1,...MN, where, is theith parameter vector out of the very fast rise and fall times of the shock wave edges. We
the MN possible choices. The ML detector also correspondsre motivated by reduced complexity implementation, as

Ost=T>L, In this section we consider gradient-based detection and

(16)
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well as the desire to be robust to strong interferers, such a: 1
platform noise. With strong unknown interference an optimal .5

solution will generally be unavailable. 06

0.4

0.2

A. Edge detection

Gradient operators are a classical means of estimating B4
step changes in signals and images, and may be applied fo,
detection of shock edges. Commonly used 2-D operatorgig. 3. (a) A cubic spline smoothing function(t) that is approximately
such as Roberts, Prewitt, and Sobel reduce to an FIR filtegaussian, andb) its derivative g(t) =du(t)/dt. (t)=(1/s)y(t/s) is a
with impulse responsg—1,0,1] in one dimensiorie.g., see wavelet yielding a filter bank that estimates the derivative at a level of
Jaint3). More general extensions, so-called filtered derivative®™PCthing increasing with the scase
methods, combine smoothing with gradient estimation to re=du(t)/dt. With easily achievable constraints @f(t) then,
duce noise effects, and are more effective when higher noig®r some function of interesg(t), it is straightforward to
levels are encountered. These methods are attractive due show that’
low complexity linear implementation. They also tend to be du
localized, providing robustness to highly varying back- W, g(t)=g(t)*(s d_ts
grounds and multiple change points. Alternative step-change
detection methods are based on detecting changes in statistihere ug(t) = (1/s)u(t/s) and+* denotes convolution. Thus
cal distributions, such as a step change in the mean, arfdr appropriate choice ai(t), Ws g(t) can be interpreted as
typically require a moderate to large sample size around a derivative of a local average gft) where the degree of
single point of change, e.g., see Basseville and Nikifdfov. smoothing depends am The result is estimation of the de-
Thus the latter may be difficult to apply in the present con-rivative of g(t) at various levels of smoothingscale$. In
text. Ref. 21 Mallat and Zhong developed a nonorthogonal DWT

A filtered derivative method that has received a lot ofbased onu(t) being a cubic spline approximation to a Gauss-
attention is the derivative of Gaussi@iG), which estimates ian, shown in Fig. 3. We refer to this particular DWT as the
the gradient after smoothing with a Gaussian function. TheMZ-DWT (Matlab code for this algorithm is listed in Ref.
level of smoothing is determined by the variance of the22). Thus the MZ-DWT implements the dG algorithm at
Gaussian. The dG approach can be derived under criteria efirious smoothing levels. We note that the discretization
detection and localization(see Canny® Tagare and here is dyadic in scalesE 2/, j e 2) but is not dyadic in
deFigueiredd® and Koplowitz and Gredd). The problem  time (shift), which corresponds to a filter bank with no down
can also be formulated in terms of zero crossings of thesampling. The MZ-DWT ofg(n), 1<n=<N, consists of
second de.rlvat.lve, sqch as the Laplaman of Gaus_5|an ap- \wy g(n), j=1.2,..0-1, (19)
proach which is equivalent to dG in 1-D. Attempting to
achieve simultaneous detection and estimation results in §hereJ=1log, N, plus the remaining coarse scale informa-
tradeoff between the level of smoothing and the variance ofion denoted byS;(n). Thus the MZ-DWT, consisting o
the estimated step location, and this tradeoff is sensitive ta¢ N Points, is overcompleténonorthogonal This contrasts

the edge shape and SNR. On the one hand, only very loc#fith the (perhaps more commonly encounteredthogonal
information is required for optimal estimation of the edgeWavelet transforms where the number of coefficients de-

location!®1 On the other hand, a large data window is de-Creases with scale. The inverse DWT may also be readily

sired to detect step changes, in essence allowing sufficieg@Mputed, enabling filtering and reconstruction.
smoothing to estimate signal levels before and after the The impulse responses of the MZ-DWT filter bank over

change. In addition, the optimal smoothing level is not typi-Several scales are shown in Fig. 4. Some frequency responses
cally knowna priori. are illustrated in Fig. 5; the linear slope region of each filter

yields an approximation to differentiation in the various
passbands. From now on we usg g(n)=W,; g(n) to spe-
cifically denote the MZ-DWT at scals=2!, j=1,2,..., and
at sampling timen.

0
(a)

d
(D=5 3 (@ru)(H, (19

B. A wavelet framework

The problems with choosing priori the level of . .

. . . N C. Multiscale analysis
smoothing appropriate for gradient estimation can be over-
come to some extent by employing a multiscale analysis, i.e., A detection strategy may be based on one or more scales
combining results over multiple levels of smoothing. It is of W g(n). We emphasize that the lowest scale corresponds
well known that wavelets may be used for detecting ando a simple two-point gradient estimafaee Fig. 4a)]. Vari-
characterizing singulariti€. This has been applied to edge ous multiscale strategies are possible, e.g.etal. devel-
detection in images via analysis across scale space, puttirgpedad hocmodifications for the ECG problefi.

earlier work of Canny? and others into the wavelet trans- Consider a multiscale analysis by forming the product
form framework?! i

Consider a wavelep(t) that consists of the first deriva- p(m) =[] Wy g(n), (20)
tive of a smoothing functionu(t), given by (t) i=lo
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edge detection approach is low. Each scaldigfg(n) re-
! , 0 10 2 % quires an FIR filter, and formation gf(n) requiresj,—jg
s mem%&é‘l"l’&mm m&woo???TTTWTTTTT‘f??@q:oo%ow, +1 multiplies per sample, withj;—jo+1=3 in our ex-
. sul . . . , amples.

e = e ° ‘° o ® Also motivating use op(n) is the MZ-DWT response
FIG. 4. The impulse responses of Mallat's discrete wavelet transfbt to white noise across scales. gtn) denote a white noise
DWT) for the first five scales, pane(®) through(e), respectively. These  random process, andl,j v(n) its MZ-DWT. It can then be
approximate derivative-of-GaussigdG) gradient estimation for various shown that the expected number of maxima\bf«1 v(n) is
levels of smoothing. Note thaa) corresponds to unsmoothed estimation. . 20

one half the expected number of maxima\ij v(n).

Thus due to the increased smoothing at each successive
scale, as the scale increases by one the number of maxima
decreases by half. The result is that maxima in the cross-
scale productp(n) due to noise are strongly suppressed,
Yhile maxima due to the signal are reinforced.

Statistical analysis op(n) is given in Ref. 27, with

illustrated in Fig. 6. This is a distinctly nonlinear function of
the input time serieg(n). The functionp(n) will show
peaks at theN-wave edges, and will have relatively small
values elsewhere. The idea of a cross-scale correlation w.
developed by Rosenfeld for edge detection in im&§és,

and recently used in the wavelet framework for signal andperformance analysis for step changes in additive indepen-

'mage denoising by Xet al. The use ob'(n) for detec'uon. dent Gaussian and non-Gaussian noise. For white noise input
exploits the MZ-DWT response to the signal and noise in 4o the DWT. we have shown that

beneficial way. Singularities produce cross-scale peaks in
W, g(n), and these are reinforced p(n). Although par- E[p(n)p(n+m)]

ticular smoothing levels may not be optimal, the nonlinear E[p2(n)]

combination tends to reinforce the peaks while suppressin

spurious noise peaks. The signal peaks will align across scafef Jo=1,j1—]0=2, wheres(m) is the delta function. Thus
for the first few scales, but not for all scales because incread(n) is a whitened process, despite its nonlinear nature. This
ing the amount of smoothing will spread the response anéf intuitively apparent from study of Fig. 5. The time domain
cause singularities separated in time to interact. Thus choogroduct of the outputs of the DWT filters corresponds to
ing j, too large will result in misaligned peaks f(n). In  convolution in the frequency domain; convolution of these
practice the choice of; is limited to roughlyj,<5; in our filter shapes results in a largely flat spectrum [¢n). We
examples we usg=1 andj,=3. An odd number of terms have also shown that the probability density functiomp(r)

in p(n) preserves the sign of the edge. The complexity of thdS in general heavy tailed non-Gaussian.

rp(m)= ~&(m), (21

D. Two experimental examples

, Figures 7 and 8 illustrate the application of the MZ-
DWT to obtainp(n). Figure {a) shows both an experimen-
tally measured shock wave and a simulated shock wave time
series concatenated together. The measured shock (ireeve
first 200 pointy was obtained from a 38-mm-diam projectile
(a tank rounglat a sampling rate of 48 kHz; this represents a
: high quality, high SNR measurement. The noise-free simu-
lated shock waver(=201-400) was generated by sampling
Eq. (3) to approximately match the measured one, with am-
1 plitudes normalized for display. Also shown in Figby-(e)

are W,; g(n) for the first four scalesj&=1,...,4). The in-
crease in smoothing with scale is apparent, and the resulting

of ye . 5 p 25 P smoothed derivative estimates show thewave edges
Frequency lradians] clearly. The resulting normalized cross-scale progh{ci) is
FIG. 5. The frequency response of the MZ-DWT arising from the filters of Shown in Fig. Tf), for jo=1 and j;=3, depicting clean
Fig. 4, shown for the first six scales. peaks aligned with the shock wave edges. Note that both the
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leading and trailing edge of thd wave are positive going,
resulting in positive peaks ik\,; g(n), hence in this appli-
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2580

x (1/48,000) sec
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cation we can reject negative peakspifn). o . _ o
Figure 8 depicts similar results based on a recordeds Simply obtained via least-squares line fittifigear regres-
shock wave of a 12.7-mm projectile at a 48-kHz samplingsion over the noisy observations fare [n,,n,]. In practice

rate (note the two echoes following the original shackhis

400

o
©

e
©
T

o
Q

Gradient Detector
T

o
©

o
@
T

e
Q

b o 48K
—x 24K

6k

o
>
ad
=
T

o
IS

Probability of Detection
o
o
o
S

o
w
Probability of Detection
o o
w o

o
[
o
[
T

o
o

SNR, (dB)

FIG. 9. Detection simulation for a shockwave in additive white Gaussian
noise comparing multiscale wavelet-product detection and unsmoothed gra-
dient detection. Here SNRdepends on shock amplitude versus additive
white noise variance.

the N-wave peaks will not be strictly equal in magnitude;

noisy, low SNR recording results in many false peaks in theestimates of thesdl-wave maxima and minima arise from
lower MZ-DWT scales. If one were restricted to a singlethe endpoints of the linear fit to the data. Another simple

scale for analysis, this might be the thiig. 8(d)]. How-

estimate ofA is to form A=0.5f(n,)—f(n,)]. The latter

ever, p(n) taken over the first three scales shows distinctestimate may be more appropriate under heavy interference.

peaks for the initial pulse and the echoes, despite the numer-

ous false peaks in the lower scales of the MZ-DWT.

E. Estimation and reconstruction

As in the ML detection scheme of Fig. 2, DWT-based
detection simultaneously yields estimatesn, andL=n,
—n,, wheren; andn, are the estimated shock edge times.

Wavelet denoisindi.e., filtering for noise removal via
the WT) can be achieved with the DWT employed hé&hé®
These edge-preserving denoising algorithms rely on signal
reconstruction from the DWT maxima via alternating projec-
tion methods, and do not assume knowledge of the time do-
main waveform?128

Based on the parametric signal model it remains to estimatg|. SIMULATION AND EXPERIMENTAL RESULTS

A. Because of the assumed linear slope then, in white Gaus
ian noise, the optimal estimate of the entire wavefdiim)
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?\'. Shock detection in Gaussian noise

In this example we consider gradient estimation of simu-
lated shock waves in additive white Gaussian noise. Detec-
tion results are shown in Fig. 9. The shock wave was con-
structed using Eq3), with lengthL established from Eq2)
using the parameters in Table |, corresponding to a small
projectile (d=5.56 mm) at a moderate miss distari6® m).

A sampling rate of 125 000 samples/s was assumed, with
y(n)=Af(n)+v(n), the ideal shock wavé(n) plus addi-
tive noisev(n). Table | values lead to a shock duration of
about 36 samples. The signal-to-noise ratio was defined as

/\2

. , . : SNRy=10 log;p —, (22)

_1030 500 1000 1500 2000 2500 9y

s 0 l I | L

-1 =00 000 1500 2000 2500 TABLE I. Shock wave simulation parameters for example 1.
x (1/250,00) sec
o ) c (m/y M d (mm) I (mm) x (m)

FIG. 8. Measured shockwave fd=12.7 mm projectile at 48 kHz sampling
rate:(a) time series{b)—(e) first 4 scales of DWT(f) normalized product of 355 2.7 5.56 a 50
first 3 DWT scales.
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FIG. 10. Measured shock wave fdr=5.56 mm projectile at 125 kHz sam- FIG. 11. Zoom of measured shock wave time series from the previous
pling rate in presence of idling vehicléa) 0.8 s of time series showing figure: (a) shock wave time seriegb)—(e) first 4 scales of DWT{f) nor-
shock (nearn=0) and muzzle blastafter n=40 000; (b) zoom of time malized product of first 3 DWT scales.
series showing shock wave.

muzzle blast follows near the center of the data record. The
whereA is the shock amplitude anef’ is the noise variance. engine and exhaust sounds are also apparent in the waveform
The definition of SNR shows the detection performance asaway from the shock and muzzle blast occurrences.
a direct function of the amplitude, as opposed to the more  Figure 1@b) is an enlargement of the time series, and
standard definition based on the signal energy. The use @he shock wave is now evident. We apply the DWT and form
SNR, is more appropriate in this case as the detectors rely(n) via Eq. (20) with jo=1 andj,=23. Results are shown
on the local edge information only, and do not exploit thein Fig. 11. Here, Fig. 1(h) is a further enlargement of the
entire shock waveform. time series over 500 samples around tewave, (b)—(e)

To simulate rise time and system bandwidth effectsshow the first four scales of the MZ-DWT, arif) shows
three low-pass filters were designed with bandwidths of 6p(n) with its peak normalized to unity. Note the sharpening
24, and 48 kHz, respectively. Each filter was designed usingf the peaks inp(n) versus the unsmoothed gradient esti-
the Remez exchange algorithm with 50-dB stop-band supmate[panel(f) versus panefb), respectively.
pression and a 1-kHz roll-off region, and each had 170 taps. We have repeated this experiment with both larger pro-
The noisy signaly(n) was then passed through each filter jectiles and smaller miss distances, hence the data shown are
and detection tests carried out usiigp(n) in Eq.(20) with  the worst caséi.e., smallest amplitudewithin the confines
jo=1 andj;=3, and(ii) a simple gradient operator with of our parameters for this experiment. The engine noise is
impulse responsg—1,0,1]. Data records of length’8512  relatively low pass in comparison to the fast rise time of the
= 1536 were used with the shock wave centered in the recory wave, such that the engine noise does not generally pro-
to insure the low-pass filters were in steady state before anguce significant peaks ip(n). Also, the exhaust noise,
after the shock. Detection thresholds were established yieldyhile of higher bandwidth than the engine sound, is of suf-
ing no false alarms over 100 000 noise training samplesficiently less amplitude than the shock wave in this scenario

Successful detection was declared if bdthwave edges and hence does not seriously restrict the detection process.
were detected above threshold. Results in Fig. 9 are averages

over 1000 Monte Carlo trials for each value of SNRThe  C. Simulated shock in experimentally collected
results show a 4-5 dB performance gain in ugig) over  platform noise
a simple unsmoothed gradient estimator, reflecting the ben-

efits of smoothing at lower SNR In this example we insert simulated shockwaves into

experimentally recorded sound from a moving tank to obtain
detection performance as a function of miss distance. Detec-
tion results are shown in Fig. 12. An overview of the proce-
Next we show results based on experimentally collected

data on a noisy platform. Figure () shows a time series . _WaveletDetector 1008 Gradient Detector
collected from a microphone placed 5 ft off the ground and 3 : : : : :
ft behind a military HMMWYV (jeep with its diesel engine
idling. The data were collected with a sampling rate of 125
kHz, such that the time series in Fig. (&) which is com-

B. Experimental shock detection in platform noise

f Detection

0.995- 09951 s o 48k

Probability of Detection

% : : : p—x 24K
posed of 100 000 samples, represents 0.8 s elapsed time. g ossf {2 6K [iowiins 099 ok
high velocity rifle with projectile diameted=5.56 mm was : : ' ; : ; ;
. H H H 0'9850 50 100 150 200 0'9850 50 100 150 200
fired past the HMMWYV at various miss distances. The data Miss Distance (m) Miss Distance (m)
shown here correspond to a miss distaxnad approximately
22 m. The shock wave is evident early in Fig(d0Qand the FIG. 12. Detection of simulateN-wave in recorded tank noise.
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TABLE Il. Overview of example 3. TABLE V. Average measured peak-to-peak sound pressure leveld for
=5.56 mm diameter projectile shock waves.

1  Shock wave simulatiofusing parameters from Table I
Find L from Eq. (2). Miss distancgm) 1 7 22
Find shock SPL by linearly interpolating data from Table IV.

Find rise-time by interpolating experimental data from Ref. 5, Fig. 6. SPL(dB) 150 142 134
Filter ideal shock to simulate rise time, yieldisgn).
2 Formy(n)=s(n)+x(n)+uv(n).
Randomly select tank sound segma(m) from 1.6 s recording. brated microphones. The measurements were conducted in a
Add white Gaussian noise(n) at 20 dB (10 logg P, /P,|). . . . . ..
benign outdoor environment with minimal acoustic interfer-
3 Simulate system bandwidth for three cases: ence. The miss distancesin Table IV are approximate
Passy(n) through low-pass filters with cutoffs of 48, 24, and 6 kHz. within the experimental error of a marksman firing past a
4 Monte Carlo trials: designated point from a range of roughly 200 m. SPLs for
Repeat steps 1-3, 1000 trials for each miss distance and each LPFarbitrary miss distances in the ranges2<220 m were ob-
Two different detectors compared in Fig. 12. tained by interpolating a linear least-squares fit to the data in

Table IV, while enforcing a slope proportional 10 * as
required by Eq(1). An ideal shock was then simulated via
dure used for this experiment is given in Table Il, with pa- Eqg. (3), where the amplitude was determined with reference
rameters given in Table Ill. to the calibrated shock SPL and the duration in samples de-

The time series is given by termined as described above.

The ideal shock was then filtered to simulate the rise

y(m=s(n)+x(n)+v(n), 23 time. The appropriate rise time was obtained by piecewise
where s(n) is a simulated shockx(n) is recorded tank interpolating the experimental measurements for a 5.56-mm
sound, and (n) is white Gaussian noise. The recording wasprojectile provided by Stoughtofsee Fig. 6 of Ref. b Ex-
made with a sampling rate of 125 kHz by driving a tank pastperimental results were incorporated due to the lack of a
a fixed microphone. For this experiment the recording wasufficiently accurate theoretical rise time prediction. Rise
composed of 200 000 sampl€k.6 9 taken when the tank times for this case varied from less thamd atx=1 m miss
was within roughly one meter of the sensor. The tank SPldistance to greater than 4% atx=220 m. The ideal simu-
was measured by taking the worst case peak-to-fipgh  lated shock was then passed through a smoothing filter
amplitude; for the time series in this experiment this p-p SPLwhose coefficients were all equal to one, with filter extent
was 132 dB. Each realization g{n) was formed by adding equal to twice the estimated rise tirfguantized to the sam-
s(n) andv(n) to the tank recording with the time-of-arrival pling rate. For example, ak=200 m the rise time is 4@s,
7 randomly selected within the 200 000 samples, and dete@orresponding to five samples at the sampling rate pfs8
tion results averaged over 1000 Monte Carlo trials for eaclper sample. So, the ideal shock was smoothed with an FIR
miss distance. Each realization was of length 1536 samplefiter of length 2<5=10 with all the filter weights equal to
with the shock centered in the record. This length was usedne. This approach to simulating the rise time is conservative
to insure the low-pass filters described bel@md example 1  in that it overly smooths the shock and results in rise times
aboveg reached steady state response. Additive white Gausslower than those observed experimentally.
ian noisev(n) was included to further simulate sensor and Each realization ofy(n) was passed through one of
other noise. The noise(n) was added at a fixed power ratio three low-pass filters, as in example 1 above, simulating vari-
of 20 dB, given by 10 logy P,/P,|, whereP, is the average ous system bandwidths. Detection results in Fig. 12 are
power in the 1.6 s of recorded tank sound dngis the  shown for an unsmoothed gradient with impulse response
Gaussian noise power. [—1, 0, 1], as well as for the wavelet product detequgn),

The shock was simulated as follows. The projectile di-with j,=1 andj,=3 in Eq.(20). Detection thresholds were
ameterd=5.56 mm, lengthl, Mach numberM, and the set to yield no false alarms over a 200 000 sample training
speed of sound in aic, are given in Table lll. The shock set consisting o(n)-+v(n) for one realization ofv(n).
duration was obtained via E(), and rounded to the nearest Detection was declared only if both the leading and trailing
sample time, with sampling rate matching the recorded tankl-wave edges were detected.
data at 125 000 samples per second. The shock amplitude Detection results in Fig. 12 predict nearly perfect detec-
was obtained from a linearly interpolated curve based onion using gradient estimation, out to a miss distance of 220
experimentally collected shock pressure levels. The SPLs am@. Note that, for a system bandwidth of 6 kHz, the un-
shown in Table 1V, obtained by averaging over several shotsmoothed gradient begins to show a loss of performance be-
for each miss distance. These were representative measusgnd 150 m. The reduced gradient response is brought on by
ments over several trials with differeriseparately cali- excessive smoothing. This effect is not evident in the
wavelet-product detector, which is able to maintain detection

TABLE Ill. Shock wave parameters in example 3. even at the lower system bandwidth of 6 kHz. Thus a higher
system bandwidth may be employed that better preserves the

¢ (m/s M d(mm | (mm) x (m) Samples/s  rise time, which in turn enables a lower complexity detector.

355 27 5.56 a 1<x=<220 125000 Conversely, a lower system bandwidth may be used with a

somewhat more complex detector.
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