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Detection and estimation of aeroacoustic shock waves generated by supersonic projectiles are
considered. The shock wave is anN-shaped acoustic wave emanating in the form of an acoustic
cone trailing the projectile. An optimal detection/estimation scheme is considered based on a
parametric signal plus white Gaussian noise model. To gain robustness and reduce complexity, we
then focus on gradient estimators for shock wave edge detection, exploiting the very fast shock rise
and fall times. The approach is cast in terms of a wavelet transform where the level of smoothing
corresponds to scale. A multiscale analysis is described, consisting of multiscale products, to
enhance edge detection and estimation. This method is effective and robust with respect to unknown
environmental interference that will generally not exhibit singularities as sharp as theN-wave edges.
Experimental results are presented for discriminatingN waves in the presence of vehicle noise.
Results are also shown, as a function of miss distance, for gradient-based detection of simulated
small projectile shocks inserted into recorded tank noise. ©1998 Acoustical Society of America.
@S0001-4966~98!03008-2#

PACS numbers: 43.60.Cg, 43.28.Mw@JLK#
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INTRODUCTION

We consider optimal and gradient-based detection
estimation of aeroacoustic shock waves generated by su
sonic projectiles. This problem arises in military, law e
forcement, and other cases. It is desired to detect the p
ence of a bullet or other projectile, and to estimate
parameters of the shock wave. Detection is useful in a v
ety of scenarios with application in sniper location as well
on vehicles and aircraft. Of particular interest are rob
methods that will work at moderate signal-to-noise ra
~SNR! in the presence of platform noise.

The shock wave is an ‘‘N-shaped’’ wave emanating
the form of an acoustic cone trailing the projectile.1 The cone
angle is given by arcsin(c/v)5arcsin(1/M ), wherec is the
velocity of sound in air,v is the projectile velocity, andM
5v/c is the Mach number. LettingDP denote the pressur
jump at the start of theN wave, andP0 denote ambient
atmospheric pressure, then2

DP

P0
50.53d

~M221!1/8

x3/4l 1/4 , ~1!

whered and l are the projectile diameter and length, resp
tively, andx is the perpendicular distance from the project
trajectory to the sensor~the nearest point of approach or mi
distance!. Denoting the length of theN wave asL, then

L51.82d
Mx1/4

~M221!3/8l 1/4'1.82dS Mx

l D 1/4

. ~2!

In Eq. ~2! L5cT is the N-wave length, whereT is the
N-wave time duration observed by a single sensor. An al

a!Part of the results in this paper were presented in the 130th meeting o
Acoustical Society of America, St. Louis, MO, November 1995@J. Acoust.
Soc. Am.98, 2968~A! ~1995!#; and at the Intl. Conf. Acoust., Speech, an
Signal Process.~ICASSP-97!, Munich, Germany, April 1997@Proc. Intl.
Conf. Acoust. Speech, and Signal Process. Vol. 3, pp. 1889–1992~1997!#.
955 J. Acoust. Soc. Am. 104 (2), Pt. 1, August 1998 0001-4966/98
d
er-

s-
e
i-
s
t

-

r-

native form, often used in supersonic aircraft studies, gi
the length of the observed shock wave along the ground
L85LM , e.g., see Gierke.3 Although somewhat complex in
nature when first formed, the shock wave assumes th
shape after propagating'50 projectile diameters, so tha
Eqs. ~1! and ~2! are approximations that hold forx suffi-
ciently large.2 From Eqs.~1! and~2! we see that the primary
factors affecting amplitude and length ared andx ~x can be
relatively large!; amplitude and length are otherwise weak
dependent on the projectile’s overall shape and velocity.
periments show reasonably good agreement with Eqs.~1!
and ~2!, e.g., see Basset al.4 and Stoughton.5

Theoretical characterization of theN-wave rise time is
somewhat more problematic. Weak-shock predictions ag
qualitatively with measurements, but tend to significantly u
derestimate rise times.5 Issues include the shock strengt
turbulence effects, and molecular vibrational relaxation4,5

Experiments with small caliber shocks consistently show r
times ranging from less than 1ms for smallx, to greater than
100 ms for x.100 m.

The very fast rise and fall of the shock wave edges le
to the observedN-wave characteristic, and the linear slop
between the edges is generally not dependent on the pro
tile shape at large miss distances.2 Thus the observed shoc
wave shape is largely independent of the projectile shape
velocity after a short propagation distance~see also Refs. 6
and 7!. This in turn implies that a general purpose detec
can be developed that is applicable to a wide variety of p
jectiles.

Note that the magnitude of the shock decreases with
miss distance asx23/4, while the length increases asx1/4. We
assume that the miss distancex is not knowna priori and
this, coupled with the direct dependence on projectile dia
eterd, implies that an observedN-wave may have been gen
erated by a continuum of different size projectiles at differe

he
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ranges. For example, one cannot necessarily discriminate
tween a larger projectile further away versus a smaller p
jectile that is closer to the sensor. Estimation ofx, v, and
projectile type from a single sensor are generally not poss
without a priori knowledge or constraints on the problem.
is possible, however, to estimate these quantities in s
scenarios, especially with multiple sensors. An example
firing range application.8,9 Here the angle of arrival is
known, allowing estimation of the projectile velocity via th
change inL versus time, obtained with multiple senso
along the projectile path. The velocity and length estima
may then be used to classify projectiles. We also note
low precision microphones may be used in practice, reduc
system cost but making absolute determination of sh
wave pressure unreliable.

The N-wave can be parameterized in terms of time
arrival t, amplitudeA, and lengthL. In the following, for
convenience, we use amplitudeA rather than pressureDP.
An idealized constant slopeN wave is shown in Fig. 1 and
described by~e.g., see Pierce,10 Chap. 11!

f ~ t;u!5A fS t2t

L D , t<t<t1L, ~3!

where

f ~ t !5122t, 0<t<1, ~4!

is the amplitude and length-normalized signal, andu
5@t,A,L# denotes the parameter vector. Acceptable ran
for u are assumed to be known from context, based on E
~1! and ~2!.

In the following we discuss two approaches for dete
ing f (t;u) and estimatingt, A, andL. First, we consider the
optimal detection-estimation scheme based on a Gaus
noise assumption, leading to a matched filter-type implem
tation. This approach has high complexity and does
model interference. Next, as an alternative, we consider
use of gradient estimators as a means of detecting the r
and falling edges of theN wave, an approach that require
sufficient SNR but has much lower complexity and is rob
to interference. Smoothed gradient estimators are descr
in the context of wavelets, and a multiscale analysis is
scribed that exploits multiple levels of smoothing simul
neously. Simulations and experiments with measu
N-waves and vehicular interference sources complete the
per.

FIG. 1. Ideal parameterized shock wave~or N-wave! f (t).
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I. OPTIMAL DETECTION AND ESTIMATION IN
GAUSSIAN NOISE

In this section we consider optimal Bayes a
maximum-likelihood methods for detection of the sho
wave and estimation of its parameters. These methods
on an additive Gaussian noise assumption, leading to a
rameterized matched filter-bank approach. However, as o
happens under an additive Gaussian noise assumption
resulting detector is generally not robust to violations of t
assumption, such as in the presence of strong interfe
acoustic sources.

Consider the binary hypothesis test

H1 : r ~ t !5 f ~ t;u!1n~ t !, 0<t<T@L,

H0 : r ~ t !5n~ t !,
~5!

wheren(t) is white Gaussian noise with varianceN0 . We
assume thatf (t;u) is completely contained in the intervalT.
This problem is well studied in the context of radar whe
f (t) is typically a narrow-band sinusoidal pulse of possib
unknown time-of-arrival, frequency, and phase; e.g.,
Helstrom.11 If u were known then the optimal decision wou
be based on the matched filter. The Bayes-optimal decis
rule is based on the likelihood ratio

l~r !5
*up1~r uu!wu~u!du

p0~r !
:
H0

H1

l0 , ~6!

wherewu(u) is the a priori joint probability density ofu,
pi(•) is the likelihood function under thei th hypothesis, and
r is the set of samples ofr (t), 0<t<T. We further assume
that the unknown parameters inu are independent. This las
assumption is not strictly true:A andL both depend on the
same parameters in Eqs.~1! and ~2!. However, we are as
suming the quantitiesd, v, l , andx are unknown.

Next we consider the form of the optimal detection r
ceiver. We begin by assumingL is random, and then broade
the analysis to allowt and thenA also to be random. Sup
pose thatL is random witht and A known, and assume a
uniform prior probability density on L, so that L
;U@L0 ,L1#, with 0,L0,L1 . Now,

p1~r !5c0E
L0

L1
expH 21

N0
E

0

T

@r ~ t !

2 f ~ t;L !#2 dtJ dL

L12L0
, ~7!

while underH0

p0~r !5c0 expH 21

N0
E

0

T

@n~ t !#2 dtJ , ~8!

with c0 a constant. Defining the signal energy

Ef5E
0

T

@ f ~ t !#2 dt5
LA2

3
, ~9!

and also defining

q~L !5E
0

T

r ~ t ! f ~ t;L !dt, ~10!
956adler et al.: Optimal and wavelet-based shock wave detection
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then we can write the likelihood ratio as

l~r !5E
L
l~r uL !w~L !dL

5E
L0

L1
expH 2Ef

N0
1

2A

N0
q~L !J dL

L12L0
. ~11!

For the purposes of implementation we partition the unifo
density forL into a discrete set of equally likely lengthsLi ,
i 51,...,M , so that we may replace the integration of Eq.~11!
by the summation

l~r !'
1

M (
i 51

M

l~r uLi !. ~12!

A similar argument for the time of arrivalt may be
applied, where we taket;U@0,t1#. For L and t random
and assumingA known, then

l~r !5E
0

t1
l~r ut!

dt

t1

5E
0

t1E
L0

L1
expH 2Ef

N0
1

2A

N0
q~L !J dL

L12L0

dt

t1
, ~13!

wherel(r ut) is now given by Eq.~11!. Partitioning the de-
lays t into an equally likely sett j , j 51,...,N, then

l~r !'
1

MN (
i 51

M

(
j 51

N

l~r uLi ,t j !, ~14!

with

l~r uLi ,t j !5expH 2Ef

N0
1

2A

N0
q~L !J . ~15!

Note that forL and/orA randomEf5LA2/3 is not constant
from realization to realization. Thus in the implementati
based on Eq.~14! the correction term2Ef /N0 is applied in
each branch for normalization.

Finally, consider the effects ofA, L, and t random.
Now l(r uA) is given by Eq.~13!, and we note thatl(r uA) is
maximized for any fixedA.0 if q is maximized. Note from
Eq. ~10! thatq(L) is a simple correlation between the mod
and the received data. Thus a decision may be made by c
paring the correlationq to a threshold, andq provides a
uniformly most powerful~UMP! test with respect to ampli
tudeA. Note that we are exploiting the fact thatA.0; if A
is bipolar then no UMP test exists and we must resort t
suboptimal two-sided test.

An alternative to Eq.~14! is the ‘‘maximum-likelihood’’
~ML ! detector, which is an approximation to Eq.~14!. This
detector proceeds by taking the maximum of theM paths, as
shown in Fig. 2, and corresponds to a bank of matched fil
matched to the various lengthsL @denoted MF (Li) in the
figure#. It arises from the multiple hypothesis test

H0 : r ~ t !5n~ t !, 0<t<T@L,

Hi : r ~ t !5 f ~ t;u i !1n~ t !
~16!

for i 51,...,MN, whereu i is the i th parameter vector out o
the MN possible choices. The ML detector also correspo
957 J. Acoust. Soc. Am., Vol. 104, No. 2, Pt. 1, August 1998 S
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to forming the maximum-likelihood estimates of the para
eters and then using these in the likelihood ratio as if th
were the trueu. Thus the detector of Fig. 2 is appealing f
our problem because it simultaneously yields estimatest̂ and
L̂. Given t̂ andL̂ an optimal estimate ofA is easily obtained
via linear regression overt̂<t<t̂1L̂. BecauseEf can
change, a normalization is required before applying the co
mon thresholdl0 . Alternatively, the correlation statisticq in
Eq. ~10! can be employed requiring a separate threshold
each channel.

Note that the complexity of the scheme in Fig. 2 is pr
portional toM3N @see Eq.~14!#. With fast implementation
of the matched filters~via the FFT! the complexity is there-
fore of orderO(M3T log T), where T is the data record
length@see Eq.~5!#. Thus the search overM different shock
wave lengths creates significant complexity in the detect

Without knowledge of the prior probabilities ofH1 vs
H0 it is prudent to select the decision thresholdl0 via the
Neyman–Pearson criterion so as to maximize the probab
of detection for a fixed probability of false alarm. This a
sumes thatN0 is known or can be estimated. Here,H0 is a
simple hypothesis, so that fort known the probability of
false alarmPf a is given by

Pf a5E
R1

r0~y!dy5
1

~2p!1/2 E
g

`

e2y2/2dy, ~17!

where r0(y) is the Gaussian pdf of the noise and the la
equality assumes unit variance. Given a desiredPf a , g may
be obtained from Eq.~17!. This, together with known or
estimated values forN0 and Ef , are sufficient to set the
detection threshold; for example, see Ref. 12, Sec. 6.2. In
more general case of the ML detector in Fig. 2 with u
known arrival time,Pf a and the probability of detectionPdet

are more difficult to calculate. When the SNR is lar
enough to be useful in practice thenPdet can be approxi-
mated by the detection probability arising as if the arriv
time t were knowna priori. Pf a can be approximated usin
the rate at which the detection statistic crosses the thresh
e.g., see Ref. 11, Chap. 7.

II. EDGE DETECTION AND MULTISCALE WAVELET
ANALYSIS

In this section we consider gradient-based detection
estimation schemes as an alternative to the optimal Gaus
noise solution of the previous section. This approach expl
the very fast rise and fall times of the shock wave edges.
are motivated by reduced complexity implementation,

FIG. 2. Maximum-likelihood shock wave detector in white Gaussian no
957adler et al.: Optimal and wavelet-based shock wave detection
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l of
well as the desire to be robust to strong interferers, suc
platform noise. With strong unknown interference an optim
solution will generally be unavailable.

A. Edge detection

Gradient operators are a classical means of estima
step changes in signals and images, and may be applie
detection of shock edges. Commonly used 2-D opera
such as Roberts, Prewitt, and Sobel reduce to an FIR fi
with impulse response@21,0,1# in one dimension~e.g., see
Jain13!. More general extensions, so-called filtered derivat
methods, combine smoothing with gradient estimation to
duce noise effects, and are more effective when higher n
levels are encountered. These methods are attractive d
low complexity linear implementation. They also tend to
localized, providing robustness to highly varying bac
grounds and multiple change points. Alternative step-cha
detection methods are based on detecting changes in sta
cal distributions, such as a step change in the mean,
typically require a moderate to large sample size aroun
single point of change, e.g., see Basseville and Nikiforo14

Thus the latter may be difficult to apply in the present co
text.

A filtered derivative method that has received a lot
attention is the derivative of Gaussian~dG!, which estimates
the gradient after smoothing with a Gaussian function. T
level of smoothing is determined by the variance of t
Gaussian. The dG approach can be derived under criter
detection and localization~see Canny,15 Tagare and
deFigueiredo,16 and Koplowitz and Greco17!. The problem
can also be formulated in terms of zero crossings of
second derivative, such as the Laplacian of Gaussian
proach which is equivalent to dG in 1-D. Attempting
achieve simultaneous detection and estimation results
tradeoff between the level of smoothing and the variance
the estimated step location, and this tradeoff is sensitive
the edge shape and SNR. On the one hand, only very l
information is required for optimal estimation of the ed
location.18,19 On the other hand, a large data window is d
sired to detect step changes, in essence allowing suffic
smoothing to estimate signal levels before and after
change. In addition, the optimal smoothing level is not ty
cally knowna priori.

B. A wavelet framework

The problems with choosinga priori the level of
smoothing appropriate for gradient estimation can be ov
come to some extent by employing a multiscale analysis,
combining results over multiple levels of smoothing. It
well known that wavelets may be used for detecting a
characterizing singularities.20 This has been applied to edg
detection in images via analysis across scale space, pu
earlier work of Canny15 and others into the wavelet tran
form framework.21

Consider a waveletc(t) that consists of the first deriva
tive of a smoothing function u(t), given by c(t)
958 J. Acoust. Soc. Am., Vol. 104, No. 2, Pt. 1, August 1998 S
as
l

g
for
rs
er

e
-

se
to

-
e

sti-
nd
a

-

f

e

of

e
p-

a
of
to
al

-
nt
e
-

r-
.,

d

ing

5du(t)/dt. With easily achievable constraints onc(t) then,
for some function of interestg(t), it is straightforward to
show that20

Ws g~ t !5g~ t !* S s
dus

dt D ~ t !5s
d

dt
~g* us!~ t !, ~18!

whereus(t)5(1/s)u(t/s) and * denotes convolution. Thus
for appropriate choice ofu(t), Ws g(t) can be interpreted a
a derivative of a local average ofg(t) where the degree o
smoothing depends ons. The result is estimation of the de
rivative of g(t) at various levels of smoothing~scales!. In
Ref. 21 Mallat and Zhong developed a nonorthogonal DW
based onu(t) being a cubic spline approximation to a Gaus
ian, shown in Fig. 3. We refer to this particular DWT as t
MZ-DWT ~Matlab code for this algorithm is listed in Re
22!. Thus the MZ-DWT implements the dG algorithm
various smoothing levels. We note that the discretizat
here is dyadic in scale (s52 j , j PZ) but is not dyadic in
time ~shift!, which corresponds to a filter bank with no dow
sampling. The MZ-DWT ofg(n), 1<n<N, consists of

W2 j g~n!, j 51,2,...,J21, ~19!

whereJ5 log2 N, plus the remaining coarse scale inform
tion denoted bySJ(n). Thus the MZ-DWT, consisting ofJ
3N points, is overcomplete~nonorthogonal!. This contrasts
with the ~perhaps more commonly encountered! orthogonal
wavelet transforms where the number of coefficients
creases with scale. The inverse DWT may also be rea
computed, enabling filtering and reconstruction.

The impulse responses of the MZ-DWT filter bank ov
several scales are shown in Fig. 4. Some frequency respo
are illustrated in Fig. 5; the linear slope region of each fil
yields an approximation to differentiation in the variou
passbands. From now on we useWs g(n)5W2 j g(n) to spe-
cifically denote the MZ-DWT at scales52 j , j 51,2,..., and
at sampling timen.

C. Multiscale analysis

A detection strategy may be based on one or more sc
of Ws g(n). We emphasize that the lowest scale correspo
to a simple two-point gradient estimator@see Fig. 4~a!#. Vari-
ous multiscale strategies are possible, e.g., Liet al. devel-
opedad hocmodifications for the ECG problem.23

Consider a multiscale analysis by forming the produc

p~n!5 )
j 5 j 0

j 1

W2j g~n!, ~20!

FIG. 3. ~a! A cubic spline smoothing functionu(t) that is approximately
Gaussian, and~b! its derivativec(t)5du(t)/dt. cs(t)5(1/s)c(t/s) is a
wavelet yielding a filter bank that estimates the derivative at a leve
smoothing increasing with the scales.
958adler et al.: Optimal and wavelet-based shock wave detection
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illustrated in Fig. 6. This is a distinctly nonlinear function
the input time seriesg(n). The function p(n) will show
peaks at theN-wave edges, and will have relatively sma
values elsewhere. The idea of a cross-scale correlation
developed by Rosenfeld for edge detection in images,24,25

and recently used in the wavelet framework for signal a
image denoising by Xuet al.26 The use ofp(n) for detection
exploits the MZ-DWT response to the signal and noise i
beneficial way. Singularities produce cross-scale peak
W2 j g(n), and these are reinforced inp(n). Although par-
ticular smoothing levels may not be optimal, the nonline
combination tends to reinforce the peaks while suppres
spurious noise peaks. The signal peaks will align across s
for the first few scales, but not for all scales because incre
ing the amount of smoothing will spread the response
cause singularities separated in time to interact. Thus ch
ing j 1 too large will result in misaligned peaks inp(n). In
practice the choice ofj 1 is limited to roughlyj 1<5; in our
examples we usej 051 and j 153. An odd number of terms
in p(n) preserves the sign of the edge. The complexity of

FIG. 4. The impulse responses of Mallat’s discrete wavelet transform~MZ-
DWT! for the first five scales, panels~a! through ~e!, respectively. These
approximate derivative-of-Gaussian~dG! gradient estimation for various
levels of smoothing. Note that~a! corresponds to unsmoothed estimation

FIG. 5. The frequency response of the MZ-DWT arising from the filters
Fig. 4, shown for the first six scales.
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edge detection approach is low. Each scale ofWs g(n) re-
quires an FIR filter, and formation ofp(n) requiresj 12 j 0

11 multiplies per sample, withj 12 j 01153 in our ex-
amples.

Also motivating use ofp(n) is the MZ-DWT response
to white noise across scales. Letv(n) denote a white noise
random process, andW2 j v(n) its MZ-DWT. It can then be
shown that the expected number of maxima ofW2 j 11 v(n) is
one half the expected number of maxima inW2 j v(n).20

Thus due to the increased smoothing at each succes
scale, as the scale increases by one the number of ma
decreases by half. The result is that maxima in the cro
scale productp(n) due to noise are strongly suppresse
while maxima due to the signal are reinforced.

Statistical analysis ofp(n) is given in Ref. 27, with
performance analysis for step changes in additive indep
dent Gaussian and non-Gaussian noise. For white noise i
to the DWT, we have shown that

r p~m!,
E@p~n!p~n1m!#

E@p2~n!#
'd~m!, ~21!

for j 051, j 12 j 0>2, whered(m) is the delta function. Thus
p(n) is a whitened process, despite its nonlinear nature. T
is intuitively apparent from study of Fig. 5. The time doma
product of the outputs of the DWT filters corresponds
convolution in the frequency domain; convolution of the
filter shapes results in a largely flat spectrum forp(n). We
have also shown that the probability density function ofp(n)
is in general heavy tailed non-Gaussian.

D. Two experimental examples

Figures 7 and 8 illustrate the application of the M
DWT to obtainp(n). Figure 7~a! shows both an experimen
tally measured shock wave and a simulated shock wave
series concatenated together. The measured shock wave~the
first 200 points! was obtained from a 38-mm-diam projecti
~a tank round! at a sampling rate of 48 kHz; this represents
high quality, high SNR measurement. The noise-free sim
lated shock wave (n5201– 400) was generated by samplin
Eq. ~3! to approximately match the measured one, with a
plitudes normalized for display. Also shown in Fig. 7~b!–~e!
are W2 j g(n) for the first four scales (j 51,...,4). The in-
crease in smoothing with scale is apparent, and the resu
smoothed derivative estimates show theN-wave edges
clearly. The resulting normalized cross-scale productp(n) is
shown in Fig. 7~f!, for j 051 and j 153, depicting clean
peaks aligned with the shock wave edges. Note that both

FIG. 6. Computation ofp(n), the discrete-wavelet transform cross-sca
product.

f

959adler et al.: Optimal and wavelet-based shock wave detection
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leading and trailing edge of theN wave are positive going
resulting in positive peaks inW2 j g(n), hence in this appli-
cation we can reject negative peaks inp(n).

Figure 8 depicts similar results based on a recor
shock wave of a 12.7-mm projectile at a 48-kHz sampl
rate~note the two echoes following the original shock!. This
noisy, low SNR recording results in many false peaks in
lower MZ-DWT scales. If one were restricted to a sing
scale for analysis, this might be the third@Fig. 8~d!#. How-
ever, p(n) taken over the first three scales shows disti
peaks for the initial pulse and the echoes, despite the num
ous false peaks in the lower scales of the MZ-DWT.

E. Estimation and reconstruction

As in the ML detection scheme of Fig. 2, DWT-bas
detection simultaneously yields estimatest̂5n1 and L̂5n2

2n1 , wheren1 andn2 are the estimated shock edge time
Based on the parametric signal model it remains to estim
A. Because of the assumed linear slope then, in white Ga
ian noise, the optimal estimate of the entire waveformf (n)

FIG. 7. Measured (n51 – 200) and simulated (n5201– 400) shock wave
for d538 mm projectile at 48 kHz sampling rate:~a! time series;~b!–~e!
first 4 scales of MZ-DWT;~f! normalized product of first 3 MZ-DWT
scales.

FIG. 8. Measured shockwave ford512.7 mm projectile at 48 kHz sampling
rate:~a! time series;~b!–~e! first 4 scales of DWT;~f! normalized product of
first 3 DWT scales.
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is simply obtained via least-squares line fitting~linear regres-
sion! over the noisy observations fornP@n1 ,n2#. In practice
the N-wave peaks will not be strictly equal in magnitud
estimates of theseN-wave maxima and minima arise from
the endpoints of the linear fit to the data. Another simp
estimate ofA is to form Â50.5@ f (n1)2 f (n2)#. The latter
estimate may be more appropriate under heavy interfere

Wavelet denoising~i.e., filtering for noise removal via
the WT! can be achieved with the DWT employed here.20,26

These edge-preserving denoising algorithms rely on sig
reconstruction from the DWT maxima via alternating proje
tion methods, and do not assume knowledge of the time
main waveform.21,28

III. SIMULATION AND EXPERIMENTAL RESULTS

A. Shock detection in Gaussian noise

In this example we consider gradient estimation of sim
lated shock waves in additive white Gaussian noise. De
tion results are shown in Fig. 9. The shock wave was c
structed using Eq.~3!, with lengthL established from Eq.~2!
using the parameters in Table I, corresponding to a sm
projectile (d55.56 mm) at a moderate miss distance~50 m!.
A sampling rate of 125 000 samples/s was assumed, w
y(n)5A f(n)1v(n), the ideal shock wavef (n) plus addi-
tive noisev(n). Table I values lead to a shock duration o
about 36 samples. The signal-to-noise ratio was defined

SNRA510 log10

A2

sv
2 , ~22!

FIG. 9. Detection simulation for a shockwave in additive white Gauss
noise comparing multiscale wavelet-product detection and unsmoothed
dient detection. Here SNRA depends on shock amplitude versus additi
white noise variance.

TABLE I. Shock wave simulation parameters for example 1.

c ~m/s! M d ~mm! l ~mm! x ~m!

355 2.7 5.56 3d 50
960adler et al.: Optimal and wavelet-based shock wave detection
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whereA is the shock amplitude andsv
2 is the noise variance

The definition of SNRA shows the detection performance
a direct function of the amplitude, as opposed to the m
standard definition based on the signal energy. The us
SNRA is more appropriate in this case as the detectors
on the local edge information only, and do not exploit t
entire shock waveform.

To simulate rise time and system bandwidth effec
three low-pass filters were designed with bandwidths o
24, and 48 kHz, respectively. Each filter was designed us
the Remez exchange algorithm with 50-dB stop-band s
pression and a 1-kHz roll-off region, and each had 170 ta
The noisy signaly(n) was then passed through each filt
and detection tests carried out using~i! p(n) in Eq. ~20! with
j 051 and j 153, and ~ii ! a simple gradient operator wit
impulse response@21,0,1#. Data records of length 33512
51536 were used with the shock wave centered in the rec
to insure the low-pass filters were in steady state before
after the shock. Detection thresholds were established yi
ing no false alarms over 100 000 noise training samp
Successful detection was declared if bothN-wave edges
were detected above threshold. Results in Fig. 9 are aver
over 1000 Monte Carlo trials for each value of SNRA . The
results show a 4–5 dB performance gain in usingp(n) over
a simple unsmoothed gradient estimator, reflecting the b
efits of smoothing at lower SNRA .

B. Experimental shock detection in platform noise

Next we show results based on experimentally collec
data on a noisy platform. Figure 10~a! shows a time series
collected from a microphone placed 5 ft off the ground an
ft behind a military HMMWV ~jeep! with its diesel engine
idling. The data were collected with a sampling rate of 1
kHz, such that the time series in Fig. 10~a!, which is com-
posed of 100 000 samples, represents 0.8 s elapsed tim
high velocity rifle with projectile diameterd55.56 mm was
fired past the HMMWV at various miss distances. The d
shown here correspond to a miss distancex of approximately
22 m. The shock wave is evident early in Fig. 10~a!, and the

FIG. 10. Measured shock wave ford55.56 mm projectile at 125 kHz sam
pling rate in presence of idling vehicle:~a! 0.8 s of time series showing
shock ~near n50! and muzzle blast~after n540 000!; ~b! zoom of time
series showing shock wave.
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muzzle blast follows near the center of the data record. T
engine and exhaust sounds are also apparent in the wave
away from the shock and muzzle blast occurrences.

Figure 10~b! is an enlargement of the time series, a
the shock wave is now evident. We apply the DWT and fo
p(n) via Eq. ~20! with j 051 and j 153. Results are shown
in Fig. 11. Here, Fig. 11~a! is a further enlargement of th
time series over 500 samples around theN wave, ~b!–~e!
show the first four scales of the MZ-DWT, and~f! shows
p(n) with its peak normalized to unity. Note the sharpeni
of the peaks inp(n) versus the unsmoothed gradient es
mate@panel~f! versus panel~b!, respectively#.

We have repeated this experiment with both larger p
jectiles and smaller miss distances, hence the data show
the worst case~i.e., smallest amplitude! within the confines
of our parameters for this experiment. The engine noise
relatively low pass in comparison to the fast rise time of t
N wave, such that the engine noise does not generally
duce significant peaks inp(n). Also, the exhaust noise
while of higher bandwidth than the engine sound, is of s
ficiently less amplitude than the shock wave in this scena
and hence does not seriously restrict the detection proce

C. Simulated shock in experimentally collected
platform noise

In this example we insert simulated shockwaves in
experimentally recorded sound from a moving tank to obt
detection performance as a function of miss distance. De
tion results are shown in Fig. 12. An overview of the proc

FIG. 11. Zoom of measured shock wave time series from the prev
figure: ~a! shock wave time series;~b!–~e! first 4 scales of DWT;~f! nor-
malized product of first 3 DWT scales.

FIG. 12. Detection of simulatedN-wave in recorded tank noise.
961adler et al.: Optimal and wavelet-based shock wave detection
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dure used for this experiment is given in Table II, with p
rameters given in Table III.

The time series is given by

y~n!5s~n!1x~n!1v~n!, ~23!

where s(n) is a simulated shock,x(n) is recorded tank
sound, andv(n) is white Gaussian noise. The recording w
made with a sampling rate of 125 kHz by driving a tank p
a fixed microphone. For this experiment the recording w
composed of 200 000 samples~1.6 s! taken when the tank
was within roughly one meter of the sensor. The tank S
was measured by taking the worst case peak-to-peak~p-p!
amplitude; for the time series in this experiment this p-p S
was 132 dB. Each realization ofy(n) was formed by adding
s(n) andv(n) to the tank recording with the time-of-arriva
t randomly selected within the 200 000 samples, and de
tion results averaged over 1000 Monte Carlo trials for e
miss distance. Each realization was of length 1536 samp
with the shock centered in the record. This length was u
to insure the low-pass filters described below~and example 1
above! reached steady state response. Additive white Ga
ian noisev(n) was included to further simulate sensor a
other noise. The noisev(n) was added at a fixed power rat
of 20 dB, given by 10 log10uPx /Pvu, wherePx is the average
power in the 1.6 s of recorded tank sound andPv is the
Gaussian noise power.

The shock was simulated as follows. The projectile
ameterd55.56 mm, lengthl , Mach numberM , and the
speed of sound in airc, are given in Table III. The shock
duration was obtained via Eq.~2!, and rounded to the neare
sample time, with sampling rate matching the recorded t
data at 125 000 samples per second. The shock ampli
was obtained from a linearly interpolated curve based
experimentally collected shock pressure levels. The SPLs
shown in Table IV, obtained by averaging over several sh
for each miss distance. These were representative mea
ments over several trials with different~separately cali-

TABLE II. Overview of example 3.

1 Shock wave simulation~using parameters from Table III!:
Find L from Eq. ~2!.
Find shock SPL by linearly interpolating data from Table IV.
Find rise-time by interpolating experimental data from Ref. 5, Fig.
Filter ideal shock to simulate rise time, yieldings(n).

2 Formy(n)5s(n)1x(n)1v(n).
Randomly select tank sound segmentx(n) from 1.6 s recording.
Add white Gaussian noisev(n) at 20 dB (10 log10uPx /Pvu).

3 Simulate system bandwidth for three cases:
Passy(n) through low-pass filters with cutoffs of 48, 24, and 6 kH

4 Monte Carlo trials:
Repeat steps 1–3, 1000 trials for each miss distance and each L
Two different detectors compared in Fig. 12.

TABLE III. Shock wave parameters in example 3.

c ~m/s! M d ~mm! l ~mm! x ~m! Samples/s

355 2.7 5.56 3d 1<x<220 125 000
962 J. Acoust. Soc. Am., Vol. 104, No. 2, Pt. 1, August 1998 S
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brated! microphones. The measurements were conducted
benign outdoor environment with minimal acoustic interfe
ence. The miss distancesx in Table IV are approximate
within the experimental error of a marksman firing pas
designated point from a range of roughly 200 m. SPLs
arbitrary miss distances in the range 1<x<220 m were ob-
tained by interpolating a linear least-squares fit to the dat
Table IV, while enforcing a slope proportional tox23/4 as
required by Eq.~1!. An ideal shock was then simulated v
Eq. ~3!, where the amplitude was determined with referen
to the calibrated shock SPL and the duration in samples
termined as described above.

The ideal shock was then filtered to simulate the r
time. The appropriate rise time was obtained by piecew
interpolating the experimental measurements for a 5.56-
projectile provided by Stoughton~see Fig. 6 of Ref. 5!. Ex-
perimental results were incorporated due to the lack o
sufficiently accurate theoretical rise time prediction. R
times for this case varied from less than 1ms atx51 m miss
distance to greater than 40ms atx5220 m. The ideal simu-
lated shock was then passed through a smoothing fi
whose coefficients were all equal to one, with filter exte
equal to twice the estimated rise time~quantized to the sam
pling rate!. For example, atx5200 m the rise time is 40ms,
corresponding to five samples at the sampling rate of 8ms
per sample. So, the ideal shock was smoothed with an
filter of length 235510 with all the filter weights equal to
one. This approach to simulating the rise time is conserva
in that it overly smooths the shock and results in rise tim
slower than those observed experimentally.

Each realization ofy(n) was passed through one o
three low-pass filters, as in example 1 above, simulating v
ous system bandwidths. Detection results in Fig. 12
shown for an unsmoothed gradient with impulse respon
@21, 0, 1#, as well as for the wavelet product detectorp(n),
with j 051 and j 153 in Eq. ~20!. Detection thresholds were
set to yield no false alarms over a 200 000 sample train
set consisting ofx(n)1v(n) for one realization ofv(n).
Detection was declared only if both the leading and traili
N-wave edges were detected.

Detection results in Fig. 12 predict nearly perfect dete
tion using gradient estimation, out to a miss distance of 2
m. Note that, for a system bandwidth of 6 kHz, the u
smoothed gradient begins to show a loss of performance
yond 150 m. The reduced gradient response is brought o
excessive smoothing. This effect is not evident in t
wavelet-product detector, which is able to maintain detect
even at the lower system bandwidth of 6 kHz. Thus a hig
system bandwidth may be employed that better preserves
rise time, which in turn enables a lower complexity detect
Conversely, a lower system bandwidth may be used wit
somewhat more complex detector.

.

F.

TABLE IV. Average measured peak-to-peak sound pressure levels fod
55.56 mm diameter projectile shock waves.

Miss distance~m! 1 7 22

SPL ~dB! 150 142 134
962adler et al.: Optimal and wavelet-based shock wave detection
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This experiment is intended to be conservative with
spect to rise time and the level of additive Gaussian no
We note, however, that the tank sounds were recorded f
a microphone not on the moving platform. Placing the sen
on the tank might lead to somewhat higher noise levels
to vibration, wind, or other effects. The simple gradien
based approach to shock detection appears functional
robust to platform noise due to the fast rise time and re
tively large shock amplitude. We also note that larger p
jectiles will produce louder shocks with faster rise time
hence the detection results will improve in such cases.

IV. DISCUSSION

Based on our experimental and simulation results, g
dient estimation appears to be a viable low complex
method for detection and estimation of shocks on noisy p
forms. Our ability to simulate realistic shocks is limited b
the inability to accurately predict rise time. So, the last e
ample of the previous section was intentionally conservat
utilizing a small projectile, a very noisy platform, and si
nificant additive white noise. A larger projectile or quiet
platform will improve detectability. While it is important to
preserve the rise time to enable accurate edge detection
results indicate that the relatively loud shock waves can
detected with system bandwidths that are readily achieva

In its simplest form, gradient estimation can be acco
plished with very low complexity. The multiscale wavel
approach provides a technique that incorporates smoot
in the gradient estimation process, without knowinga priori
what the optimal smoothing level may be. The addition
smoothing provides increased protection against addi
noise. The wavelet approach is computationally simple
straightforward to implement in real time applications.

Gradient-based performance depends on the fast
time and amplitude of the shock edges. This is in contras
optimal matched filter performance which is theoretically
sensitive to the signal shape in additive white Gauss
noise, provided the signal shape is known precisely. Thu
Gaussian noise, the matched filter will generally out perfo
any other scheme. However, the signal form is only pa
metrically known, so that a search of the parameter spac
necessary, resulting in higher complexity. And, additive
terference will quickly degrade the matched filter perfo
mance.

The gradient-based approach might be used as a f
end to other system layers. In particular the important pr
lem of angle of arrival estimation, requiring multiple senso
will typically require accurate detection and time-of-arriv
estimation at each sensor.
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