Predicted Discharge Rate for γ/β-MnO$_2$ versus λ-MnO$_2$

Jeff Wolfenstine

ARL-TN-160

March 2000

Approved for public release; distribution unlimited.
The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.
Contents

References .. 4
Distribution ... 5
Report Documentation Page ... 7

Figure

1. Lithium diffusivity in γ-MnO$_2$, β-MnO$_2$, and λ-MnO$_2$ at room temperature......................... 2
Recently, λ-MnO$_2$ has been proposed as an alternative cathode to γ/β-MnO$_2$ in Li/MnO$_2$ primary batteries [1]. One suggested advantage of λ-MnO$_2$ over γ/β-MnO$_2$ is its faster discharge rate at both room and low temperatures [1]. For the MnO$_2$ cathode, its discharge rate I is a function of its lithium diffusivity D and particle size d:

$$I \propto \frac{D}{d}. \quad (1)$$

Equation (1) shows that increasing lithium diffusivity and/or decreasing the particle size leads to an increase in the discharge rate. Equation (1) also shows that if two different materials of the same particle size have a difference in discharge rates for the same experimental conditions (i.e., electrolyte), this difference must result from the difference in their D values. In this note, my goal is to determine whether a switch from a γ/β-MnO$_2$ cathode to a λ-MnO$_2$ cathode causes an increase in the discharge rate in the Li/MnO$_2$ system, as a result of a difference in the diffusivity D of the two materials. This comparison is made at room temperature only, since no low-temperature data for D in γ/β-MnO$_2$ or λ-MnO$_2$ currently exist.

Lithium diffusivity in γ-MnO$_2$ [2,3], β-MnO$_2$ [3], and λ-MnO$_2$ [4] at room temperature is plotted in figure 1. The figure includes, for λ-MnO$_2$, a data point at $3 \times 10^{-11} \text{ cm}^2/\text{s}$ (which was measured for LiMn$_2$O$_4$ [5]) and one at $4 \times 10^{-11} \text{ cm}^2/\text{s}$ (measured for Li$_{0.4}$MnO$_4$ [6]). These two points are plotted for λ-MnO$_2$ because Li$_x$Mn$_2$O$_4$ has the same structure as λ-MnO$_2$ [7,8], and Guyomard and Tarascon [4] have shown that the diffusion coefficient of lithium in Li$_x$Mn$_2$O$_4$ is independent of lithium composition x, for x from 0 to 1. Thus, the D values shown in figure 1 for LiMn$_2$O$_4$ ($x = 1$) and Li$_{0.4}$MnO$_4$ ($x = 0.4$) should correspond to lithium diffusivity in λ-MnO$_2$ ($x = 0$). The figure also includes lithium diffusivity values for γ-MnO$_2$ and β-MnO$_2$ produced from acid digestion of LiMn$_2$O$_4$ (filled symbols) [3].

Figure 1 suggests several important points. First, D in γ-MnO$_2$ is greater than D in β-MnO$_2$ (about a factor of 5 higher, if we consider only the open symbols). This is expected because the number of (2×1) channels decreases as the MnO$_2$ structure transforms from γ to β [8–10]. It has been suggested that lithium diffusivity is faster in the (2×1) channels than in the (1×1) channels [10]. Hence, lithium diffusivity should decrease as the number of (2×1) channels decreases, which agrees with the data shown in figure 1. A similar trend is also observed in γ-MnO$_2$ and β-MnO$_2$ produced from acid digestion of LiMn$_2$O$_4$ (filled symbols).

A second observation from figure 1 is that two of the data points for λ-MnO$_2$, although from different research groups [5,6], are in excellent agreement with each other. However, there is a significant difference in D (about a factor of 25 to 30) between these data and the third data point (from Guyomard and Tarascon [4]). Reasons for this difference are not yet known. Since lithium diffusivity can be affected by impurities, it may be
Figure 1. Lithium diffusivity in γ-MnO$_2$ [2,3], β-MnO$_2$ [3], and λ-MnO$_2$ [4-6] at room temperature.

that material variations account for this difference [8]. However, the impurities and concentration for the three different materials were not given, so this suggestion cannot be confirmed.

The data in figure 1 can be used to determine whether (at room temperature) an increase in the discharge rate in Li/MnO$_2$ batteries is likely to occur as a result of a switch from γ/β-MnO$_2$ to λ-MnO$_2$ cathodes. The currently used γ/β-MnO$_2$ is a combination of γ-MnO$_2$ and β-MnO$_2$. Diffusivity D for γ/β-MnO$_2$ (open symbols) is about 1×10^{-10} cm2/s. (This value is based on a 50 vol.% γ-MnO$_2$ and 50 vol.% β-MnO$_2$ mixture.) I compare D for γ/β-MnO$_2$ (1×10^{-10} cm2/s) to two values of D for λ-MnO$_2$: 4×10^{-10} and 1×10^{-9} cm2/s. (I choose these two values because of the discrepancy in the data for λ-MnO$_2$, discussed earlier.) If $D = 4 \times 10^{-10}$ cm2/s for λ-MnO$_2$, the value for γ/β-MnO$_2$ is about 2.5x higher: $D = 1 \times 10^{-10}$ cm2/s. Thus, according to equation (1), a decrease in the discharge current is predicted if λ-MnO$_2$ is used instead of γ/β-MnO$_2$ of equal particle size. If $D = 1 \times 10^{-9}$ cm2/s for λ-MnO$_2$, the value of D of γ/β-MnO$_2$ is about 10x lower: 1×10^{-10} cm2/s. In this case, according to equation (1), changing from γ/β-MnO$_2$ to λ-MnO$_2$ of the same particle size will lead to a maximum increase in the discharge rate of about an order of magnitude. Unfortunately, without more experimental data for λ-MnO$_2$, it is impossible to determine which is the correct D value for λ-MnO$_2$. In any case, the results reveal that the maximum increase in discharge rate at room temperature that can be achieved by switching from γ/β-MnO$_2$ to λ-MnO$_2$ of the same particle size is about an order of magnitude.

A third observation from figure 1 is that γ-MnO$_2$ and β-MnO$_2$ produced from acid digestion (filled symbols) have a higher lithium diffusivity than γ-MnO$_2$ and β-MnO$_2$ produced by standard commercial methods (open symbols). Figure 1 shows that for both γ-MnO$_2$ and β-MnO$_2$, the D values for these materials when produced by acid digestion is higher than the D values when they are prepared by commercial methods. Among several possible explanations for this observation are differences in impurities.
and in structural water content. Since the impurities and their concentrations are not given, I cannot address this possibility. However, we know that the structural water content for the materials formed by acid digestion is about a factor of 10^x lower than that for the materials prepared by commercial methods [3]. It is possible that the removal of structural water leads to more sites for lithium to occupy and move to and hence a higher D. More experimental work is required to confirm this suggestion. In any case, since γ-MnO$_2$ and β-MnO$_2$ produced by acid digestion have a higher D than commercially prepared γ-MnO$_2$ and β-MnO$_2$, acid digestion may be a method of increasing the D in MnO$_2$. One could speculate that λ-MnO$_2$ prepared from acid digestion of LiMn$_2$O$_4$ will also exhibit a higher D than λ-MnO$_2$ prepared by the more common electrochemical titration of LiMn$_2$O$_4$ (the method used to prepare the λ-MnO$_2$ shown in figure 1 [4]). At present, no low-temperature data for D in γ/β-MnO$_2$ or λ-MnO$_2$ exist, and hence no comparisons can be made.

The results of the comparisons presented here suggest the following:

1. Switching from γ/β-MnO$_2$ to λ-MnO$_2$ of equal particle size will lead to a maximum increase in the discharge rate at room temperature of about an order of magnitude.

2. More experimental data at both room and low temperatures are needed for D in γ/β-MnO$_2$ and λ-MnO$_2$ before we can accurately predict whether an increase in discharge rate will occur as a result of switching from γ/β-MnO$_2$ to λ-MnO$_2$ in the Li/MnO$_2$ system.

3. When formed by acid digestion, γ-MnO$_2$ and β-MnO$_2$ have a higher D and hence a faster discharge rate than when produced by commercial methods. This difference may be a result of the lower structural water content in materials formed by acid digestion.
References

1. D. Chua, private communication.
Distribution

Admnstr
Defns Techl Info Ctr
Attn DTIC-OCP
8725 John J Kingman Rd Ste 0944
FT Belvoir VA 22060-6218

Oft of the Secy of Defns
Attn ODDRE (R&AT)
The Pentagon
Washington DC 20301-3080

Oft of the Secy of Defns
Attn OUSD(A&T)/ODDR&E(R) R J Trew
3080 Defense Pentagon
Washington DC 20301-7100

Advry Grp on Elect Devices
Attn Documents
Crystal Sq 4 1745 Jefferson Davis Hwy Ste 500
Arlington VA 22202

AMCOM MRDEC
Attn AMSMI-RD W C McCorkle
Redstone Arsenal AL 35898-5240

CECOM Night Vsn/Elect Sensors Dirctrt
Attn AMSEL-RD-NV-D
FT Belvoir VA 22060-5806

Commander
CECOM R&D
Attn AMSEL-IM-BM-I-L-R Stinfo Ofc
Attn AMSEL-IM-BM-I-L-R Techl Lib
Attn AMSEL-RD-AS-BE E Plichta
FT Monmouth NJ 07703-5703

Deputy for Sci & Techlgy
Attn Ofc Asst Sec Army (R&D)
Washington DC 30210

Dir for MANPRINT
Ofc of the Deputy Chief of Staff for Prsnnl
Attn J Hiller
The Pentagon Rm 2C733
Washington DC 20301-0300

US Army ARDEC
Attn AMSTA-AR-TD M Fisette
Bldg 1
Picatinny Arsenal NJ 07806-5000

Commander
US Army CECOM
Attn AMSEL-RD-CZ-PS-B M Brundage
FT Monmouth NJ 07703-5000

US Army Info Sys Engrg Cmd
Attn ASQB-OTD F Jenia
FT Huachuca AZ 85613-5300

US Army Natick RDEC
Acting Techl Dir
Attn SSCNC-T P Brandler
Natick MA 01760-5002

US Army Simulation, Train, & Instrmntn Cmd
Attn J Stahl
12350 Research Parkway
Orlando FL 32826-3726

US Army Soldier & Biol Chem Cmd Dir of Rsrch & Techlgy Dirctrt
Attn SMCCR-RS I G Resnick
Aberdeen Proving Ground MD 21010-5423

US Army Tank-Automtv Cmd Rsrch, Dev, & Engrg Ctr
Attn AMSTA-TR J Chapin
Warren MI 48397-5000

US Army Train & Doctrine Cmd
Battle Lab Integration & Techl Dirctrt
Attn ATCD-B J A Klevecz
FT Monroe VA 23651-5850

US Military Academy
Mathematical Sci Ctr of Excellence
Attn MDN-A LTC M D Phillips
Dept of Mathematical Sci Thayer Hall
West Point NY 10996-1786
Distribution (cont'd)

Nav Rsrch Lab
Attn Code 2627
Washington DC 20375-5000

Nav Surface Warfare Ctr A
Attn Code B07 J Pennella
17320 Dahlgren Rd Bldg 1470 Rm 1101
Dahlgren VA 22448-5100

Marine Corps Liaison Ofc
Attn AMSEL-LN-MC
FT Monmouth NJ 07703-5033

USAF Rome Lab Tech
Attn Corridor W Ste 262 RL SUL
26 Electr Pkwy Bldg 106
Griffiss AFB NY 13441-4514

DARPA
Attn S Welby
3701 N Fairfax Dr
Arlington VA 22203-1714

Hicks & Associates Inc
Attn G Singley III
1710 Goodrich Dr Ste 1300
McLean VA 22102

Palisades Inst for Rsrch Svc Inc
Attn E Carr
1745 Jefferson Davis Hwy Ste 500
Arlington VA 22202-3402

US Army Rsrch Ofc
Attn AMSRL-RO-EN W Bach
Attn AMSRL-RO-EN B Mann
Attn AMSRL-RO-D C Chang
PO Box 12211
Research Triangle Park NC 27709

US Army Rsrch Lab
Attn AMSRL-CI-AI-A Mail & Records Mgmt
Attn AMSRL-CI-AP Techl Pub (3 copies)
Attn AMSRL-CI-LL Techl Lib (3 copies)
Attn AMSRL-DC T Wolfenstine (15 copies)
Attn AMSRL-DD J M Miller
Attn AMSRL-SE-D E Scannell
Attn AMSRL-SE-DC S Gilman
Attn AMSRL-SE-E J Mait
Adelphi MD 20783-1197
Title and Subtitle: Predicted Discharge Rate for γ/β-MnO$_2$ versus λ-MnO$_2$

Authors: Jeff Wolfenstine

Performing Organization: U.S. Army Research Laboratory
Attn: AMSRL-SE-DC
email: jwolfenstine@arl.mil
2800 Powder Mill Road
Adelphi, MD 20783-1197

Funding Numbers:
DA PR: AH47
PE: 61102A

Abstract: Recently, λ-MnO$_2$ has been proposed as an alternative cathode to γ/β-MnO$_2$ in Li/MnO$_2$ primary batteries because of its potential faster discharge rate. The results presented here suggest that (1) switching from γ/β-MnO$_2$ to λ-MnO$_2$ of equal particle size will lead to a maximum increase in the discharge rate at room temperature of about an order of magnitude and (2) when formed by acid digestion, γ-MnO$_2$ and β-MnO$_2$ have a higher lithium diffusivity and hence a faster discharge rate than when they are produced by the usual commercial means, a difference that may result from the lower structural water content in the materials produced by acid digestion.