NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.
Coulometric Study of Ethanol Adsorption at a Polycrystalline Platinum Electrode

Sol Gilman
Sensors and Electron Devices Directorate, ARL
REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>1. REPORT DATE (DD-MM-YYYY)</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED (From - To)</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 2011</td>
<td>Final</td>
<td></td>
</tr>
</tbody>
</table>

4. TITLE AND SUBTITLE
Coulometric Study of Ethanol Adsorption at a Polycrystalline Platinum Electrode

5. AUTHOR(S)
Sol Gilman

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Army Research Laboratory
ATTN: RDRL-SED
2800 Powder Mill Road
Adelphi, MD 20783-1197

8. PERFORMING ORGANIZATION REPORT NUMBER
ARL-TR-5594

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
For dilute solutions of ethanol in 1N solution of perchloric acid (HClO₄), rates of adsorption and saturation surface coverages were determined by measuring the charge corresponding to blockage of hydrogen adsorption sites under well-controlled conditions of surface cleanliness/activity and mass transport. In a dilute solution of ethanol, oxidative adsorption rates maximize at 0.3 V, dropping off at more cathodic potentials due to competition with adsorbed hydrogen and dropping off at more anodic potentials due to oxidative processes that produce products released to the electrolyte. The time and concentration dependence of adsorption follows relationships that are common for adsorption on a heterogeneous surface. Some evidence is presented supporting a mechanism for production of soluble products that does not involve the adsorbed species that are detected through the measurement of blockage of hydrogen adsorption sites.

15. SUBJECT TERMS
DMFC, Ethanol, ethanol fuel cells, adsorption

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
28

19. NAME OF RESPONSIBLE PERSON
Sol Gilman

19b. TELEPHONE NUMBER (Include area code)
(301) 394-0339
Contents

List of Figures iv
List of Tables iv
Acknowledgments v
1. Introduction 1
2. Experimental 1
 2.1. Supplies and Equipment ... 1
 2.2. Electrodes ... 2
 2.3 Procedures ... 2
 2.3.1 Cyclic Voltammograms .. 2
 2.3.2 Anodic Scans ... 4
 2.3.3 Cathodic Scans .. 6
3. Results and Discussion 7
 3.1 Electrolyte Purity .. 7
 3.2 Adsorption Measurements Using Anodic Scans 8
 3.3 Adsorption Measurements Using Cathodic Scans 8
 3.3.1 Reproducibility and Significance of Cathodic Coulombic Measurements 8
 3.3.2 Rates of Adsorption from a 10^{-3} M Ethanol Solution in 1N HClO₄ 10
 3.3.3 Concentration Dependence of Ethanol Adsorption 11
 3.3.4 Desorption of Adsorbed Ethanol .. 14
 3.3.5 Correlation Between Adsorption Rates and Oxidation/Desorption Current..... 14
4. Conclusions 15
5. References 17
List of Symbols, Abbreviations, and Acronyms 19
Distribution List 20
List of Figures

Figure 1. Voltage scan for a 1N solution of HClO₄, v = 100 mv/s.................................3
Figure 2. Cyclic voltammogram for 10⁻³ M ethanol in 1N HClO₄, v = 1 mv/s, 10⁻³ M ethanol in 1N HCl0₄...3
Figure 3. Anodic scans for 1N HClO₄ using the sequence of table 1, v = 200 V/s.............5
Figure 4. Anodic scans with/without ethanol addition, using the sequence of table 1. Trace 1: 1NHCl0₄; Trace 2: 1N HCl0₄, 10⁻³ M ethanol. V= 200 V/s...5
Figure 5. Polarization curves for ethanol oxidation/desorption using the sequence of table 1, v = 1 mv/s. ...6
Figure 6. Representative cathodic scans for adsorption of ethanol at open circuit from a 10⁻³ M solution of ethanol in 1N HCl0₄; potential = 0.3 V, sweep speed = 200 V/s.7
Figure 7. Comparison of decreased hydrogen adsorption charge corresponding to ethanol adsorption (10⁻³ M solution at 0.3 V) with calculated decrease assuming one hydrogen adsorption site/ethanol molecule adsorbed. ...9
Figure 8. Adsorption of ethanol from a 10⁻³ solution in 1N HClO₄..................................10
Figure 9. Adsorption of ethanol at 0.3 V. ..11
Figure 10. Fractional surface coverage with ethanol at fixed adsorption time.12
Figure 11. Test of equation 7 for short adsorption times...13
Figure 12. Desorption of ethanol at 0.03 V after adsorption at 0.23 V.13

List of Tables

Table 1. Sequence used for anodic scans...4
Table 2. Sequence used for cathodic scans..6
Table 3. Correlation of anodic current to fractional surface coverage.14
Acknowledgments

I am grateful to Drs. Edward Shaffer and Cindy Lundgren for their generous support of this project. I also offer thanks to Dr. Jeffrey Read and Michelle Marx for helpful discussions and assistance in establishing the experimental instrumentation.
1. Introduction

The anodic oxidation of ethanol has been a topic of considerable interest during the last decade in connection with the interest in using ethanol as an alternative to methanol in ambient temperature fuel cells (see, for instance, reference 1). Adsorption processes can be expected to play a major role in the overall oxidation reaction. The adlayer on a platinum electrode in acid solution can be expected to contain a number of fragments of the original ethanol molecule and vary in composition with potential. In recent years, a number of in situ spectroscopic techniques have been applied to the issue of composition. This includes the identification in the adlayer of adsorbed carbon monoxide (CO) (2–9), adsorbed acetaldehyde and acetyl (8–16), adsorbed acetate (17–20), and adsorbed methyl group (CHx) (21–22). There is evidence for the existence of all of those species, besides acetate, at potentials below ~0.5 V and for adsorbed acetate at higher potentials. There is consensus (22–25) that the products that are desorbed and released to the electrolyte under a range of anodic conditions are mixtures of carbon dioxide, acetaldehyde, and acetic acid. One area not yet covered by previous investigators is the rate of accumulation of ethanol-derived species on the electrode surface and its relationship to the soluble product-producing anodic current. In this study, a “staircase” of pre-conditioning potentials and rapid potential scans were combined to provide information on the rate and extent of overall surface coverage in the early stages of ethanol adsorption under well-defined conditions of mass transport and surface preparation. It is anticipated that the approach could provide an additional tool for evaluation of other noble metals and noble metal alloys that can provide what amounts to an adsorbed oxygen “valve” for initiating adsorption/reaction on a clean and activated surface.

2. Experimental

2.1. Supplies and Equipment

All measurements were made at room temperature (21 °C) in a 1N solution of perchloric acid (HClO₄) with various additions of ethanol. The acid solution was prepared using “Millipore” water with a resistivity of 18.2 MΩ-cm and redistilled HClO₄ (Sigma-Aldrich). Ethanol was 99.5% American Chemical Society (ACS) reagent grade (Aldrich). The electrolyte solution was purified as described below, using a “getter” electrode. The getter electrode was cathodically/anodically cycled several times in an exterior solution. After the final anodic treatment (producing a protective passive state), the electrode was transferred to the test vessel, cathodically reduced, and held at 0.4 V for several hours with vigorous bubbling of argon. Electrochemical measurements were made using a Gamry Reference 3000 potentiostat. The electrochemical vessel was constructed of Pyrex glass with polytetrafluoroethylene (PTFE) stoppers and a PTFE tube for degassing the solution with reagent grade argon.
2.2. Electrodes

The working electrode was a commercially pure (CP) grade platinum wire of 0.08 cm in diameter and 1 cm in length. The wire was etched lightly in aqua regia, flame annealed, encased in shrinkable PTFE tubing to expose a 1-cm length, and then lightly etched again. The working electrode was periodically immersed in a hot chromic acid cleaning solution. Based on cathodic hydrogen adsorption (26), the electrode had a roughness factor of 2.1 that remained constant over several months of use. The counter electrode was a platinized platinum (Pt) foil with a 2-cm² geometric area. The use of a palladium-hydrogen (Pd/H) electrode as reference allowed very close placement parallel to the working electrode. It was prepared in a manner similar to that described by Fleischmann and Hiddleston (27): a 0.076-cm-diameter wire with a length of 1 cm was spot-welded to a long Pt wire that was sealed in a shrinkable PTFE tube so as to conceal the weld. The electrode was etched in aqua regia and made cathodic at 24 mA for 17 min (past the point of coulombic stoichiometry for PdH) and then anodic for 4.5 min. This electrode was found to be stable for several days with a potential of approximately 0.02 V versus a reversible hydrogen electrode. The electrode was re-hydrogenated daily and its potential was monitored against a saturated calomel electrode (SCE) every few hours. All potentials applied and reported here were adjusted to that of a reversible hydrogen electrode. The “gettering” electrode used for electrolyte purification was a platinized Pt gauze cylinder, 55 mm long and 15 mm in diameter.

2.3 Procedures

2.3.1 Cyclic Voltammograms

Two voltammograms are shown in figures 1 and 2 for the purpose of explaining the pulse sequences used to obtain the adsorption data discussed in the sections that follow. Figure 1 is the familiar trace obtained for the electrolyte (1N HClO₄) used throughout this investigation. The “hydrogen adsorption” region extends from ~0 to 0.3 V and is symmetrical. Fast cathodic scans in that region were used to obtain the adsorption data reported below. The “oxygen adsorption” region begins at ~0.8 V and continues until the current increases exponentially corresponding to oxygen evolution. Fast anodic scans were used to obtain the information on electrolyte purity described below. “Oxygen” adsorption is not symmetrical, but occurs with a negative peak below ~0.8 V. In the electrode pre-conditioning sequences, advantage was taken of the passivity of the electrode in the vicinity of 1.2 V after anodization at 1.8 V. Figure 2 is a similar voltammogram obtained after making the electrolyte 10⁻³ M in ethanol. On this scale, the oxygen and hydrogen adsorptions are not visible, because the corresponding currents are extremely small compared to those shown that correspond to ethanol oxidation that results in soluble products released to the electrolyte (as opposed to adsorbed species). The trace shows that an electrode exposed to high potentials becomes passive until reduced at potentials below ~0.8 V. The region of passivity was used in preparing a clean surface in the adsorption studies discussed below.
Figure 1. Voltage scan for a 1N solution of \(\text{HClO}_4 \), \(v = 100 \text{ mv/s} \).

Figure 2. Cyclic voltammogram for \(10^{-3} \text{ M ethanol in 1N HClO}_4 \), \(v = 1 \text{ mv/s} \), \(10^{-3} \text{ M ethanol in 1N HClO}_4 \).
2.3.2 Anodic Scans

Anodic scans can provide a sensitive test for the purity of the baseline electrolyte or provide a measure of the amount of adsorbed organic material. A sequence of potential steps was used to clean the electrode surface and follow adsorption from essentially 0 time with respect to transport of material from the solution. The potential sequence used and the rationale for the various steps of the sequence appears in table 1. A similar approach has been used in the past to study the adsorption of CO and other organic molecules (see, for instance, reference 28). Some resulting scans appear in figures 3 and 4.

Table 1. Sequence used for anodic scans.

<table>
<thead>
<tr>
<th>Step No.</th>
<th>Potential (V) vs. RHE</th>
<th>Conditions</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>Bubble/stir with argon for 1 s</td>
<td>Desorb anionic impurities</td>
</tr>
<tr>
<td>2</td>
<td>1.8</td>
<td>Bubble/stir with argon for 1 s</td>
<td>Oxidize organics and passivate surface</td>
</tr>
<tr>
<td>3</td>
<td>1.2</td>
<td>Bubble/stir with argon for 30 s; quiescent for 90 s</td>
<td>Degas solution/retain passivity</td>
</tr>
<tr>
<td>4</td>
<td>0.4</td>
<td>Quiescent solution for specified adsorption time</td>
<td>Reduction of passive surface occurs within first few milliseconds; begin adsorption with no depletion of diffusion layer</td>
</tr>
<tr>
<td>5</td>
<td>Anodic scan at 200 V/s</td>
<td>Quiescent solution</td>
<td>Detect adsorbed material</td>
</tr>
<tr>
<td>5 (alternative)</td>
<td>Anodic scan at 1 mV/s</td>
<td>Quiescent solution</td>
<td>Measure “polarization curve”</td>
</tr>
</tbody>
</table>
Figure 3. Anodic scans for 1N HClO₄ using the sequence of table 1, v = 200 V/s.

Figure 4. Anodic scans with/without ethanol addition, using the sequence of table 1. Trace 1: 1NHClO₄; Trace 2: 1N HClO₄, 10⁻³ M ethanol. V= 200 V/s.
Slow anodic scans using the preconditioning steps of table 1 were used to obtain “polarization” curves for a number of methanol concentrations. The scans appear in figure 5.

![Polarization curves for ethanol oxidation/desorption using the sequence of table 1, \(v = 1 \text{ mV/s} \).](image)

2.3.3 Cathodic Scans

Cathodic scans can be used to measure hydrogen adsorption sites that are obscured by an adsorbate. The potential sequence used and the rationale for each step appears in table 2. All steps after #3 are in the quiescent solution. Some representative scans appear in figure 6.

Table 2. Sequence used for cathodic scans.

<table>
<thead>
<tr>
<th>Step No.</th>
<th>Potential (V) vs. RHE</th>
<th>Conditions</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–3</td>
<td>Same as table 1</td>
<td>Same as table 1</td>
<td>Same as table 1</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
<td>0.01 s pulse</td>
<td>Rapid reduction of surface</td>
</tr>
<tr>
<td>5</td>
<td>0.4</td>
<td>0.01 s pulse</td>
<td>Rapid removal of adsorbed H</td>
</tr>
<tr>
<td>6</td>
<td>Variable voltage or open circuit</td>
<td>Variable time adsorption time, t</td>
<td>Allow adsorption under controlled conditions of surface and transport</td>
</tr>
<tr>
<td>7</td>
<td>0.4 V</td>
<td>0.01 s pulse</td>
<td>Provide same starting potential for scans.</td>
</tr>
<tr>
<td>8</td>
<td>Cathodic scans</td>
<td>Variable sweep speeds</td>
<td>Measurement of hydrogen adsorption sites not obscured by other adsorbates</td>
</tr>
</tbody>
</table>
3. Results and Discussion

3.1 Electrolyte Purity

Anodic scans, such as those displayed in figure 3 (using the sequence in table 1), provide a sensitive indication of solution purity before and after purification using a “gettering” electrode. Although high purity HClO₄ and high resistivity “Millipore” water was used for preparing the electrolyte, anodic scans similar to the first trace in figure 6 were obtained when the exposure time was no more than ~10 s. Very significant changes in the scan were observed at longer times. That the effect becomes more rapid with stirring (third trace) indicates that the adsorption of impurities is at least partially diffusion-controlled. In view of the high resistivity of the water, it seems likely that the impurities are neutral organic molecules exuded from the Millipore membranes. “Gettering” of the electrolyte for several hours was found to result in scans that overlapped for adsorption times of from 0.1 to 100 s. The result at 1000 s shows some distortion of the scan. All of the ethanol adsorption data discussed below was obtained after “gettering” the electrolyte for 3 h.
3.2 Adsorption Measurements Using Anodic Scans

An attempt was made to follow the adsorption of ethanol using the anodic scan sequence of table 1. The adsorption time and ethanol concentration for the representative scans in figure 4 correspond to a fractional surface coverage of 0.54 as determined by the cathodic scan approach discussed below. If the anodic scans were a reliable measure of surface coverage, one would expect the two curves of figure 4 to merge at the highest potentials of the scans. The fact that they do not implies that they do not represent the same state of the surface (incomplete oxidation/desorption of the organic adlayer). Also, the differential areas between the two curves (providing coulombs corresponding to oxidation of the adlayer) were found to vary significantly with sweep speed. Finally, information is not available on the final desorbed product under fast-scan conditions. As mentioned previously, long-term oxidation has been reported to result in a mixture of acetaldehyde, acetic acid, and carbon dioxide. In view of these complexities, the use of anodic scans in this study was abandoned.

3.3 Adsorption Measurements Using Cathodic Scans

3.3.1 Reproducibility and Significance of Cathodic Coulombic Measurements

Using the sequence of table 1, cathodic scans for the same electrode were found to be extremely reproducible using purified electrolyte, allowing overlap of traces over a period of months of experimentation. With addition of ethanol, estimates of coulombic charge were reproducible to within several percent. The coulombs of charge expended during a cathodic scan into the “hydrogen adsorption” region (before exponential increase of current corresponding to hydrogen gas evolution) of a Pt electrode is generally accepted to correspond mainly to deposition of a monolayer of hydrogen atoms \((26) \). Integration of the coulombic area (with the x-axis scale converted to seconds) of the trace for the electrolyte in figure 5 provides the quantity \(Q^S_{H^*} \) that includes \(Q^S_{H} \), the charge corresponding to monolayer hydrogen adsorption. Adsorption of organic molecules causes hydrogen adsorption sites to be blocked and similar integrations provide values of \(Q_{H^*} \). \(Q^S_{H^*} \) and \(Q_{H^*} \) also contain contributions from double layer charging (small) and uncertainties involved in choosing the inflection point for the onset of hydrogen evolution. In this study, we are interested in the ratio \((Q^S_{H} – Q_{H})/Q^S_{H} \) to provide \(\Theta \) (the fractional surface coverage) corresponding to blockage of hydrogen adsorption sites. For that ratio, the extraneous charges of the corresponding starred quantities are expected largely to cancel out and provide a good approximation of \(\Theta \). Another possible source of error is the desorption of ethanol during cathodic sweeps. Adsorbed ethanol does desorb at low potentials but at relatively slow rates as is discussed below. Values of \(Q_{H^*} \) were obtained for sweep speeds from 100 to 1000 V after the electrode was loaded with 0.5 monolayer of ethanol. The values were found to be constant to within a few percent. That serves as one indication of the stability of the adlayer under the conditions of measurement of \(\Theta \).
The rates of adsorption obtained in this study appear activation rather than diffusion controlled as indicated by the analysis that follows. Assuming diffusion control, mass transport in the early few seconds of adsorption would be expected to follow the subsequent current-time relationship for semi-infinite linear diffusion (29):

\[I_d = n \pi^{1/2} F A D^{1/2} C \tau^{-1/2}. \] \hspace{1cm} (1)

Integrating equation 1, the corresponding charge is given by equation 2

\[Q_d = 2n A \pi^{1/2} F D^{1/2} C \tau^{-1/2}, \] \hspace{1cm} (2)

where

- \(n \) = number of electrons
- \(F \) = Faraday constant
- \(A \) = area = 0.26 cm\(^2\)
- \(D \) = diffusion coefficient of ethanol = 1.24x10\(^{-5}\) cm\(^2\)/s.

In figure 7, a plot of \(Q_d \) (\(n=1 \)) of equation 2 is compared with \((Q_{H^*}^S - Q_{H^*}) = \Delta Q \) obtained experimentally for adsorption from 10\(^{-3}\) M ethanol. Taking \(n = 1 \) is equivalent to the assumption that one molecule of ethanol blocks one hydrogen site. It can be seen from the comparison that the adsorption results are smaller than for calculated diffusion-control and those results are not linear with respect to \(\tau^{-1/2} \). Also, \(n \), and therefore \(Q_d \), is likely to be larger than 1 (i.e., more than one hydrogen adsorption site blocked by ethanol fragments from one molecule of ethanol). Finally, some sample measurements of adsorption showed no influence of stirring.

![Figure 7. Comparison of decreased hydrogen adsorption charge corresponding to ethanol adsorption (10\(^{-3}\) M solution at 0.3 V) with calculated decrease assuming one hydrogen adsorption site/ethanol molecule adsorbed.](image-url)
3.3.2 Rates of Adsorption from a 10^{-3} M Ethanol Solution in 1N HClO₄

Values of Θ versus time obtained at a sweep speed of 200 V/s are plotted on a logarithmic scale in figure 8. Rates of adsorption, $d\Theta/dt$, can be derived from the semilog plot:

$$
\frac{d\Theta}{d \log t} = \frac{t}{d\Theta/dt}
$$

(3)

$$
\frac{d\Theta}{dt} = \frac{(d\Theta/d \log t)/t}{t}
$$

(4)

Figure 8. Adsorption of ethanol from a 10^{-3} solution in 1N HClO₄.

The significance of the parallel plots is that rates of adsorption in that range are the same for the same elapsed time but differ for the same fractional coverage according to their elapsed times.

No adsorption was evidenced at open circuit when small oxidative currents due to residual oxygen were avoided. That and the fact that adsorption is much diminished at the low potentials at which potential the surface is normally largely covered with adsorbed hydrogen supports Heinen et al.’s (8) conclusion that the first step in the adsorption process occurs with the abstraction of a hydrogen atom from the hydroxyl carbon. However, slight adsorption appears to persist to a potential as low as 0.02 V. Decreased adsorption at potentials above 0.5 V is readily attributable to the “steady” oxidation that is apparent from figure 5. Adsorption is maximal at
0.32 V, where there is little competition from hydrogen adsorption and oxidation/desorption (the latter according to the polarization curves of figure 5). Adsorption at 0.43 V is somewhat reduced compared to 0.32 V in line with the observation of incipient “steady” oxidation at the higher potential according to figure 5. Because adsorption at 0.32 V is maximized, additional attention was paid to adsorption at that potential. It must be kept in mind that although 0.32 V is, in a sense, a “neutral potential” for ethanol, the chemical composition is quite complicated according to the published results previously mentioned.

3.3.3 Concentration Dependence of Ethanol Adsorption

Adsorption at 0.3 V for a number of different ethanol concentrations was measured and the plots appear in figure 9. Parallel linear regions can be seen in the mid-range of surface coverages for the different concentrations. This semi logarithmic dependence of surface coverage on adsorption time in the mid-range of surface coverages suggests adherence to the Elovich equation as is commonly encountered in gas phase kinetics on heterogeneous surfaces (30):

\[
\frac{d\Theta}{dt} = kCe^{-m\theta}
\] \hspace{1cm} (5)

Integrating and taking logarithms yields

\[
\Theta = \ln kC(t - t_0).
\] \hspace{1cm} (6)

Figure 9. Adsorption of ethanol at 0.3 V.
A consequence of the parallel plots is that rates of adsorption in that range are the same for the same elapsed time but differ for the same fractional coverage according to their elapsed times. It is apparent from figure 9 that adsorption rates do not have a linear dependence on concentration. For the range of Θ where equations 5 and 6 apply, equation 6 predicts that Θ at constant adsorption time will depend linearly on the logarithm of concentration. Such plots appear in figure 10. The plots have fair linearity in the lower range of fractional coverages.

![Figure 10. Fractional surface coverage with ethanol at fixed adsorption time.](image)

It is often observed that the adsorption rates on a heterogeneous surface follow a simple Langmuir relationship at low surface coverages (figure 11):

$$\frac{d\Theta}{dt} = k'C (1-\Theta).$$

Rearranging equation 7 and integration of both sides of the equation yields

$$\ln (1-\Theta) = k'Ct_0 - k'Ct,$$

where $t_0 = 0$.

Values of Θ were obtained for short adsorption times at 0.3 V using the sequence of table 2 with $v = 1000$ V/s. Plots of $\ln (1-\Theta)$ versus time for two different ethanol concentrations appear in figure 12. Regions of fair linearity are observed.
Figure 11. Test of equation 7 for short adsorption times.

Figure 12. Desorption of ethanol at 0.03 V after adsorption at 0.23 V.
3.3.4 Desorption of Adsorbed Ethanol

Adsorbed ethanol can be desorbed to some extent at either cathodic or anodic potentials. The data plotted on figure 10 were obtained using the sequence of table 2 with an additional potential step added after step 6 of that sequence. Ethanol was pre-adsorbed at 0.23 V and the desorptions at 0.03 V were followed by applying cathodic scans. In the time allowed for the experiments, desorptions at 0.03 V did not go down to the same level as adsorption at 0 V. According to Wang et al. (16) desorption products include methane and ethane. At low potentials, the main non-desorbable component of the adlayer is reportedly CO (2–9). These results tend to confirm that there is no significant loss of charge during the cathodic scan experiments conducted at sweep speeds of 200 V/s, which involve exposure to low potentials for only a few milliseconds.

3.3.5 Correlation Between Adsorption Rates and Oxidation/Desorption Current

The drop-off of rates of adsorption and final surface coverages at the higher potentials can be due to either the opposing rates of oxidation/desorption or of surface passivation due to “adsorbed oxygen.” The observation of 0 coverage at 0.8 V in figure 8 can be ascribed to either the opposing rate of oxidation to soluble products (which reaches a maximum at that potential according to figure 5) or the onset of surface passivation by oxygen adsorption, that process beginning somewhat below that potential (see figure 1) or both. As oxygen adsorption is small at that potential, the former explanation seems more likely. The potential of 0.5 V is well into the first Tafel region (1) of the polarization curve and that region is of most relevance to fuel cell technology. An attempt was made to correlate the anodic currents measured at 0.5 V to the adsorption data of figure 9. This assumes that the adsorption rates measured at ~0.3 V represent maximal rates undiminished by rates of oxidation or cathodic desorption. Table 3 lists values of Θ after 200 s of adsorption at 0.5 V (equal to or close to maximal adsorption) and the corresponding anodic currents i_an obtained just before measurement of Θ (step 6 of table 2). Values of I_{calc} were calculated using the data of figure 9 to provide monolayers/second and by multiplying those values by 115 microamperes/monolayer of hydrogen for this electrode.

<table>
<thead>
<tr>
<th>Conc., M/l</th>
<th>Θ</th>
<th>I_{an}, (μA)</th>
<th>I_{calc} (μA)</th>
<th>I_{an}/I_{calc}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0001</td>
<td>0.3</td>
<td>3.1</td>
<td>0.47</td>
<td>6.6</td>
</tr>
<tr>
<td>0.001</td>
<td>0.56</td>
<td>9.4</td>
<td>0.48</td>
<td>20</td>
</tr>
<tr>
<td>0.01</td>
<td>0.67</td>
<td>34.7</td>
<td>0.47</td>
<td>80</td>
</tr>
<tr>
<td>0.1</td>
<td>0.74</td>
<td>93</td>
<td>0.31</td>
<td>300</td>
</tr>
<tr>
<td>1</td>
<td>0.78</td>
<td>163</td>
<td>0.19</td>
<td>858</td>
</tr>
</tbody>
</table>

I_{calc} is the current equivalent to hydrogen site occupation using equation 9:

\[I_{calc} = 115(d\Theta/dt) \]

(9)
If the anodic current were limited by the measured rate of adsorption, there would be a number of possibilities for the value of the ratio $\frac{I_{an}}{I_{calc}}$:

1. The minimal ratio would be 1, corresponding to a one-electron oxidation of one-site attached $\text{CH}_3\text{CH}_2\text{O}$ surface species to acetaldehyde.

2. The maximal ratio could be as high as 11, corresponding to oxidation of a one-site attached $\text{CH}_3\text{CH}_2\text{O}$ surface species to carbon dioxide and protons.

3. Ratios between 1 and 11 could correspond to the oxidation of a mixture of $\text{CH}_3\text{CH}_2\text{O}$ and adsorbed ethanol fragments to carbon dioxide or other products.

For most of the concentrations listed in table 3, $\frac{I_{an}}{I_{calc}}$ is much higher than 11 (possibility 2). Hence, only a small fraction of the anodic current, I_{an}, must be used in reducing Θ from the corresponding larger value predicted by the adsorption rates at 0.3 V to the lower values listed in table 3. A possible mechanism that could support a fraction of the current, I_{an}, is the oxidation of ethanol on bare Pt surface sites (no adsorbed intermediate). It is also noteworthy that I_{calc} remains fairly constant over a wide range of concentrations. That may imply that the fraction of adsorbed material that does act as an intermediate, remains constant over a corresponding wide range of bulk ethanol concentrations. Thus, I_{an} would have two components:

$$I_{an} = I_{ads} + I_b,$$

(10)

where I_{ads} and I_b are the fractions of the total anodic current that proceeds on surface sites covered with an oxidation intermediate and bare surface sites, respectively. From the analysis of table 3, I_{ads} remains fairly constant with increasing bulk concentration of ethanol, whereas I_b rises steadily with increasing ethanol concentration. This seems to correlate well with the spectroscopic evidence presented by Camara and Iwasita (31), who concluded that oxidation of ethanol at 0.5 V proceeds by two different mechanisms: one that produces low yields of acetic acid and carbon dioxide and is relatively concentration insensitive, and the other that produces relatively high yields of acetaldehyde as the bulk concentration of acetaldehyde is increased. Because oxidation of ethanol to acetaldehyde requires no addition of oxygen (from water), it is plausible that this could occur on independent bare surface sites. On the other hand, oxidation to acetic acid and carbon dioxide would likely involve a two-site adsorption, one-site providing “adsorbed water,” or more specifically, a hydroxyl radical.

4. **Conclusions**

The surface conditioning and electrolyte purification procedures used in this study allowed monitoring of a single adsorption event for upwards of 1000 s under well-defined conditions of surface cleanliness and mass transport conditions. The adsorption of ethanol from dilute solutions in 1N HClO$_4$ was studied by coulometric measurement of the hydrogen adsorption sites.
blocked by the adsorbed organic material. The rate of adsorption and saturation coverage is maximal at ~0.3 V. That potential is in the “double layer region” (i.e., free of adsorbed hydrogen and oxygen from the electrolyte) and at that potential there is no significant oxidation of ethanol that releases products from the surface to the electrolyte. The adsorption does not occur at open circuit and drops off at more cathodic potentials consistent with reported results of others that the adsorption is oxidative. The rates of adsorption at 0.3 V over a wide range of ethanol concentrations exhibits a logarithmic dependence on adsorption time as is common for a heterogeneous surface (Elovich relationship). That leads to the conclusion that the adsorption at ~0.3 V is a relatively slow surface chemical process following the relatively rapid abstraction of a hydrogen atom, the latter proposed by Heinen et al. (8). Rates of adsorption drop off steeply at potentials higher than ~0.4 V, where ethanol is oxidized to soluble products. Similar time-dependencies of adsorption were reported for a number of organic molecules including butanol by Bockris and Jeng (32). An attempt to correlate the “steady” oxidation currents at 0.5 V to the maximal adsorption rates measured at 0.3 V leads to the conclusion that the latter currents do not derive wholly from the adsorbed intermediates measured in this study, which is consistent with a mechanism of “parallel pathways” for ethanol oxidation as already proposed by Camara and Iwasita (31).
5. References

List of Symbols, Abbreviations, and Acronyms

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS</td>
<td>American Chemical Society</td>
</tr>
<tr>
<td>CH₅</td>
<td>methyl group</td>
</tr>
<tr>
<td>CO</td>
<td>carbon monoxide</td>
</tr>
<tr>
<td>CP</td>
<td>commercially pure</td>
</tr>
<tr>
<td>HClO₄</td>
<td>perchloric acid</td>
</tr>
<tr>
<td>Pd/H</td>
<td>palladium-hydrogen</td>
</tr>
<tr>
<td>Pt</td>
<td>platinum</td>
</tr>
<tr>
<td>PTFE</td>
<td>polytetrafluoroethylene</td>
</tr>
<tr>
<td>SCE</td>
<td>saturated calomel electrode</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>ADMNSTR</td>
</tr>
<tr>
<td>ELEC</td>
<td>DEFNS TECHL INFO CTR</td>
</tr>
<tr>
<td></td>
<td>ATTN DTIC OCP</td>
</tr>
<tr>
<td></td>
<td>8725 JOHN J KINGMAN RD STE 0944</td>
</tr>
<tr>
<td></td>
<td>FT BELVOIR VA 22060-6218</td>
</tr>
<tr>
<td>3 HCS</td>
<td>US ARMY RSRCH LAB</td>
</tr>
<tr>
<td></td>
<td>ATTN IMNE ALC HRR</td>
</tr>
<tr>
<td></td>
<td>MAIL & RECORDS MGMT</td>
</tr>
<tr>
<td></td>
<td>ATTN RDRL CTO LL TECHL LIB</td>
</tr>
<tr>
<td></td>
<td>ATTN RDRL CTO MT TECHL PUB</td>
</tr>
<tr>
<td></td>
<td>ADELPHI MD 20783-1197</td>
</tr>
<tr>
<td>1 HCS</td>
<td>US ARMY RSRCH LAB</td>
</tr>
<tr>
<td></td>
<td>ATTN RDRL SED E S GOLMAN</td>
</tr>
<tr>
<td></td>
<td>ADELPHI MD 20783-1197</td>
</tr>
<tr>
<td>6 HCS</td>
<td>US ARMY RSRCH LAB</td>
</tr>
<tr>
<td>RDRRL SED E J STAUFFER</td>
<td></td>
</tr>
<tr>
<td>RDRRL SED C</td>
<td></td>
</tr>
<tr>
<td>C LUNDGREN</td>
<td></td>
</tr>
<tr>
<td>D CHU</td>
<td></td>
</tr>
<tr>
<td>R JIANG</td>
<td></td>
</tr>
<tr>
<td>W BEHL</td>
<td></td>
</tr>
<tr>
<td>J READ</td>
<td></td>
</tr>
<tr>
<td>ADELPHI MD 20783-1197</td>
<td></td>
</tr>
<tr>
<td>1 HC</td>
<td>CERDEC HDQ</td>
</tr>
<tr>
<td></td>
<td>ATTN EDWARD PLICHTA</td>
</tr>
<tr>
<td></td>
<td>5100 MAGAZINE ROAD</td>
</tr>
<tr>
<td></td>
<td>ABERDEEN PROVING GROUND MD 21005</td>
</tr>
</tbody>
</table>

TOTAL: 12 (1 ELEC, 11 HCs)